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Abstract A lack of robustness with acoustic modeling often degrades the performance of spontaneous speech
recognition and understanding. One reason for this shortcoming is that the Maximum Likelihood (ML) approach
based on model parameter estimation has a poor generalization ability. This makes it important to improve the gen-
eralization ability of robust training of models including HMM and future techniques beyond HMM. The Bayesian
approach is based on posterior distribution estimation, and has a better generalization ability than the ML approach
due to the marginalization effect of model parameters. Variational Bayesian Estimation and Clustering for speech
recognition (VBEC) is a total Bayesian framework in the sense that all speech recognition procedures are based
on posterior distribution estimation within the Variational Bayes method, which includes the Bayesian advantage
of highly generalized model training. In addition, a VBEC specification of the posterior distribution estimation
enables automatic determination of an acoustic model topology without heuristics, by regarding model complexity
as a probabilistic variable, and by selecting the appropriate model that scores the maximum probability value. In
this paper, we describe experiments for different speaking-style (isolated word, continuous speech and spontaneous
lecture speech) and language sets (Japanese and English) of training data, and show the effectiveness of VBEC,
which automatically determines the model topology robustly according to the speech types of the training data. We

also examine the robustness of the determined models for a mismatched condition between training and test data
tasks.

Key words Speech recognition, VBEC, Automatic determination of acoustic model topology, Robustness for
speaking style, language and mismatched condition between training and test data.

rithms have been proposed for dealing with this complicated
model structure (model topology) [1-3], they require heuris-
tic tuning since they are based on the Maximum Likelihood
(ML) criterion. That is to say, since the likelihood value in-
creases monotonically as the number of model parameters
increases, ML always leads to the selection of the model
structure with the largest number of parameters, and this ap-

1. Introduction

Speech recognition performance depends strongly on the
preciseness of the acoustic modeling of speech. An acoustic
model has a very complicated structure: a category is a set
of clustered-state triphone Hidden Markov Models (HMMs)
cach of which possesses an output distribution described by
a Gaussian Mixture Model (GMM). Although certain algo-
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Figure 1 Optimum model search for an acoustic model.

proach cannot determine the model topology appropriately
without using heuristic tuning. Therefore, only ezperts who
well understand the acoustic model topology can design the
models by setting the heuristic tuning, i.e., by setting the
number of clustered states and the number of GMM compo-
nents empirically. If we are to eliminate the need for heuristic
tuning in ML for non-experts, we must find a way to deter-
mine the acoustic model topology automatically.

Recently, we and others have proposed a new framework
for the automatic determination of the acoustic model topol-
ogy, namely Variational Bayesian Estimation and Cluster-
ing for speech recognition (VBEC) [4,5]. VBEC is a total
Bayesian framework in the sense that all its training and clas-
sification procedures are based on approximated posteriors
by using Variational Bayes (VB) [6-8]. VBEC can theoret-
ically determine a complicated model topology by selecting
the best VB objective function model, which corresponds
to selecting the maximum probability of the VB posterior
for the model complexity, even when latent variables are in-
cluded. The VB method is a powerful algorithm for practical
posterior computation and has been applied to other forms
of speech processing [9,10]. Additionally, we achieved the op-
timum topology area without falling into the local optimum
area using VBEC based on an efficient model search algo-
rithm and GMM-based decision tree clustering utilizing the
acoustic model characteristics [11]. However, in [11] the pro-
posed automatic determination method was only examined
for such a small task as isolated word recognition, and its ef-
fectiveness should be examined by recognizing various types
of speech data sets. In this paper, we describe experiments
for different speaking-style and language sets (100 Japanese
city names, Japanese read speech, English read speech and
Japanese lecture speech) of training data, and show the ef-
fectiveness with which VBEC automatically determined the
model topology robustly according to the speech types of the
training data. We also examine the robustness of the deter-
mined models for a mismatched condition between training
and test data tasks, by recognizing question utterances for
a question answering system by using the acoustic model
trained by the Japanese read speech data set

2. VBEC

VBEC is a total Bayesian framework: it includes two ma-
jor Bayesian abilities that are superior to the ML approach,
in that it can determine an appropriate model topology and
classify categories robustly using a predictive posterior [5]
(Bayesian Predictive Classification using VB posterior distri-
butions, VB-BPC). In this paper, we focus on model topol-
ogy determination, which is a VBEC capability. In this sec-

tion, we briefly review the VBEC framework and show the
VB objective function used for determining a model topology
(see [5,7,8] for details).

