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Abstract We present a rapid and discriminative speaker adaptation algorithm for hidden Markov model (HMM) based speech recognition.

The adaptation is based on the linear regression framework. Attractively, we estimate the regression matrices from speaker-specific

adaptation data according to the aggregate a posteriori criterion, which is expressed in a form of classification error function. The aggregate
a posteriori linear regression (AAPLR) is proposed to achieve discriminative adaptation so that the classification errors of adaptation data are
minimized. The superiority of AAPLR to maximum a posteriori linear regression (MAPLR) is demonstrated. Different from minimum
classification error linear regression (MCELR), AAPLR has closed-form solution to fulfill rapid adaptation. Experimental results reveal that
AAPLR speaker adaptation does improve speech recognition performance with moderate computational cost compared to the maximum

likelihood linear regression (MLLR), MAPLR and MCELR.
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1. Introduction

In general, the speech hidden Markov model (HMM)
parameters were estimated using two categories of approaches: the
distribution estimation and the discriminative estimation. The
popular algorithms for distribution estimation were based on
maximum likelihood (ML) [14] and maximum a posteriori (MAP)
criteria [7][9]. Also, the minimum classification error (MCE) [12]
and maximum mutual information (MMI) [1] served as criteria for
discriminative estimation. Using MCE discriminative estimation,
the generalized probabilistic descent (GPD) algorithm was applied
to iteratively estimate the HMM parameters. Implementation of
MCE and MMI were time-consuming. Bahl et al. [1] addressed that
the ML estimation could outperform MMI estimation when the data
distributions were properly specified and the sufficiently large
training samples were collected for distribution estimation.
However, in real world, the problems of model assumption errors
as well as sparse training data were inevitable. When estimating
HMM distributions for speech recognition, the maximization of
likelihood function or a posteriori probability was inferior to direct
minimization of classification error.

In this study, we focus on developing a rapid and
discriminative speaker adaptation algorithm where two categories
of estimation approaches are considered. We would like to adapt
the existing continuous-density HMM parameters to a new speaker
and his/her operating environments. The speech recognition
performance can be improved using speaker-adaptive HMM
parameters. In the literature, the linear regression adaptation
methods using maximum likelihood linear regression (MLLR) [14]
and maximum a posteriori linear regression (MAPLR) [3](7] were
popular and shown to be effective for batch adaptation. MLLR and
MAPLR transformed clusters of HMM mean vectors using
regression matrices, which were estimated via ML and MAP
criteria. respectively. The regression classes should be assigned in

advance. To facilitate the adaptation efficiency, we presented the
quasi-Bayes linear regression (QBLR) [5] for sequential speaker
adaptation. Using QBLR, the randomness of regression matrix was
modeled by a matrix variate normal distribution so that the
reproducible prior/posterior distributions were generated to build
meaningful mechanism for sequential adaptation. Also, when
considering the model assumption errors, the uncertainty in
estimating linear regression matrices should be tackled to achieve
robust classification. In [6], the linear regression based Bayesian
predictive classification (LRBPC) was proposed for robust speech
recognition. The robust classifier was constructed by averaging the
randomness of regression parameters in Bayesian decision rule.

Here, we concern the issue of discriminative adaptation
where the classification errors of adaptation data are minimized to
attain the discriminative estimation. The most likely regression
matrices are estimated by considering the likelihoods not only from
target HMM’'s but also from competing HMM’'s. This approach is
directly beneficial to reduce the classification error rates. Basically,
the discriminative adaptation is different from MCE and MMI
discriminative training [1][12][13] developed for model training.
The MCE discriminative estimation has been applied for speaker
adaptation [2][18]. In [2], the minimum classification error linear
regression (MCELR) was explored. MCE criterion was merged to
estimate the time-varying polynomial Gaussian mean functions in
the trended HMM. Although the speech recognition performance
was improved, the major weakness of MCELR came from the
heavy costs on gradient calculation. He and Wu [11] proposed a
“super” string model based MCELR adaptation where a special
ratio of two positive functions was maximized to reduce the error
rate and derive the closed-form solution.

