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Abstract In recent years, the number of studies investigating new directions in speech modeling that goes beyond
the conventional HMM has increased considerably. One promising approach is to use Bayesian Networks (BN)
as speech model. Full recognition systems based on Dynamic BN as well as acoustic models using BN have been
proposed lately. Our group at ATR has been developing the hybrid HMM/BN model which is a HMM where the
state probability distribution is modeled by a BN, instead of commonly used mixture of Gaussian functions. In
this paper, we describe the hybrid HMM/BN acoustic modeling framework especially emphasizing on some model
design and implementation issues. The HMM/BN training is based on the Viterbi training paradigm and consists
of two alternating steps - BN training and HMM transitions update. For recognition, in some cases. BN inference is
computationally equivalent to mixture of Gaussians which allows HMM/BN model to be used in existing decoders
without any modification. We present two examples of HMM /BN model application in speech recognition systems.
Evaluations under various conditions and for different tasks showed that the HMM/BN model gives consistently
better performance than the standard mixture of Gaussians HMM.
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1. Introduction )

Gaussian as well as Laplacian pdfs are commonly used for

For many vears, since the introduction of the HMM for
specch recognition 1], [2], observations conditional distribu-

tions P(r|g) for cach statc have been modeled most often by

this purpose. Later. a hybrid HMM/NN systems were pro-
posed [3] where Neural Networks are used to estimate TIMM

state likelihoods given input obscrvation. In most of the



cases, features extracted from speech spectrum form these
observations. However, research in speech recognition has
shown that using only these features is not enough to achieve
high system performance. Thus, many researchers have tried
to include additional features representing some other knowl-
edge into their HMM systems. For example, in[4] multi-
space probability distribution is proposed for modeling addi-
tional pitch information. But, in almost each case, different
approach is taken depending on the properties of the addi-
tional feature.

Recently, the Bayesian Networks (BN) have attracted re-
searchers attention as an alternative to the HMM. They can
model complex joint probability distributions of many dif-
ferent (discrete and/or continuous) random variables in well
structured and easy to represent way. Especially suitable
for modeling temporal speech characteristics is the Dynamic
BN (DBN) [5]~[7]. DBN is regarded as generalization of the
HMM, which in addition to specech spectral information can
easily incorporate additional knowledge, such as articulatory
In (8],

acoustic features are easily supplemented with pitch infor-

features, sub-band correlation, speaking style, etc.

mation within the framework of DBN. Another advantage
of the Bayesian Networks is that additional fecatures which
are difficult to estimate reliably during recognition may be
left hidden, i.e. unobservable. Despite these attractive prop-
erties of BN, their application in speech recognition is still
limited to small recognition tasks like digit recognition [9].
The rcason is that the existing algorithms for BN parameter
learning and inference are not efficient enough and become
computationally prohibitive for large vocabulary continuous
recognition tasks.

The model described in this paper aims at utilizing advan-
tages of both HMM and BN while being free from their draw-
backs described above. In the HMM/BN, temporal charac-
teristics of speech signal are modeled by HMM state transi-
tions and the BN is used to model HMM state distributions.
The advantage of this is that the existing methods for HMM
design, training and recognition can be used without signif-
icant modifications since the HMM/BN behaves: essentially

as a conventional HMM.
2. Hybrid HMM/BN Model

In this section, we give a brief description of the hybrid
HMM/BN model and provide details about its design, train-
ing and implementation.

2.1 Background

The HMM/BN model is a combination of an HMM and a
Bayesian Network. Speech temporal characteristics are mod-
eled by the HMM state transitions while the HMM states’
probability distributions are represented by the BN. A block

diagram of the HMM/BN is shown in Fig.1.

%1 HMM/BN model structure. HMM transitions model speech
temporal characteristics and BN represents states’ probabil-

ity distributions.

Structurally, the HMM/BN model is analogous to the hy-
brid HMM/NN model [10]. The difference is that instead of
a Neural Network, the HMM is coupled with a BN,

By definition, a Bayesian Network represents a joint prob-
ability distribution of a set of random variables Z,, ..., ZN
and is expressed by a directed acyclic graph (DAG), where
cach node corresponds to a unique variable. Arcs between
the nodes show the conditional dependencies of the BN vari-
ables. Immediate predecessors of variable Z; are called its
parents and are referred to as Pa(Z;). The BN joint proba-

bility distribution function can be factored as [11]:

N
P(Z:.....2n) = | [ P(Z:|Pa(2:) (1)
i=1
In practice, the HMM state distribution is often modeled
with a mixture of Gaussian functions. It can be graphically
represented by a BN with topology shown in Fig.2. where
M = {m;},7 =1,...,K is a discrete variable representing

mixture component index.