2.1 Variational Bayes

Let O be a given data set. Then, in the Bayesian ap-
proach we are interested in posterior distributions over the
model parameters, p(©|0Q,m), and in the model topology,
p(m|O). Here, © is a set of model parameters and m is an
index of the model topology. Here, we derive VB posterior
distributions for a model topology and discuss model selec-
tion by employing the posterior distribution for a model with
latent variable Z. We introduce an arbitrary posterior dis-
tribution ¢(m|O) and consider the KL divergence between
g(m|O) and the true posterior distribution p(m|O). Then,
the lower bound of KL [¢(m|O)|p(m|O)] is obtained by us-
ing Jensen’s inequality, and the following objective function
is defined as follows:

F"(g(6]0, m), ¢(Z|0,m)]
_ <10g p(0. 2|0, m)p(8lm)

q(©|0,m)q(Z|0,m)
Here, the brackets (), denote the expectation with respect to
q. Therefore, the optimal posterior distribution for a model
topology can be obtained as follows by a variational method
with respect to g(m|O) that minimizes the lower bound:
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q(m|0) o p(m) exp (F™[q(©|0,m),q(Z|0,m)])).  (2)

Assuming that p(m) is a uniform distribution, the proportion
relation between g(m|O) and F™ is obtained by utilizing the
monotonical behavior of the exponential function. There-
fore, the optimal model topology in the sense of maximum
posterior probability can be selected as follows:

m = arg maxg(m|0) = argmax F™. (3)

This indicates that by maximizing objective function F™
with respect to m, we can select the optimal model topol-
ogy [7, 8] even if a model includes latent variables. F™
can be calculated by using VB posterior distributions for
model parameters ¢(©|0, m) and ¢(Z|0,m). q(©|0,m) and
¢(Z|0, m) are calculated by an iterative calculation such as
the Expectation-Maximization (EM) algorithm (VB-EM al-
gorithm [6])

2.2 VB posterior distribution for acoustic model

parameters

In this section, we introduce concrete forms of the VB pos-
terior distributions for model parameters q(©|O,m). First,
we set output and prior distributions. Let O = {O' € RP :
t =1,..,T} be a sequential speech data set of a phoneme
category. We use D to denote the dimension number of the
feature vector and T to denote the frame number. The out-
put distribution, which represents a phoneme acoustic model,
is expressed by

T
p(0.5,V|0,m) = [[ac-1.cw. b (09, (1)

t=1

where S is a set of sequences of HMM states, V is a set
of sequences of Gaussian mixture components, and s* and v*
denote the state and mixture components at a frame t. Here,
S and V are sets of discrete hidden variables, which are the
concrete forms of Z in Section 2.1. The parameter ai; de-
notes the state transition probability from state i to state j,
and wj is the k-th weight factor of the Gaussian mixture for



state j. In addition, b;x(O*)(= N (O*|u;,, Tjx)) denotes the
Gaussian with the mean vector p;; and covariance matrix
Zik. © = {aij, wik, pyp, T lij = 1, Lk =1,.., L} is a
set of output distribution parameters. Here, J denotes the
number of states in an HMM sequence and L denotes the
number of Gaussian components in a state.

The prior distribution is assumed to be a conjugate distri-
bution and is expressed as follows:

p(9|m)
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where b1, = {s1;,, 7'}, Here, #° = {¢°, %, &% 1%, 7%, R}
is a set of prior parameters. We set ¢°, ©°, €%, 1° so that they
are independent of i, j, k. D denotes a Dirichlet distribution
and G denotes a gamma distribution. The prior distributions
of a;; and w;x are represented by the Dirichlet distributions,
and the prior distribution of p;, and X is represented by
the normal-gamma distribution. If the covariance matrix el-
ements are off the diagonal, a normal-Wishart distribution
is set as the prior distribution of p;; and ¥jx.