To avoid extensive computation, we would like to derive a
new closed-form solution to regression matrix for rapid adaptation.
We properly incorporate the prior density of regression matrix and
conduct the Bayesian distribution estimation. Interestingly. we



present the aggregate a posteriori linear regression (AAPLR)
where the aggregate a posteriori (AAP) distribution [15] is
maximized to find the optimal regression matrices. AAP probability
is an aggregate of posterior probabilities, which can be expressed in
a form of classification errors. Such estimation is referred as
distribution estimation as well as discriminative estimation.
Attractively, a closed-form solution to AAPLR is derived to
achieve fast and discriminative speaker adaptation. In the
experiments, we demonstrate the effectiveness and efficiency of
applying AAPLR for speaker adaptation compared to other linear
regression adaptation algorithms.

2. Discriminative Training and Linear Regression
Adaptation

Before describing the new AAPLR adaptation algorithm, we
survey the discriminative training using MCE and MMI criteria and
the linear regression adaptation using MLLR, MAPLR and
MCELR.

2.1 MCE and MMI discriminative training

Juang et al. [12] presented the MCE discriminative training
algorithm with a three-step procedure. For the case of M-category
classification, the first step is to determine the discriminant
functions {g,, (X;4,).m=1,--- .M}, which are usually represented
by probabilistic models. Second, a misclassification measure is
introduced as follows

d,(X)=-g,(X;4
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where 77 is a positive number and A, is the model parameter.
This measure is continuous and flexible with varying 7. Notably,
all competing classes j#m are used during parameter estimation.
At the third step. the loss function measuring the classification
errors is formulated by

UXA,)=¢4d, (X)) = ! 2)

1+exp(-3d,, (X)+6) '
using sigmoid function £(-) with parameters ¥ and 6. In (1),
the case d,(X)>0 reflects the misclassification while
d,(X)<0 implies the correct classification. Loss function is a
smoothed zero-one function used for recognition error rate
minimization. Then, GPD algorithm based on MCE criterion is
developed via minimizing the expected loss. The iterative learning
ruleof A={A,)} isgiven by
A0 = A) - eUVEXA)) 3)
Here, 1 is the iteration index, X are the training samples, U
is the positive definite matrix and € is the learning rate.

On the other hand, Bahl et al. [1] presented the MMI
discriminative training for HMM based speech recognition. The
HMM parameters were estimated by maximizing the mutual
information between the observation sequence X and the
associated word sequence with parameter A,,. The resulting MMI
objective function is yielded as

1W,,.X) = log(p(XW,,)[ p(X))
M
=log p(X|W,,) ~log 3. p(W,)p(X|W)) . “@
j=1
=log(4(—(d,, (X) +log(M —1)))+logM

Interestingly, the mutual information was arranged as a function of

logarithm of loss function in (2) [16]. MMI training was
corresponding to MCE training. The model parameters A =(4, }
using MMI criterion are then estimated through the learning rule of
(3) using the gradient of (W,,.X) with respectto A

When realizing MCE and MMI discriminative training. the
standard forward-backward algorithm was replaced by N-best
algorithm [8] or the beam search algorithm [13] so that the
complexity of calculating likelihoods of competing models j # m
was alleviated. Differently, this paper concerns the discriminative
linear regression adaptation rather than discriminative HMM
training. In what follows, we investigate several linear regression
adaptation methods and the evolution  from
discriminative training to the discriminative linear regression
adaptation.

m

conceptual

2.2 MLLR, MAPLR and MCELR adaptation
The linear regression speaker adaptation aims to estimate the
cluster-dependent regression matrices, which are used to adapt the
speaker-independent HMM parameters to a new speaker. By
properly controlling the sharing of regression matrices, maximum
likelihood linear regression (MLLR) can effectively find the
maximum likelihood estimate of regression matrices for adaptation
of HMM mean vectors. Assume that the HMM A, having a
dx1 mean vector u, , the adapted mean vector 4, using
dx(d+1) regression matrix W, is expressed by
ﬂm = wr(m) m ®

Here, r(m) is the regression/cluster class for model m and £, is

n
T
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the extended mean vector [I,,u,,T, . The maximum likelihood

estimate of regression matrices W ={W, '} using adaptation

data X ={x,}={x,,} isdetermined by

Wy = arg max p(X|W./\) . (6)
w

The expectation-maximization (EM) algorithm was applied to find
optimal Wy, [14]. Assuming that HMM covariance matrices are
diagonal, ie. £, =diag(c?,,-.02,), the ith row of W, for

regression class r was derived as [5]
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where g,(j.k):P(j,k|X,W.A) is the posterior probability of
X, staying in state j and mixture component k given that
current regression parameter W generates X . Notably, class
label m is changed to the HMM state j and mixture
component k in HMM framework. We assume that class labels
Jj and k correspond to regression set €2, .

