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Abstract By employing the dual Penalized Logistic Regression Machine (dPLRM), this paper explores a speaker
identification method which does not require feature extraction process depending on a prior knowledge. The induction
machine can discover implicitly speaker characteristics relevant to discrimination only from a set of training data by the
mechanism of the kernel regression. Our text-independent speaker identification experiments with training data uttered by 10
male speakers in three different sessions show that the proposed method is competitive with the conventional Gaussian mixture
model (GMM)-based method with 26-dimensional Mel-frequency cepstrum (MFCC) feature even though our method handle
directly coarse data of 256-dimensional log-power spectrum. It is also shown that our method outperforms the GMM-based
method especially as the amount of training data becomes smaller.
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1. Introduction

There have recently been great demands for automatic
speaker recognition in such appplications as securing a
protected access to various information services and
indexing speakers in sound archeives. As is shown in the
series of the NIST reports [1] on annual evaluations of
text-independent  recognition studies conducted by
research laboratories all over the world, the state of the art
method is based on modeling individual speakers with
GMMs via a set of reduced data of Mel-frequency cepstral
coefficients (MFCCs) with a few dozens of the dimension.

While the MFCC data have been known to well capture
the psycho-physical characteristics [4] and are widely
believed to annihilate unwanted fluctuations in speech of
individual speakers [5], there is no reason to assume that
some useful information for speaker identification might not
be lost in the reduced data. Besides, the dimension of MFCC

vectors might have been chosen to accommodate the stable
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computation of estimate of the parameters in the GMM. For
the filter-bank analysis, Biem et al. reported the method of
estimating a better scale for speech recognition based on the
discriminative training [6], and Miyajima et al. successfully
applied the method to speaker recognition [7]. The
Mel-scale, however, might not be needed for speaker
identification.

This paper attempts to avoid outright pre-processing of
speech data such as the MFC transform by handling directly
the coarse data with 256-dimensional log-power spectrum
by employing the dual penalized logistic regression
machine dPLRM [8-10] which, being applied to the MFCC
data, has already been shown to be competitive with the
GMM-based method and also with the support vector
machine (SVM) [11,12]. While the GMM-based method,
which estimates a density function for each speaker
independently, requires large amount of training data to learn
the characteristics of individual speakers, the dPLRM needs

less amount of training data since it can handle nonlinearity



more effectively with kernel functions and do discriminating
learning interdependently. As a dual machine of the logistic
regression machine, the dPLRM has a versatile
expressiveness of hidden structures in the training data and
induction power beyond expectation [8-10]. Figure 1 shows
the respective speaker identification processes of our
dPLRM method and the conventional GMM-based method.
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Figure 1. The dPLRM method (the left-hand side) vs. the
GMM-based method (the right-hand side).

In Section 2, we briefly sketch the dPLRM method. In
Section 3, when it is applied to the training data recorded in
different sessions, the dPLRM method is shown to
outperform the GMM-based method with MFCCs even
" though it avoids an elaborate extraction process. We also
discuss the case in which the methods are trained on a

coarsely sampled data.

2. dPLRM for speaker identification

2.1 dual Penalized Logistic Regression Machine

Let x; is a column vector of size n and ¢; takes a

value in the finite set {1,2,...,K} of classes. The learning
machine dPLRM feeds a finite number of training data

{(xj.¢;)}=..n » and then produces a conditional

multinomial distribution M(p*(x)) of ¢ given xeR” |,
where p*(x)is a predictive probability vector whose -th
element p, *(x) indicates the probability of ¢ taking the
value k.

For convenience, we code the class data ¢; by j-th unit
column vector e, =(0,....1....0)" of size K and define an

KxN constant matrix Y by
Y=[y;iynl=leg e ] M
whose j-th column vector y; =e. indicates the class to

which the data x; is attached.