From the output and prior distributions, we can obtain the
optimal VB posterior distribution for the output distribution
parameters g(©|0, m) (see [5] for details).

q(e|0,m)
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Note that Eqgs. (5) and (6) belong to the same function
family, and the only difference is that the set of prior pa-
rameters ®° in Eq. (5) is replaced with a set of posterior
distribution parameters & = {g,J,LZ]k,Ejk,Djk,ﬁjk,ﬁjk} in
Eq. (6). Here, ® are defined as:
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Here, 7}, is a VB transition posterior distribution, which de-
notes the transition probability from a state i to a state j
at a frame ¢, and (;k is a VB occupation posterior distribu-
tion, which denotes the occupation probability of a mixture
component k in a state j at a frame ¢, in the VB approach.

Therefore, & can be calculated from &°, ¥:; and Z]' &, enabling

g(©|0,m) to be obtained. 7}; and Z]'k can be obtained by
the VB forward - backward algorithm or Viterbi algorithm.
Thus, VB posteriors can be calculated iteratively like the
Baum-Welch algorithm even for complicated latent variable
models such as the acoustic models within the VB-EM algo-
rithm. Therefore, we refer to these calculations designed to
obtain VB posteriors as a VB Baum-Welch algorithm, which
is proposed in [4,5]. VBEC is based on the VB Baum-Welch
algorithm.

2.3 VB objective function

In this section, we provide the concrete form of the VB
objective function ™, which is a criterion for both poste-
rior distribution estimation and model topology optimiza-
tion. By substituting the VB posterior distribution obtained
by the VB Baum-Welch algorithm in Section 2.2 into Eq.
(1), we obtain analytical results for 7™, and therefore, this
calculation also requires the VB-EM algorithm used in the
VB posterior calculation. We can separate F™ into two com-
ponents: one is composed solely of (S, V|0, m), whereas the
other is mainly composed of g(©|0, m). Therefore, we define
F& and Fg'y, and represent F™ as follows:

F™ = = 4(S,V|0,m)log (S, V|0,m))
sV
~ p(0,5,V|6,m)p(6]m)
+ @q(s, V|o,m)1og( o150 ) )>
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We provide the Fg result, which is used in Section 3., as:
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where I'(-) denotes a gamma function. From Eq. (10), Fg
can be calculated by using the statistics of the posterior dis-
tribution parameters ® given in Eq. (7).

3. Determination of acoustic model topol-
ogy using VBEC

In this section, we briefly describe how to determine the
acoustic model topology automatically by using VBEC. In
acoustic modeling, the specifications of the model topology
are often represented by the number of clustered states and
the number of GMM components per state, as shown in Fig-
ure 1. Then, the good models that provide good performance
would be distributed in the inverse-proportion band where
the total number of distribution parameters (approximately
equal to the total number of Gaussians) exists in a restricted
range where over-fitting and under-fitting are avoided. More-
over, there would be a unimodal optimum area in the band
where the model topologies are represented by an appropri-
ate number of pairs of clustered states and components, as
shown in Figure 1. In order to realize the optimum model
topology, we utilize the two characteristics of the acoustic
model: the inverse-proportion band and the unimodality.



Parent node

Phonetic
question Q

Figure 2 Estimation of inheritable GMM statistics while split-
ting.

Therefore, we first prepare a number of acoustic models in
the band (in-band models) by using GMM-based decision
tree clustering, and then choose the model that has the best
VB objective function score from the in-band models (in-
band model search). Thus we can determine the optimum
model topology, as shown in Figure 1.