However, when the amount of adaptation data is sparse, the
estimated regression matrices W,y are biased. It is helpful to
achieve desirable adaptation performance by constraining the
distribution shape of regression matrices using prior densities. In
[31(51[7], the matrix-variate normal density served as the prior
distribution for W. The maximum a posteriori linear regression
(MAPLR) was accordingly built by the MAP distribution
estimation

Wyap = argmax p(W|X . A) = argmax p(X|W.A)g(W). (8)
w w

Prior distribution of a regression matrix W, is defined by
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where m,; and X, are the mean vector and covariance matrix
for regression row vector w, , respectively, and the matrix A is
defined by a d(d+1)xd(d+1) block diagonal
A, =diag(X,,..... X,,) with each diagonal block element
X, being a (d+1)x(d+1) covariance matrix. Usually, ¢ is an
exponential function. The MAP estimate of the ith regression row
vector was obtained by [3][5](7]
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Also, Chengalvarayan proposed the first study on
discriminative adaptation called minimum classification error linear
regression (MCELR) adaptation algorithm to estimate the
time-varying polynomial Gaussian mean functions in trended
HMM [2]. The discriminative estimation of regression matrix was
achieved through the gradient descent algorithm. Wu and Huo [18]
further performed MCELR adaptation of MCE-trained HMM
parameters using multiple regression classes. Under the same MCE
criterion, the supervised speaker adaptation performance was better

than that using MLLR adaptation for ML-trained HMM parameters.

For both works, the learning rule of W was established by
minimizing the expected loss function £(X;W) . The gradient of
(X W) with respect to W should be calculated for parameter
learning. By adopting log likelihood function as the discriminant
function,

g4 (XW, 4,)=3 3 ¢ (klogpx W, 4,0, (D
1 jkef,

the parameter learning rule was formed by [18]
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3. Aggregate a Posteriori Linear Regression Adaptation

Although the MCELR algorithms [2][18] are able to
accomplish discriminative speaker adaptation, the gradient descent
implementation makes MCELR computationally expensive.
Subsequently, we are introducing the generalized minimum error
rate  (GMER) [15] algorithm, which was proposed for
discriminative model training by Li and Juang. An aggregate a
posteriori (AAP) distribution was defined and arranged to express
classification error measure. Under some meaningful assumptions,
a closed-form solution to HMM training was obtained. Such
solution was used efficiently perform model training. In this study,
we adopt AAP probability as the objective function to estimate the
regression matrices for discriminative speaker adaptation rather
than estimate HMM parameters for discriminative training.

3.1 GMER algorithm and AAP criterion
In GMER training algorithm, the AAP probability is defined
by aggregating the posterior probability P(4,(X,,) for all

classes and their training samples

PX il A)
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where X

mn

with length T,, X

is the nth training sentence from the mth model A,

} and P, represents the prior
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probability of class m . Assume that training data are i.i.d., i.e.

PX ) =TT P [ (14)

the AAP probability can be arranged as

L3 Zl(d;?"" (as)
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Here, £()) is a loss function in (2) under the case of ﬁsing y=1
and @ =0 . The misclassification measure becomes
A" =log p(X,,.,|4,)P, ~log ¥ p(X,,|4)P, . (16)
jam

In.[15], a closed-form AAP solution was derived to estimate the
HMM parameters

Appp =argmax Jpap (A) . (17)
A

3.2 AAPLR criterion

However, in linear regression adaptation framework, we deal
with the estimation of regression matrices W={W } . To
facilitate the parameter estimation for insufficient adaptation data,
it is meaningful to introduce the prior density of regression matrix
g(W,) . To activate the capability of discriminative adaptation, we
adopt the GMER algorithm where the evidence term p(X,,,)
expresses the likelihood of observations X, , matching with all
HMM’s A ={4,} . Accordingly, optimizing AAP criterion is
feasible to achieve discriminative capability. To combine the
advantages of MAP estimation and AAP discriminative function for
linear regression adaptation, we present a new aggregate a
posteriori linear regression adaptation (AAPLR) algorithm for
rapid and discriminative speaker adaptation. The AAPLR criterion

is generated through merging regression parameter W, and its
prior density g(W,) as follows
PX,u|W, . 4, )P, 8(W,)
J anpr (W) = — ZZ | l . (1)

M ,Zoa P(X,.)

