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Discrete HMMSs for statistical pronunciation modeling
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ABSTRACT

Non-native speakers pronounce words in multiple different ways compared to native speakers. To
model these deviations statistically, we propose discrete word HMMs as statistical lexicon. The initial-
ization of the HMMS bases on a standard pronunciation dictionary. One HMM is generated per word
in the dictionary, with one state per phoneme in the baseline pronunciation. Non-native training data is
segmented into word chunks, on which phoneme recognition is performed. The probability distributions
of the HMMs are trained on the phoneme sequences.

To apply the models, both an n-best word level recognition and a utterance-level phoneme recognition
of the test data are required. A pronunciation score is calculated by performing a Viterbi alignment with
the HMM dictionary as model and the phoneme sequence as input data. This score is a measure how well
the phonemes match with the pronunciation of the word sequence. The hypothesis with the highest score
is selected as recognition result. Experiments performed on the ATR SLT non-native English database
resulted in a word error rate improvement from 45.88% to 42.14%.

Keywords: HMM, pronunciation dicionary, non-native speech recognition
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1 Introduction

There are several reports in literature about pro-
nunciation modeling in general [1] and for the
special case of non-native speakers [2]. Many
approaches follow the similar basic scheme of
comparing manually or automatically generated
phoneme transcriptions to some baseline tran-
scription. Variation information can be extracted
from the differences. Typically it is represented
in the form of rules, which can be weighted based
on occurence frequency, likelihood, confusability
or other measures (e.g. [3]). These rules are ap-
plied to a baseline lexicon in order to generate
some adapted lexicon or to optimize an acoustic
model [4]. Unfortunately this approach usually
achieves only limited improvement [5].

Other researches are based on the knowledge-
based approach of inserting additional phonemes
to the dictionary and acoustic model [6]. This
multilingual approach assumes that non-native
speakers use phonemes from their own language
that are similar to the foreign language. Those
phonemes can be included as pronunciation vari-
ants in the dictionary, resulting in some improve-
ment in recognition accuracy. But rule-based ap-
proaches are less flexible than data-driven ap-
proaches and as more non-native databases be-
come available (e.g. [7, 8]), automatic modeling
of non-native pronunciation is the more promis-
ing approach.

In this research, we suggest a new data-driven
approach to deal with pronunciation variations.
It is based on word-level pronunciation HMMs.

The concept of generating HMMs to model
pronunciation has been analyzed earlier for auto-
matically generated acoustic subword units. This
method has been applied to an isolated word task
with one Norwegian speaker [9] to generate pro-
nunciation dictionaries and for a database of 150
Korean speakers [10].

In this research, we focus on continuous
speech recognition of non-native speakers. With
their high pronunciation variability, they are a
very promising target for such a statistical ap-
proach. The approach is phoneme-based, making
the model capable of handling words that are in
the dictionary but unseen in the training data,
as baseline pronunciations can be retained. The
pronunciation HMMs are applied by calculating
a pronunciation score for each hypothesis of an
n-best recognition with the Viterbi alignment al-
gorithm.

Similar to the standard approach of extract-
ing pronunciation confusion rules, we generate
a phonetic transcription with a phoneme recog-
nizer. These phoneme string sequences are used
as training data for discrete word HMMs; one
HMM for each word. There is no attempt to ex-
plicitly represent the phoneme variations. Even
phoneme substituions unseen in the training data
are allowed, as a certain floor probability exists

| | acoustic
feature vectors

o, 0,,0,. 0,

phoneme recognition to
generate phoneme sequences

x | |l | |l | |
I T 1T T 1T T ] phonemes

train discrete HMM for each word
E & E & E % on all instances of that word

Figure 1: Two layers of processing are required to
generate pronunciation models: an acoustic level
for phoneme recognition and the phoneme label
level for word model training.

for all possible phoneme sequences for each word.
Insertions and deletions are also modeled implic-
itly. The HMM training process takes care of all
variation- and likelihood issues, unlike in other
approaches. E.g. rule firing frequencies, thresh-
olds to determine whether a rule is applicable or
not, do not have to be calculated.