We introduce a mapping from R into RX,

F(x) = Vk(x) 3)
where V is an KxN parameter matrix which is to be
estimated by using the training data set {(x;.c;)} ;5 -
k(x) is amap from R” into R" defined by

k(x) = (K(x;,x),....K(xy.x))" | )
and K(x,x")is a certain positive definite kernel function.

Then we define a multinomial model for probabilistic

predictor p(x) by
P(x) = P(F(x)) = (P (F(X))..... i (F(x))'. )
where p, (F(x)) = I:XP(F—"(X)) is the logistic transform.
> exp(F;(x))
i=l
Under this model assumption, the negative
log-likelihood function L (V) for p(x) is given by
N N R
L(Y) =-Ylog(p,, (x;)) = -2 log(p,, (VK(x,))) (6)
j=1 1

J= Jj=

which is a convex function. This objective function L(V) is
of discriminative nature, and that if the kernel function is
appropriately chosen, the map F(x) can represent a wide
variety of functions so that the resulting predictive

probability p(x) can be expected to be close to the reality. A



predictive vector p’(x) could be obtained by putting
p (x)=p(V"k(x)) where V™ is the ML estimate which
minimize the function L(V) with respect to V.

However. over-learning problems could occur with
v*™ with the limited number of training data. In order to
deal with the problems, the penalty term is introduced and

the negative-log-penalized-likelihood

2

PL(V)= L(V) +§ rivk: %)

F

is minimized to estimate V where ||| £ is the Frobenius norm.

The penalty term is intended to reduce the effective freedom
of the variable V. The matrix I' is an KXK positive

definite matrix. A frequent choice of T is given by

1ot
r=—Yy 8
N ®)

which equilibrates a possible imbalance of classes in the
training data. The matrix K is the Nx N constant matrix,

given by
K =[K(x;.x )] jar._v- @

The & 1is a regularization parameter and can be determined
by the empirical Bayes method.

Due to the introduction of the specific quadratic penalty
in (7), the minimizer V' of PL(V) is a solution of the neat

matrix equation,

VPL=(P(V)-Y+&V)K=0g y, (10)
where P(V) is an K x N matrix whose j-th column vector
is the probability vector p(x;) =p(VK(x,)). The matrix Y is
given in (1). The minimizer V*, which gives the
probabilistic predictor p”(x)=p(V'k(x)) . is iteratively
computed by the following algorithm.

Algorithm: Starting with an arbitrary K x N matrix V°, we

generate a sequence {V'} of matrices by
VH =V g AV =0, (1)

where AV’ is the solution of the linear matrix equation,

N .
S(Ip(x)]-p(x ) )(@(x ; N)IAV (k(x ; )(k(x;))) .
j=l (12)

+XAVK =(P(V)-Y+V)K.

The detailed algorithm for estimation is shown in
[8-10]. Note that we only need to solve an unconstrained
optimization of a strictly convex function PL(V) or
equivalently, to solve the simple matrix nonlinear equation
(10).

2.2 Speaker identification procedure
Figures 2 and 3 show the training and testing

procedures respectively.

Training data set: {(x;,¢;)} ;= n

Convert class data {c¢;} into Y

dPLRM learning

Dual parameter matrix: V*

v

Predictor : p*(x) = p(V 'k(x))

Figure 2. Training procedure.

Testing data: {X}};o;

Predictor: p’(x)

v

Probabilistic prediction of speakers for

each datax: p’(x))

v

Calculate the summation over samples and

decide a deterministic prediction of a single

speaker:

M *
c=argmax y log(p (x}))
k =1

Figure 3. Testing procedure.