3.1 GMDM-based decision tree clustering

In this section, we describe GMM-based decision tree clus-
tering within the VBEC framework. We employ phonetic
question based state clustering in order to reduce the state
cluster combination. An appropriate choice of phonetic ques-
tion at each node split leads a decision tree to proper growth
to maximize an objective function, and appropriate state
clusters become represented in its leaf nodes. We use the VB
objective function ™ in Section 2. 3 as an objective function
for the state clustering. Although the conventional method
uses likelihood and requires a manually tuned threshold, 7™
does not require such a threshold, and can determine cluster-
ing topology appropriately [5]. When a node n is split into
yes (n$) and no (n9) nodes according to a question @, an

appropriate question Q(n) is chosen from a set of questions
so that the split gives the largest gain in an arbitrary ob-
jective functlon .7-'"‘ ie., Q(n) = arg maxg AF?™ | where

AFO™ = J-'"Y ¥ — F™ is the overall gain in objective func-
tion when node n is split by . The automatic determination
of the final state clustering topology is achieved by stopping
the split when AF™@ < 0 for any node n and any ques-
tion Q. This corresponds to finding the appropriate model
topology of a clustered state structure where the total F™
is maximized for all possible clustered state topologies.

Although AF?(™) can be’ calculated by the VB Baum-
Welch algorithm for each cluster combination, this requires
an extremely long computation time. Therefore, we set the
following two constraints to eliminate the latent variables
involved in an acoustic model and thus avoid the VB Baum-
Welch algorithm. The first is that the frame-to-state align-
ments are fixed throughout the process of state splitting. The
second is that the ratio of GMM statistics for component k
is conserved when splitting. Then, for example, the ratio of
0-th order statistics Of for a node n is related to the ratios
of the 0-th order statistics of its yes-node ng and no-node
ng for a question Q. Employing this relation for the upper
node in a phonetic tree successively, the assumption yields
the fact that the ratio at each node is equivalent to the ratio
oMy S OM(= wM) at the root node statistics in the tree
(i-e., the ratio of the monophone HMM state statistics) as
follows:

o"o _ o O _ M
= _ = =wM.

T.0f pof Twor T TLor
(11)

where the suffix M indicates a monophone HMM state.
Therefore, utilizing a similar discussion, the 0-th, 1-st and
2nd order statistics Oy, M} and V{ of the k component in
the n node are estimated using w} as follows:

op = wior. = WMy St
M = wlmMr = ZJEn > ('ot (12)
Vea = wpt vy "’k Z]En Zc J(o2 )?

where, j denotes the index of a non-clustered triphone HMM

state. This approach is based on the hierarchical knowledge
of the tree structure, which shows that child node statistics
are well complemented by parent node statistics. Thus, we
can estimate the GMM statistics of each node OF, M} and
Vi without using the VB-EM algorithm, but using the k
component ratio of the monophone statistics w}. We call
this the estimation of inheritable node statistics because the
ratio w} is passed from a parent node to child nodes, as
shown in Figure 2. Consequently, VB posteriors and VB
objective functions can also be calculated without using the
VB-EM algorithm while splitting. We provide the concrete
form of the parameters for VB posteriors d>(n) and AFI™)
from Egs. (7) and (10), as follows:

AFA™) = f(nh) + f(nd) - f(n) = Y wi' logwl!, (13)
k

where
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To calculate AF?™) | we must estimate wi and set the prior
parameters $° appropriately.

3.2 Prior and monophone HMM statistics

In this paper we introduce an approach for obtaining wi,

vy 0 and R,c , which wa,s first proposed in [11]. This ap-
proach assumes that w} is the same for all the components
in an L-component GMM, and is represented by wi = 1/L,
instead of calculating the GMM statistics of monophone
HMM. In addition, to set u:’o and R}°, we employ single
Gaussian statistics of monophone HMM, which are easily
computed by combining sufficient statistics O;, M; and V;
for all triphone HMM states. Then, w}, v7° and R}® are
represented as follows:

w,’:"o = 1/L
VZ’O = X,0iM;/3.0; (16)
Ry = n° Z] O;Vj.a/ Z] 0;.