2 Word HMMs

2.1 Generation

As illustrated in Figure 1, two levels of HMM-
based recognition are involved in this approach:

e Acoustic level: phoneme recognition to gen-
erate the phoneme sequence S; from the
acoustic features O;

e Phoneme label level: For training, the
phoneme sequences 5; are considered as in-
put. For all words, a discrete word HMM 1s
trained on all instances of that word in the
training data. The models are applied for
rescoring, generating a pronunciation score
given the observed phoneme sequence S; and
the word sequence.

The first step requires a standard HMM
acoustic model, and preferably some phoneme bi-
gram language model as phonotactic constraint.
The continuous training speech data is segmented
to word chunks based on time information gen-
erated by Viterbi alignment. Acoustic feature
vectors are decoded to an 1-best sequence of
phonemes.

For each word in the vocabulary, one discrete
untied HMM is generated. Figure 2 shows as an
example the HMM for the word “and”.

The models are initialized on the phoneme
sequence in some baseline pronunciation lexicon.
The number of states for a word model is set to be
the number of phonemes in the baseline pronunci-
ation, plus enter and exit states. Each state has a
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discrete probability distribution of all phonemes.
The phoneme sequence(s) in the baseline dictio-
nary are given a high probability and all other
phonemes some low but non-zero value. Forward
transition between all states is allowed, with ini-
tial transition probabilities favouring a path that
hits each state once.

2.2 Training

The probability distribution as well as the transi-
tion probabilities are reestimated on the phoneme
sequences of the training data. For each word, all
instances in the training data are collected and
analyzed. The number of states of each word
model remains static. Phoneme deletions are cov-
ered by state skip transitions, phoneme insertions
are modeled by state self-loop transitions.

Data sparseness 1s a common problem for
automatically trained pronunciation modeling al-
gorithms. In this approach, pronunciations for
words that do appear sufficiently frequent in the
training data, the pronunciations are generated in
a data-driven manner. For rare words, the algo-
rithm falls back on baseline phoneme sequences
from a given lexicon. This combination should
make 1t more robust than for example an appli-
cation of phoneme confusion rules on a lexicon

(as e.g. in [3]) could be.

2.3 Application

As Figure 3 shows, the pronunciation word mod-
els are applied by rescoring an n-best recognition
result. On a non-native test utterance, both a
1-best phoneme recognition and a n-best (word-
level) recognition step are performed.

In standard Viterbi alignment, a speech signal
is aligned to a reference text transcription using
an acoustic model, with an acoustic score as a
by-product. In this approach, the time-aligned
lattice is of no interest, although usually it is the
main target of Viterbi alignment. Figure 4 gives
a graphical explanation.

With the pronunciation HMMs as “acoustic
model” and each n-best hypothesis as reference,
a Viterbi alignment results in an “acoustic score”,
which is in fact the pronunciation score. Together

()

\_/ \_/ N

Enter ae .49 n .99 d .99 Exit
ax .49

Figure 2: An example discrete word HMM for
the word “and”, initialized with two pronuncia-
tion variations for the first phoneme.

with the language model score of that n-best hy-
pothesis, a total score is calculated.

3 Experiments

3.1 Non-native database

The non-native database was collected at ATR
and consists of 90 speakers of English. The first
languages of the speakers are Chinese (mostly
Mandarin) (CN), French (FR), German (GER),
Indonesian (IN) and Japanese (JP). About 14
minutes of read speech are available per speaker.
The sentences include six hotel reservation di-
alogs, TIMIT phonetically balanced sentences
and credit-card style digit sequences. The text is
uniform for all speakers. Two of the hotel reser-
vation dialogs were chosen as a test set of about
three minutes, the rest of about eleven minutes as
training data. The number of speakers is shown
in Table 1.

Table 1: Number of speakers per nation.

|CH FR GER IN JP
# speakers | 17 15 15 15 28

Some experiments focus on a development
set, which is a subset consisting of 11 Japanese
speakers.

3.2 Word HMM initialization

The discrete probability distribution for each
state i1s initialized depending on the “correct”
phoneme sequence(s) as given in the lexicon. The
correct phoneme has a probability of 0.99. If more
than one pronunciation variant is included in the
lexicon, the variations all have the same prob-
ability, totalling 0.99. All other phonemes are
assigned some non-zero probability.