3.2 Relation between AAPLR and MAPLR

Before finding solutions to AAPLR, we illustrate the relation
between the criteria of AAPLR and MAPLR from the perspective
of expectation-maximization (EM) algorithm. When solving
MAPLR in (8) via EM algorithm, we calculate an expectation
function (E-step) as the objective criterion to be optimized. The
expectation is operated over the logarithm of posterior density

W.A)
pewl. Ay = [ ZEWN | (19)
; p(x,)

The posterior expectation function R(W|W) of new estimate

W given current estimate W s yielded as
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to resolve the missing data problem in HMM framework. In (20),
the missing label sequence q=(g,,45,....q7) has element
q, =m=(j,k) representing model m or state and mixture
component (j,k).Also, ¢,(m)=P(q, = m|X,W,A) denotes the
posterior probability of observation x, staying at model m under
current estimate W . Practically, we use Viterbi algorithm to align
X using parameters (W, A) and obtain the posterior probability
as ¢,(m)=04(q, —m) where &() is Kronecker delta function.
Next, the M-step of implementing MAPLR is to maximize
the criterion R(W|W) with respect to W. To illustrate the
relation between MAPLR and AAPLR, we rewrite expectation
function by expressing observation x, as frame ¢ of nth
observation sentence X aligned to model m as follows

mn

wn,  PXp,mW, 4,)8(W,)
Jyapir (W) = ROWW) = 33 log
m=ln=1 p(X,.,)

The posterior probability ¢,(m) is also removed because the new
equation is written using the aligned samples. When comparing
AAPLR criterion in (18) and MAPLR criterion in (21), it is
interesting to find that the logarithm is involved in MAPLR while
the class prior probability P, is only included in AAPLR. Also,
MAPLR is an EM iterative procedure of optimizing expectation
function of new estimate W given the current estimate W
while AAPLR performs single optimization step according to
GMER algorithm. Actually, AAPLR can be modified to perform
iterative EM steps. Another different point of these two criteria is
the treatment of the evidence p(X,,,) . Using MAPLR, the
evidence is ignored for parameter estimation because this term is
independent of regression matrix W, . However, in case of
AAPLR, the evidence is used to indicate the likelihood from all
classes including correct class and competing classes. This is
critical to enable the discriminant power of AAPLR. In what
follows, we show how AAPLR criterion is feasible to derive
closed-form solution for rapid adaptation.

3.4 Derivation of AAPLR solution

Using AAPLR for speaker adaptation, we aim to adapt HMM
mean vectors to a new speaker using linear regression matrices
W ={W,,,}. The AAPLR criterion in (18) should be maximized
to find regression matrices

W,ap = argmax J paprp (W) . (22)
w
Similar to GMER algorithm, AAPLR criterion can be arranged as

J papir (W) :_ ZZf(d,ﬁ“’“‘ (23)
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and £, (X:2, . W,) =log{p(X,,,|W,.4,)8(W)}. (25)

Importantly, the discriminant function is a logarithm of posterior
density of aligned observations X

Again, we adopt the prior density of regression matrix
defined in (9) and assume that HMM covariance matrix is diagonal.
The frame-based likelihood function turns out to be

d
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AAPLR regression matrix is then estimated individually for each
row vectors {wf,‘AF,i =1,---,d} . When maximizing AAPLR
criterion, we take gradient of J,,p z (W) withrespectto w,,

Vw,‘ JAAPLR (w) Z Ze(d:,\APLR l(d::APLR ))V dAAPLR 27)
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where the gradient of misclassification measure d*"® consisted
of two terms

Vo diR =V, g, (X:4, W)=V, Gz (X:AW,). (28)
The first term is due to the contribution of the log posterior
distribution from the target model m