The gain of VB objective function AF?™) is calculated by
substituting Eq. (16) into Egs. (13) and (14). Thus, we
can construct a number of in-band model topologies by us-
ing GMM-based decision tree clustering, i.e., we realize the
solid arrows seen in Figure 1 within a practical computation
time without using the VB-EM algorithm. However, the
final determination of an appropriate model from in-band
models (in-band model search) does not sustain the inher-
itable statistics assumption because the number of GMM
components is different for each model. Therefore, we have
to calculate the VB objective function by dropping the in-
heritable statistics assumption. In addition, we also drop the
constraints of the frame-to-state alignments in Section 3.1 to
calculate the VB objective function as exactly as possible. In
this situation, the acoustic model includes latent variables,
and we require the exact VB objective function as described
in Eq. (9), which is obtained by the VB Baum-Welch algo-
rithm, instead of using Egs. (13) and (14).

4. Experiments

An automatic method for determining acoustic models
would be a very promising technique for practical speech
application fields if it is unaffected by speech variation.
Therefore, the availability of VBEC automatic determina-
tion should be examined experimentally using various speech
data. This experimental section provides three subsections
to confirm the robustness with respect to different speak-
ing styles and languages, which are representative of speech

variations, and of different test data by recognizing question

utterances for a question answering system using an acoustic
model trained by the Japanese read speech data set, whose
conditions are mismatched with those of test data set. All the
experiments in this paper were performed using the SOLON
speech recognition toolkit [12] developed by NTT Commu-
nication Science Laboratories.

4.1 Speaking style variation

First, we focused on speaking style variation of the train-
ing data set by preparing an isolated word speech (100 city
names provided by JEIDA), LVCSR based on Japanese read
speech (JNAS: Japanese Newspaper Article Sentences) and
LVCSR based on Japanese lecture speech (CSJ: Corpus of
Spontaneous Japanese). Speaking style greatly influences
acoustic features, and acoustic models need to be constructed
manually depending on the style when the ML method is
used. However, VBEC determination could allow us to re-
place manual construction with automatic construction for
various speaking styles. Therefore, we examined the robust-
ness of VBEC determination for various speaking styles. The
configuration of feature extraction was 12-order MFCC + A
MFCC (24 dim.) for 100 city names, 12-order MFCC + A
MFCC + Energy + A Energy (26 dim.) for JNAS and 12-
order MFCC + A MFCC + A Energy (25 dim.) + CMN for
CSJ. The sampling rate was 16 kHz, the frame size was 25
ms and the frame shift was 10 ms. For JNAS and CSJ, we
used standard trigram models with vocabularies of 20,000
and 30,000, respectively. For the 100 city name task, the
training data consisted of about 3,000 Japanese sentences
(4.1 hours) spoken by 30 males and the recognition data
consisted of 100 Japanese city names spoken by 25 males (a
total of 2,400 words). For the JNAS task, the training data
consisted of about 20,000 Japanese sentences (34 hours) spo-
ken by 122 males and the recognition data consisted of 100
Japanese sentences spoken by 10 males (a total of about
2,000 words). For the CSJ task, the training data consisted
of about 800 Japanese lectures (190 hours) spoken by 200
males and the recognition data consisted of 10 Japanese lec-
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tures spoken by 10 males (a total of about 27,000 words).

First, we examined the recognition performance of conven-
tional ML-based acoustic models with manually varied model
topologies for a number of clustered states and GMM compo-
nents per state, which we use as baselines with which to com-
pare the performance of the automatically determined model
topology. The contour maps in Figures 3 and 4, and the
white bar in Figure 5 show the recognition performance ob-
tained with the ML method. Then, we provided the model,
whose topologies were determined by VBEC, with recogni-
tion performance. For all the tasks, the resultant combi-
nations of the numbers of states and components per state,
determined by VBEC, were included in the high performance
area in Figures 3, 4 and 5. In addition, the recognition per-
formance (97.9 %, 91.7 WACC and 74.5 WACC) of all the
tasks reached the highest performance (98.0 %, 91.4 WACC
and 74.2 WACC) obtained with ML methods. Consequently,
we confirmed that VBEC determination is effective for vari-
ous speaking styles, namely isolated word speech, continuous
read speech and spontaneous lecture speech.