The transition probabilities depend on the
number of succeeding phonemes in the baseline
lexicon. The probability to skip & phonemes is
initialized to 0.05%. Insertions are allowed with a
chance of 0.05. The transition to the next state
therefore has a probability of slightly below 0.9.

Phoneme Phoneme Language

/ recognition | sequence Alignment Model
Test

Pron. ™M
utteranc {eore score
nth-best

n-best word
recognition

Rescoring |, Best from
n-best n-best

Figure 3: Rescoring an n-best recognition result
with word pronunciation models.
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3.3 Phoneme recognition

As a data-driven approach, the pronuncia-
tion modeling method proposed here includes a
phoneme recognition step. For native speak-
ers, context-dependent acoustic models achieve
higher accuracy than monophone models. To ex-
amine the impact of context for non-native speak-
ers, phoneme recognition was performed on full
utterances with a monophone, right-context bi-
phone and triphone model. All models are trained
on more than 60 hours of native English speech
data from the LDC Wall Street Journal (WSJ)
read newspaper speech corpus [11]. The phoneme
set consists of 43 phonemes plus silence. The
three acoustic models have the following proper-
ties:

e the monophone HMM model has 132 states
and 16 mixtures,

e the biphone model 3000 states and 10 mix-
tures,

e the triphone model 9600 states and 12 mix-
tures.

The word error rates of these models for the (na-
tive English) Hub2 5k task are 19.2%, 15.2% and
6.4%, respectively. The features are 12 MFCC
coeflicients, energy and the first and second level
derivatives.

Table 2 shows the phoneme accuracy for
monophone, biphone and triphone models on
the non-native data. A phoneme bigram model
trained on the result of a forced alignment of
native speech (WSJ) provided some phonotac-
tic constraint. The references for evaluation are
generated automatically from a baseline lexicon.
If a correct phoneme transcription was available,
higher numbers could be expected. The mono-
phone model performs best for all speaker groups.
Obviously, the phonetic context for native En-
glish speakers 1s considerably different to non-
native speakers.

For the rescoring step, the phoneme sequence
of the whole utterance is recognized. For the

phoneme sequence reference
string transcription
i ¢ pronunciation
alignmen model

7N\

time-aligned lattice pronunciation
(not used) score

Figure 4: The Viterbi alignment algorithm is used
to calculate the pronunciation score.

Table 2: Phoneme accuracy in %, compared to a
canonic transcription.

|CH FR GER IN JP

monophone | 39.21 45.41 48.85 43.31 37.74
biphone 29.54 37.87 41.15 33.84 29.24
triphone 30.07 41.57 45.45 27.08 29.46

training of the word models, the non-native train-
ing data set is segmented into single words based
on time information aquired by Viterbi align-
ment. On these word chunks, phoneme recog-
nition is performed.

The HTK toolkit [12] is used for all training
and decoding steps.

3.4 N-best word recognition

The HMM pronunciation models are applied in
the form of rescoring the n-best decoding re-
sult. The n-best recognition uses the monophone
acoustic model introduced in Section 3.3 and a bi-
gram language model. Two types of dictionaries
have been the base of both pronunciaiton HMM
creation and n-best recognition, a LVCSR dictio-
nary with 8875 entries for 7311 words is used in
the main experiment. Some experiments that fo-
cus on a development set consisting of a group
of Japanese speakers of English were conducted
with a task-specialized hotel reservation topic dic-
tionary of 6650 entries for 2712 words.

We chose to examine 10-best recognition in
this research.

3.5 Rescoring

On each utterance in the test data, both a 1-
best phoneme recognition and a standard n-best
recognition (on word level) is performed. For each
of the n-best word sequences, we apply a forced
alignment using the discrete pronunciation mod-
els, the phoneme sequence as input features and
the word sequence as labels. The resulting score
1s the pronunciation score.

word
models
phoneme

sequence pron.

\\\\\‘ alignment score | score com- argmax best .

/ g bination selector|  hypothesis
hth-best

nth»bestffgggaggglLM score
model

n-best word
sequences

Figure 5: The rescoring process.