Vo, 8u(X:4,, W)=V log{p(X, W, 1,)gW)}
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and the second term is that from the competing models m
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By setting functions W (X, ,)=
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By equating (31) to zero, we can obtain a closed-form solution
w" to AAPLR adaptation through

ri



MN, T
22.Ld, ){T,, (——"E;f'“ )~

m=ln=1 ‘i

AR 8¢
Wit 3 TR (X0 T, (X050

-2 —%(x,,,,,,)Zdn(X".,,,»Z:,-‘]
J#r (32)

m=1n=| r=1

M N”‘ T" xln i
Y3 Ld, >[Z(—+ .-

mi

LA Ko
= Wr(X,,,) 20 (X,,,)5 (25T
=1

Jj#m ji

Jj#r

-20- W;(X"..,,)Zdb,<X,..,,,>>m,,-z,‘,‘}

Without loss of generality, we can express (32) in matrix equation

wA L=r with left-hand-side (d+1)x(d+1) matrix L

and right-hand-side 1x(d +1) vector r. In most cases, matrix
L is nonsingular during AAPLR implementation. Finally, we
solve a linear equation to find the regression vector

wAAP = ! (33)

With the closed-form solution to regression matrices
Waap ={w?"}  we avoid heavy computation of applying
gradient descent algorithm. The rapid speaker adaptation can be
achieved.

4. Experiments

4.1 Speech database and experimental setup

In the experiments, a Mandarin broadcast news transcription
task was performed to examine the performance of speaker
adaptation. We carried out four linear regression adaptation
algorithms, MLLR, MAPLR, MCELR and AAPLR, to evaluate the
adaptation performance in terms of syllable error rates and
adaptation times under different adaptation data lengths. We
prepared two speech corpora for HMM training and adaptation.
The speaker-independent (SI) seed HMM’s were trained using the
benchmark Mandarin speech corpus TCC300 [4] which was
recorded in office environments using close-talking microphones.
We sampled 14266 sentences (about 16 hours) recorded by 100
males and 100 females for training. On the other hand, the
adaptation and test data were sampled from the MATBN database
[17). MATBN database contained Mandarin Chinese broadcast
news utterances, which were shared by the Public Television
Service Foundation of Taiwan and collected by the Institute of
Information Science at Academia Sinica, Taiwan. The total length
of broadcast news utterances in MATBN database was about 220
hours. In this study, we sampled the preceding 40-hour speech data.
This news data set was collected during the period from late 2001
to 2002. There were totally 779 stories, 104 headlines, 40 weather
reports, and 40 ending sections. Only the stories were considered in
the experiments. The length of 779 stories was about 30 hours and
that of anchor speech was around 300 minutes. The anchor speech
of the stories was segmented by hand. We performed two-pass
adaptation prior to speech recognition; task adaptation and speaker
adaptation. In task adaptation, we used 200 utterances (about 30

minutes) randomly sampled from MATBN database to adapt the SI
seed HMM’s to fit the broadcast news transcription task. MAP
adaptation [9] algorithm was adopted for task adaptation. In
speaker adaptation, there were two reporters (one male and one
female). We collected 60 utterances (about 14 minutes) for each
reporter and performed the linear regression adaptation. The other
40 utterances (about 9 minutes) from the same speaker were used
for speech recognition. We averaged the adaptation results of two
speakers

We built subsyllable HMM’'s for large-vocabulary continuous
Mandarin speech recognition. Mandarin is a tonal and syllabic
language. Without considering the tonal information, there are 408
Mandarin syllables. Each Mandarin syllable is composed of an
initial (consonant) part and a final (vowel) part. We adopted the
context-dependent subsyllable modeling to construct the HMM’s
for Mandarin speech. Totally, there were 94 context-dependent (CD)
initials, 40 context-independent (CI) finals and 6 null initials to
serve as HMM’s. The HMM'’s of CD initials, CI finals and null
initials contained three, five and three states, respectively. Each
HMM state had at most 32 mixture components. In the experiments,
we used 26-dimension feature vectors consisted of twelve
Mel-frequency cepstral coefficients, one log energy coefficient and
their first derivatives. We reported base syllable error rates (%) for
comparative study. To evaluate the computational costs, we
measured the processing time per regression class (second) for
different algorithms on a personal computer with CPU Pentium IV
2.0 GHz and RAM 256 MB. The number of regression classes was
fixed to be four; two for initials and two for finals. We performed
five-fold cross-validation over the adaptation data set for all
experiments.