4.2 Language variation

In our second set of experiments, we focused on the effect
on VBEC determination of language variation. The acous-
tic feature depends strongly on the languages, and the ap-
propriate model topology will be changed depending on the
language. Therefore, we must examine how VBEC deter-
mination works even for a different language task. We used
English read speech (WSJ: Wall Street Journal) as a different
language task from Japanese tasks. The feature extraction
configuration is 12-order MFCC + A MFCC + AA MFCC
+ Energy + A Energy + AA Energy (39 dim.) + CMN.
The other configuration was the same as that in Section 4. 1.
We used a standard trigram model that had a vocabulary of
20,000. The training data consisted of about 20,000 English
sentences (36 hours) spoken by 143 males and the recognition



data consisted of 100 English sentences spoken by 5 males (a
total of about 2,000 words).

As in Section 4.1, we prepared the recognition perfor-
mance of conventional ML-based acoustic models with man-
ually varied model topologies for a number of clustered states
and GMM components per state. The white bar in Figure
6 shows the recognition performance obtained by the ML
method and the black bar represents the VBEC determined
model with the recognition performance. Although the de-
termined model topology with 2,504 states and 32 compo-
nents was far from the best ML results of 7,000 states and 32
components, its performance (91.3 WACC) matched the best
ML performance (91.3 WACC), and we can say that VBEC
determination is effective even for a different language task
such as English rather than Japanese. In addition, the VBEC
determined model exhibited the best ML performance with
less than half the total number of Gaussians, which reduced
the decoding time to less than half (8.29 RTF — 2.35RTF).

4.3 Mismatched condition with training and test

data tasks

Finally, we examined how the model previously determined
using VBEC worked for a test data set belonging to a dif-
ferent corpus from the training data corpus, i.e., the condi-
tions, such as recording environments and speaking styles,
between training and test data sets are mismatched. We
used the determined acoustic model trained using JNAS in
Section 4.1 and recognized spoken question utterances for
a question answering system (QA) [12]. Since the question
utterances include many proper nouns, we must prepare a
language model with a very large vocabulary that includes
the proper nouns. In this paper, we recognized speech by us-
ing very large vocabulary language models (0.2 million, 1.0
million and 1.8 million). The recognition data consisted of
250 Japanese question utterances spoken by 25 male (a total
of about 3,000 words).

Figure 7 compares the recognition performance obtained
using the VBEC determined acoustic model with 912 states
and 40 components and the two ML based acoustic models
with 1,000 states and 30 components and 2,000 states and
40 components in the mismatched (JNAS-QA) condition be-
tween training and test data. We also added the matched
(JNAS-JNAS) condition result in Figure 7. The ML models
were obtained by manually tuning the model topologies that
maximized that recognition performance of two development
data sets extracted from JNAS, which were not included in
the training data. From Figure 7, the VBEC determined
model was superior to the ML model topologies for every
vocabulary size by more than 2 points in the mismatched
condition, unlike the matched condition result. The reason
of VBEC'’s superiority seems to be that the ML topologies
were overly tuned for the JNAS development data sets that
was mismatched with the question utterances, and could not
accommodate mismatched data such as question answering
speech, while the VBEC model was determined only by train-
ing data, and would be robust for the mismatched condition.

5. Experimental discussion and summary

In this paper, we introduced the automatic determina-
tion of the optimum topology for an acoustic model by us-
ing Gaussian Mixture Model (GMM)-based phonetic deci-
sion tree clustering and an efficient model search algorithm
that utilized the acoustic model characteristics. This method
was realized using the Variational Bayesian Estimation and
Clustering for speech recognition (VBEC) framework. The
robustness of the automatic determination in terms of speak-

W VBEC
0 ML(s1000g30)|
- OML(s: 40)

Matched
condition
Figure 7 Word accuracies for question answering speech.

0.2 million 1.0 million 1.8 million

ismatched condition

ing style and language was confirmed experimentally, and
showed that VBEC determination is robust for various types
of speaking style and language. Moreover, we also confirmed
the robustness of the determined model for a mismatched
condition between training and test data task, which shows
the superiority of the VBEC determined model as regards
open data, which cannot be prepared beforehand at the
training stage. Thus, VBEC provides a consistent theoret-
ical framework for total Bayesian speech recognition, and
constitutes a very promising technique for practical speech
recognition.
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