Figure 6 shows an example of calculating
the pronunciation score for three recognition hy-
potheses of the utterance “and when would you
like to stay”. On the phoneme sequence in the

0 1260


研究会Temp
テキストボックス
－126－


phoneme sequence

LOOD00 OO0 OO0 OO OO0 ‘ ‘
, anywhere you d like to stay =P _g2.5"

: and when would you like to stay = _69.0"
! and what I would you 1like to stay =P '-75.0'
nbest TS oToooToToooTTTTTt pronunciation

score

Figure 6: For each n-best hypothesis of an utter-
ance (bottom three lines), a pronunciation score
is calulated relative to the phoneme sequence (top
line). The correct result is “and when would you
like to stay”.

top line, an alignment is performed with each hy-
pothesis as transcription. The score is highest for
the correct word sequence. Because of mispro-
nunciation and phoneme recognition errors, the
phoneme sequence is only similar to the baseline
pronunciations of the words.

This pronunciation score is combined with
the weighted language model score for this hy-
pothesis. The hypothesis achieving the highest
total score among the n-best is selected as cor-
rect.

Table 3: Word error rates in % for non-native
speech recognition without and with pronunciation
rescoring.

|CH FR GER IN JP avg

baseline
rescoring

Table 3 shows the word error rates for recog-
nition of non-native speech of the five speaker
groups. The larger LVCSR dictionary was used
in this experiment. For all speaker groups, the
recognition performance could be improved by
rescoring the n-best. Averaging over all language
groups while considering the number of speakers
in each group, the word error rate dropped from
45.88% to 42.14%. Both the highest absolute gain
(6.11%) as well as the best relative improvement
(11.93%) was archieved for the Chinese speak-
ers. As the size of the database is somewhat
limited, 1t i1s possible that the Chinese speakers
in this database incidentally have the most simi-
lar speaking style and English skill, therefore the
modeling is most effective for them. An evalua-
tion of their English skill can help analyzing this
effect.

Figure 7 shows detailed results obtained on
the development set with the smaller dictionary
for various language model score weights. The
baseline performance of 32.54% word error rate

01270

51.23 37.93 31.77 40.48 56.92 45.88
45.12 34.80 29.88 38.31 52.36 42.14

can be improved to 29.04%. The correct choice
of the language model score weight is very im-
portant, in this experiment a factor of 5 was the
optimum.

32 \\
3 \
5 30
= 29

A I T S N . <
Language Model Weight

Figure 7: Word error rate for rescoring of n-
best based on prounciation score combined with
weighted language model scores.

The pronunciation HMMs are initialized from
the baseline pronunciation dictionary, then sev-
eral reestimation iterations modify the probabil-
ities. The effect of this training can be seen
in Figure 8. Most improvement can be gained
with the initial models already, from 32.54% to
29.88% WER. The first training iteration reduces
the WER to 29.11%, further iterations bring only
minor improvement. Limited coverage of the test
data due to small training data may be the reason
why the effect of increased training is limited.

31

JO\A

29

28 —+WER
27
26
25

WER

012 3 45 6 7 8 9 10111213 1415

reestimation iterations

Figure 8: Word error rate for rescoring of n-
best based on prounciation score combined with
weighted language model scores.

3.6 Acoustic score

In the previous experiment, the pronunciation
score was combined with a weighted language
model score. Rescoring only on the basis of the
pronunciation score did improve the word error
rate. But the pronunciation information alone
did not perform as well as when language model
information was added.

Another possibility is to take the acoustic
score into account as well. The acoustic score for
each of the hypothesises is calculated at the n-
best recognition step and therefore do not cause
any additional computation cost. The acoustic
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score can be weighted relative to the pronuncia-
tion (and language model) scores. But it turnes
out that considering the acoustic score for rescor-
ing does not archieve any improvement. The re-
sults of an experiment conducted on the smaller
set of Japanese speakers is shown in Figure 9. The
baseline system considers only pronunciation and
language model score, the language model weight
is set to 5. Independent from the acoustic score
weight, the baseline system always performs bet-
ter.