2.3 Expressiveness of the polynomial kernel function
In the previous section, we have introduced the

mapping F(x) a priori for brevity. In fact, the dPLRM

was introduced by Tanabe [8-10] as a dual machine of the -

penalized logistic regression machine PLRM in which F(x)

is represented by

F(x) = Wo(x) (13)

where @(x) = (Q((X),...,Qp, (x))[ , each element of which is

a certain nonlinear function of x. The PLRM [8-10]

minimizes the penalized likelihood function

sloa 1l
PL(W) = L(W) + [ TWE? (14)

. .
where X is a positive definite matrix. It was also shown that
dPLRM and PLRM give exactly the same predictor p (x)
when @(x), Zand K(x,x’) are appropriately chosen and that
the former is computationally far less expensive than the
latter. For the speaker identification problem we treat with
dPLRM in this paper, we make use of the polynomial kernel

function

K(x,x') = (x'x +1)°

s a8 n , J 1 (15)
= XsG(x'x) = F 5G| Zxilx);
j=0 Jj=0 i=1
which is equivalent to the choice of
q)(x):(l,x],...,x256.
xlz,...,xlxz,...,
xl3....,x12x2,...,x1x2x3,...,
4
EARS
...... ) (16)
7! = diag(L1...,1
L....2,...,
L....3,...,6...
L...,

in PLRM., where sCj is the number of combinations of s
taken j at a time and [x]; is the i-th degree monomial in the

elements of xe R". If we chose s=5 as is the case with

the experiments given in Section 3, the number m of
elements of ¢(x) is so huge as O(10'°). Therefore it may
be easily seen that the expressive power of the map F(x) is
so high that the map could mimic, if necessary, the
operations indicated in the feature extraction process of the
GMM-based method in Figure 1. Our experiment suggests
that without resorting to human judgment such as the
Mel-scale filtering, the dPLRM can automatically construct
some kind of nonlinear transformation from the training data
although it might not be similar to the feature extracting

transformation employed in the GMM-based method.

3. Experiments

The performances of our method and the GMM-based
method are compared through text-independent speaker

identification experiments.

3.1 Data description and experimental conditions

The data has been collected for 10 male speakers who
utter several sentences (for four seconds per sentence) and
words (for one second per word). Although the texts are
common for all speakers, the sentences used for testing are
different from those for training. The utterances were
recorded at the sampling rate of 16 kHz in six sessions from
TO through TS over 13 months’ period. The interval between
TO and T1 is one month and the other intervals are three
months. A 256-dimensional log power spectrum vector and a
MFCC vector of 26 components, consisting of 12
Mel-frequency cepstral coefficients plus normalized log
energy and their first derivatives, is derived once every 10
ms over a 25.6 ms Hamming-windowed speech segment.

We choose two kinds of training data sets, DS1 and
DS2. The set DS1 consists of the data for three sentences,
each of which is uttered in Session TO, T1 and T2,
respectively, and the set DS2 consists of the data for three

sentences uttered in the single session T2. The total duration



of the utterances of three sentences is approximately 12
seconds per speaker. For testing purpose, we choose the
utterances of the five sentences and the five words from
Sessions T3. T4 and TS5 and test them individually. For both
sentence and word cases, the total case number of the testing
is 150 since we have 10 speakers times 5 sentences(or
words) and 3 sessions.

The polynomial kernel function (13) is used for the
dPLRM. The power is chosen to be s=5 for the log power
spectrum data and s=9 for the MFCC data, respectively. The
parameters @ and & in dPLRM are experimentally set to
be 1.0 in (11) and 1.3e-3 in (7), respectively. In order to
execute effective computation with 64-bit precision, the data
is so scaled that all the elements of feature vectors lie in the
interval [-0.5, 0.5].

In the GMM-based method, the mixture model of 16
Gaussian distributions with diagonal covariance was chosen
as a speaker model among the competing models with 8, 16
and 24 Gaussian distributions. The parameters were
initialized using all training speech for all speakers with the
HMM toolkit (HTK) [13], and then estimated with the EM
algorithm for each speaker.

For testing the methods, the deterministic decision rule
given in Figure 3 is adopted with the dPLRM method,
although the dPLRM gives generally a probabilistic
prediction. On the other hand, the GMM method adopts the
decision rule to select the speaker who attained the

maximum collective log-likelihood.