B 2 BN representing mixture of Gaussians.

The data likelihood p(z¢|g:) can be calculated using the
BN joint probability function (Eq.(1)) as follows:

p(adg:) =

_ P(ze.qi) Zj’(:lp(‘n’mj'qi)

T P(w) P(q:)

B Z;‘:I P(ximj. qi)P(mjlq:) P(q:)

B Plq)
K

= ZP(771,J|q1)P(Tt|mj«qi) (2)
Jj=1



1f we replace P(m;|q:) with wj;; and P(a¢|m;.q:) with Gaus-
sian function N(z¢;15:, £5:), we get a standard mixture of

Gaussians equation:

K

plaelas) = Y wyil (e wyi- Tyo) 3)

j=1

Figure 2 allows us to interpret the Gaussian mixture dis-
tribution in a different way. It shows that observation vari-
able X depends not only on the state index but also on the
variable M. However, M has no physical meaning. In this
respect, Gaussian mixture learning is "blind” and does not
reflect the way a speech signal is produced or at least does
not account for the factors it depends on, such as speaker
gender, environmental noises, communication channels, etc.
Variable M, for example, could represent pitch value, artic-
ulatory configuration or some other parameter that effects
the speech spectrum.

2.2 HMM/BN model design and training

The HMM/BN acoustic model design involves several main
steps: choosing the speech unit to be modeled (phoneme,
word, etc.); determining the the number of states per unit
and the state topology; and choosing the BN structure. The
first two steps are essentially the same as for the standard
HMM. Therefore, the same methods and techniques are ap-
plicable in the HMM/BN case. Ideally, the BN structure
should be learned automatically from the training data, but
this is a very difficult task [12] and, usually, BN topology is
chosen manually by taking into account the available data
and the task at hand [13], [14]. The BN can have many vari-
ables corresponding to different speech features or variabil-
ity factors. Dependencies are usually set according to prior
knowledge or data correlation analysis. In this way, we can
impose knowledge-based structure on the spcech generation
process and achieve a more precise speech model. Which
BN variables should be hidden or observable depends on the
available additional speech training data (pitch, articulatory
observations, prosodic features, etc.) or high-level knowl-
edge (speaker gender, environment factor, phoneme position.
etc.). In case we don’t have observations of some variable,
we could assume it hidden. However, as in the Gaussian
mixture example described above, in such cases, the training
with the EM algorithm is “blind” and there is no guaranty
that after the training this hidden variable represents the
speech feature it is supposed to represent. So. it is better to
avoid having hidden BN variables during training.

As in the case of the HMM/NN model, parameter learning
of the HMM/BN is based on the Viterbi training paradigm
and can be summarized in the following algorithm.

e Step 1. Initialization.

e Step 2. Viterbi alignment.

e Step 3. Update BN parameters.

e Step 4. Update HMM transition probabilities.

e Step 5. Stop or go to Step 2.

Although random initialization is possible, we first train a
bootstrap HMM model and use its state structure and transi-
tion probabilities to initialize the HMM/BN. Thus, the main
part of HMM/BN training becomes the BN parameter esti-
mation. Since the state variable Q is observable, before BN
training we need to obtain its values for each sample of X.
This is done by the Viterbi alignment step. For BN parame-
ter estimation, several methods are available. In the simplest
case, when all variables are observable, maximum likelihood
(ML) estimates can be computed in closed fornf*". In a par-
tially observed case, i.e. when some of the (discrete) variables
are hidden, the Expectation-Maximization (EM) algorithm
can be applied. After BN is trained and its parameters fixed,
the HMM transition probabilities are re-estimated with a
standard forward-backward algorithm. All of these steps are
repeated until the convergence criterion is met. This can be
an increase in data likelihood or simply a fixed number of
iterations.

2.3 Implementation and decoding

The decoding in HMM based ASR systems is usually done
in a frame synchronous manner using the Viterbi algorithm.
As the difference between HMM /BN and HMM is in the way
the state optput probability is calculated, the same decoding
strategy can be applied. Depending on the BN complexity
and the type of its variables, the output probability inference
can be done in different ways. In general, we need to obtain
P(zy,y;,--- ,y{|qt), where y;,.... yf are the instances of all
additional observable variables. This requires a BN inference
engine that should be coupled with the Viterbi decoder and
feature extraction modules that will provide the v;,... y{
observations. In order to reduce the implementation costs,
we can assume all additional variables hidden during recogni-
tion. Note that during the training, they are still observable.
This is especially useful when during recognition the feature
extraction is difficult or even impossible like in the case of
articulatory features.