30
29.5
29 === =
28.5
28

=
|
= 272'3 — — baseline

——+AM score

26.5
26
25.5
25

VA SO D P

Acoustic score weight

Figure 9: Considering the acoustic score addition-
ally to pronunciation and language model score
does not lead to WER reduction.

4 Conclusion

Word error rate could be improved in aver-
age from 45.88% to 42.14% with pronunciation
rescoring, showing the effectiveness of the ap-
proach for non-native speech. The full strength
of the approach may not be achieved in this eval-
uation because the non-native training data cov-
ers only a limited share of the total vocabulary.
Many word models just default to the standard
pronunciations. This will always be a problem
in a large vocabulary scenario. It could be coun-
tered by extending the training data to other non-
native databases, e.g. [7]. Alternatively, model-
ing pronunciation on other levels than words may
be a solution, but as the English language has
a high number of syllables, the coverage prob-
lem might worsen in case syllable-level pronunci-
ation is modeled. Considering the acoustic score
together with pronunciation and language model
score did not improve the performance of rescor-
ing.

Possible future work could include taking the
speakers English skill into account by providing
skill-dependent pronunciation models. It may
also be helpful to initialize the transition prob-
abilities in the pronunciation models based on an
examination of typical insertion and deletion er-
ror frequencies.

Acknowledgements The research reported
here was supported in part by a contract with the
National Institute of Information and Communi-
cations Technology (NICT) entitled, ” A study of
speech dialogue translation technology based on
a large corpus”.

References

[1] Helmer Strik and Catia Cucchiarini, “Modeling
pronunciation variation for ASR: A survey of the
literature,” Speech Communication, vol. 29, pp.
225-246, 1999.

[2] Dirk van Compernolle, “Recognition of goats,
wolves, sheep and ...non-natives,” Speech Com-
munication, vol. 35, pp. 71-79, 2001.

[3] Rainer Gruhn, Konstantin Markov, and Satoshi
Nakamura, “Probability sustaining phoneme
substitution for non-native speech recognition,”
in Proc. Acoust. Soc. Jap., Fall 2002, pp. 195—
196.

[4] Laura Mayfield Tomokiyo, “Lexical And Acous-
tic Modeling of Non Native Speech in LVCSR,”
Proc. ICSLP, pp. 1V:346-349, 2000.

[5] Norbert Binder, Rainer Gruhn, and Satoshi
Nakamura, “Recognition of Non-Native Speech
Using Dynamic Phoneme Lattice Processing,”
Proc. Acoust. Soc. Jap., p. 203f, 2002, spring
meeting.

[6] U. Uebler and M. Boros, “Recognition of non-
native german speech with multilingual recogniz-
ers,” Proc. FuroSpeech, 1999.

[7] Nobuaki Minematsu, Yoshihiro Tomiyama, Kei
Yoshimoto, Katsumasa Shimizu, Seiichi Naka-
gawa, Masatake Dantsuji, and Shozo Makino,
“Development of English speech database read
by Japanese to support CALL research,” in In-
ternational Congress on Acoustics, 2004, vol. I,
p. 554.

[8] Tobias Cincarek, Rainer Gruhn, and Satoshi
Nakamura, “Cluster-based adaptation of acous-
tic models for non-native speech recognition,”
Proc. Acoust. Soc. Jap., p. 181f, 2004, spring
meeting.

[9] K.K. Paliwal, “Lexicon-building methods for an
acoustic sub-word based speech recognizer,” in
Proc. ICASSP, 1990, pp. 729-732.

[10] Seong-Jin Yun and Yung-Hwan Oh, “Stochastic
lexicon modeling for speech recognition,” IEEFE
Stgnal Processing Letters, vol. 6, pp. 28-30, 1999.

[11] D.B. Paul and J.M.Baker, “The design for the
wall street journal based CSR corpus,” in Proc.

DARPA Workshop, Pacific Grove, CA, 1992, pp.

357-362.
[12] P. Woodland and S. Young, “The HTK tied-
state continuous speech recognizer,” in Proc.

FEuroSpeech, 1993, pp. 2207-2210.

0 1280


研究会Temp
テキストボックス
－128－