3.2 Test of DS1-trained methods

Firstly we compare the performances of the methods
trained on the set DS1. Table 1 lists the identification rates
with the confidence intervals at a confidence level of 90%
averaged over the 150 cases.

The dPLRM method with the log power spectrum
performed the best for both word and sentence speech. Since
the training data contains the information on utterance
variations among Sessions TO, T1 and T2, our method

attains higher success rates.

Table 1. Speaker identification rates (with the confidence
intervals at a confidence level of 90%) using the training data of
the MFCCs and log power spectrum extracted from three

sentences uttered in Session TO/T1/T2 for each sentence.

Testing Identification rates (%)
data Method MFCC Log power
spectrum
Word dPLRM 92.7 (89.3, 96.0)
speech GMM 89.3 (85.3,93.3) 84.0 (79.3, 88.7)
Sent. dPLRM 100 (99.3, 100)
speech GMM 99.3 (98.7, 100) 99.3 (98.7, 100)

3.3 Test of DS2-trained methods
Secondly we test the methods trained on the set DS2.
Table 2 lists the identification rates with the same

confidence qualification as stated above.

Table 2. Speaker identification rates (with the confidence
intervals at a confidence level of 90%) using the training data of
the MFCCs and log power spectrum extracted from three

sentences uttered in Session T2.

Testing Identification rates (%)
data Method MFCC Log power
spectrum
Word dPLRM 88.7 (84.7,92.7) 83.3(78.7, 88.0)
speech GMM 84.7 (80.0, 89.3) 68.0 (62.0, 74.0)
Sent. dPLRM 98.7 (97.3, 100) 97.3 (95.3,99.3)
speech GMM 98.0 (96.0, 99.3) 86.7 (82.7,91.3)

Both dPLRM and GMM-based methods trained on the
MFCC data gave higher identification rates than those
trained on the log power spectrum data. We note that the
performance with the GMM-based method drops drastically
when the training data switches from the MFCCs to the log
power spectrum. We found some difficulties with the
GMM-based method in the estimation process due to the
high dimensionality of the 256-dimensional log power
spectrum data.

3.4 Test of the methods trained on coarsely sampled
data

Table 3 lists the identification rates with the same
confidence qualification as stated above. The set DSI is

analyzed with different window shifts. The length of the



training data with 20 ms window shift is half of that with 10
ms window shift, and the length of the training data with 30

ms window shift is one-third.

Table 3. Speaker identification rates using GMM trained with the
MFCCs and dPLRM trained with the log power spectrum
extracted with different window shifts from three sentences

uttered in Session TO/T1/T2 for each sentence.

Tr:::;ng Method 10 ms shli?temig(‘;a:ril(sn;l:?tt:s ((;Ag ms shift
Word | 9PLRM (89?32,576.0) (87‘931,'93447) gss?oo,i)(zz.O)
Peh | G (85?39,.933.3) @1 ?3?;)00.7) (80?75,;930.0)
Sent, | 9PLRM (99.13(?(1)00) (99.13?(1)00) (99.13?(1)00)
Pt | amu (98?79,'13 00) (96.908,;)09.3) (94?0%78.7)

It is interesting to note that the dPLRM method trained
on such a coarsely sampled data with 30 ms window shift
outperforms the GMM method with full 10 ms shift sampled
data. Since the dPLRM can handle nonlinearity more
effectively with kernel functions and do discriminating
learning interdependently, it is expected to work with a

smaller amount of training data.

4. Conclusions

In this paper, speaker identification without outright
pre-processing of speech data was shown to be possible by
employing the dPLRM. Comparison was made between the
dPLRM and GMM-based method in the experiments with
training data uttered by 10 male speakers in three sessions,
and the dPLRM method with the log power spectrum is
competitive with the GMM-based method with the MFCCs.
The method outperforms the GMM-based method especially
as the amount of training data becomes smaller.

The evaluation of the method with a larger dataset is

left for our future study.
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