4.2 Comparison of different linear regression adaptation
Several sets of experiments on supervised adaptation were
reported. To evaluate the effect on adaptation data length, we
performed speaker adaptation using five, ten, fifteen, twenty, forty
and sixty adaptation utterances. Roughly, the length of each
utterance was ranged from ten to twenty seconds. Table 1 lists the
syllable error rates (%) for MLLR, MAPLR, MCELR and AAPLR.

MLLR | MAPLR | MCELR | AAPLR
5 34.6 329 32.1 318
10] 325 31.5 311 306
Number of |15 31.1 30.6 30.1 29.6
Adaptation [20[ 305 29.7 29.6 29.2
Data 40| 296 29.1 28.8 28.5
60 29.0 28.4 28.1 27.9

Table 1 Syllable error rates (%) of supervised adaptation using
different adaptation algorithms

MLLR | MAPLR | MCELR | AAPLR
5 9.4 9.7 117 10.3
10] 107 10.9 13.1 117
Numberof [15] 12.4 11.9 14.8 13.1
Adaptation [20] 132 13.4 16.4 14.3
Data 40| 153 155 19.1 16.5
60| 217 21.3 26.5 233

Table 2 Averaged adaptation time (sec) for each regression class
using different adaptation algorithms.

Without performing adaptation, the baseline syllable error
rate (SER) is 53.3%. After performing task adaptation, SER is



greatly reduced to 41.6%. This implies that there is significant
environmental mismatch between TCC300 with ordinary read
speech and MATBN with broadcast news speech. Namely, it is
important to perform environmental adaptation for a new task of
broadcast news transcription. Further, when performing linear
regression speaker adaptation, we find that all linear regression
adaptation algorithms using different number of adaptation data do
reduce SER’s . For the case of five adaptation utterances, AAPLR
obtains SER of 31.8%, which is better than those of MLLR
(34.6%), MAPLR (32.9%) and MCELR (32.1%). As the number of
adaptation data increases to ten, twenty and sixty, all recognition
results are improved accordingly. After using sixty adaptation
utterances, the performance of AAPLR (27.9%) still outperforms
those of MLLR (29%), MAPLR (28.4%) and MCELR (28.1%). In
general, MAPLR is better than MLLR due to the incorporation of
prior regression information. MCELR performs better than MLLR
and MAPLR due to merging the discriminant capability. However,
the superiority of AAPLR to MLLR, MAPLR and MCELR is
caused by merging the contributions of prior information and
discriminant power. Besides, we list the computational costs of
MLLR, MAPLR, MCELR and AAPLR adaptation in Table 2. We
find that roughly MCELR spends additional 23% computational
cost compared to MLLR and MAPLR. Also, the computational cost
of AAPLR is about 8% higher than those of MLLR and MAPLR.
But, AAPLR is computationally efficient than MCELR. In
summary, the proposed AAPLR is good for rapid and
discriminative speaker adaptation.

5. Conclusion

We have presented a new AAPLR algorithm for rapid and
discriminative speaker adaptation. The AAP criterion was
introduced to achieve model discriminability and simultaneously
derive a closed-form solution for rapid parameter estimation. The
adapted speech HMM’s using discriminative regression matrices
were able to enhance the speech recognition performance for
broadcast news transcription. More importantly, we established
AAPLR algorithm in which a closed-form solution to regression
matrices was derived to obtain desirable adaptation performance.
Also, the prior information of transformation matrix was
incorporated in AAPLR criterion for constrained Bayesian
estimation. The robustness of estimating regression matrices was
guaranteed according to AAPLR Bayesian approach. The
continuous-density HMM parameters of all acoustic units were
effectively adapted. From the experiments, we found that using
AAPLR for supervised speaker adaptation achieved the best SER
among four adaptation algorithms. This fact was validated for
different numbers of adaptation data. Also, the computation cost of
AAPLR was smaller than MCELR and moderately increased
compared to MLLR and MAPLR.
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