A further simplification can be achieved if all additional
BN variables are chosen to be discrete. As we show in the
HMM/BN application examples in this paper, the data like-
lihood inference can be reduced to a Gaussian mixture cal-
culation. This is practically useful because in this case, the
HMM/BN model is computationally equivalent to the HMM,
and there is no need of inference engine or any modifications
of the HMM decoder.

(& 1) : This is true under the condition that continuous variables have

no children.



3. HMM/BN application examples

3.1 Noisy speech recognition

When speech is contaminated by noise, speech feature vec-
tors change their distributions and this change depends on
the noise type as well as on the SNR value. Therefore, we
can express these dependencies with a BN of the type shown

in Fig.3.

B 3 State BN with noise and SNR variables

Here, N and S are discrete variables representing noise
type and SNR value. In most cases, prior probabilities P(N)
and P(S) can reasonably be assumed equal for each type of

noise and each SNR value and then:

P(ztlg:) = mzp(rt|N=n,S=sﬁqt) 4)

Word models as well as sub-word models are made in the
same way as in the conventional HMM case.

The evaluation experiments were performed using the AU-
RORA2 database [15].
compare the HMM/BN system with Multi-condition trained
HMM system. When training the BN, we labeled the train-
ing data by noise type and by SNR value and used the ML

Of primary interest for us was to

algorithm obtain parameters of each Gaussian P(z¢|N =
n,S = s,q;). All other system parameters as feature vec-
tors, word model state number and experimental conditions
are kept the same. Note that, no adaptation or noise robust
methods are used in our HMM/BN system. The main func-
tional difference between the two systems is that HMM/BN
system cxplores the hidden dependencies of speech features
and noise.

Recognition results for test set A (same noise types as in
training data) and test set B (different noises) are summa-
rized in Table 1. As can be seen, the HMM/BN system per-
formance is much higher for the closed noise condition test
(A set) approaching the state-of-the-art results for this task
obtained by much more complex systems. As for the B set
condition, there is a degradation of the performance. This
can be cxplained by the fact that no knowledge of dependen-

cies for the new noises is available to the HMM/BN system in

addition to the mismatch in the speech spectrum feature dis-
tributions. On the other hand, in the multi-condition HMM
system, state Gaussian mixtures clearly do not model very
well the complex distribution resulting from multiple noise
and SNR conditions. However, this mismatch between data
and model distributions has some smoothing effect which in-

creases the model abilities to generalize over unseen data.

% 1 HMM and HMM/BN systems performance (%)

SNR Test set A Test set B
HMM | HMM/BN | HMM | HMM/BN
Clean 98.54 98.83 98.54 98.83
20 dB 97.52 98.12 96.96 97.26
15 dB 96.94 97.65 95.38 95.05
10 dB 94.59 96.04 92.58 90.27
5dB 87.51 91.70 83.50 78.00
0dB 59.84 76.11 58.91 48.70
-5 dB 23.46 35.79 23.86 3.18
Average* | 87.29 91.92 85.46 81.85

* Calculated over values from 20dB to 0dB.

Another difference between the baseline HMM and the hy-
brid HMM/BN model is that latter has 17 times (4 noise
types times 4 SNR values plus clean condition) more param-
eters. In order to prove that the better performance of the
HMM/BN on test set A in not only due to increased num-
ber of parameters, we trained HMM model with the same
number of parameters by increasing the mixture number.
The overall average word accuracy rates of the three types
of models is shown in Fig.4 where the newly trained model
is denoted by HMM+.

Word Accuracy (%)

Test SetA Test Set B

4 Comparison between baseline HMM, HMM/BN and HMM+

with the same number of parameters as the hybrid model.

This comparison clearly shows that the hybrid HMM/BN
model is still better than the HMM+ for the known environ-
ments casc due to better modeling of the noise-observation
dependency which is learned explicitly. In contrast, the con-
ventional HMM learns it implicitly. This advantage comes,

however, at the expense of lesser generalization ability.



3.2 Articulatory and Acoustic Feature Integra-
tion

The articulatory data used in this experiment were col-
lected by using the Electromagnetic Midsagittal Articulo-
graphic (EMA) system at NTT. Japan [16]. In thc EMA
system, a number of miniature coils are attached to points
in the vocal tract. The subject’s head is then placed in an
electromagnetic field, allowing the movement of the coils to
be inferred from the corresponding induced voltages. The
output of the system is a set of z and y traces for artic-
ulatory movement. Acoustic signal and articulatory traces
were recorded simultaneously. The sampling rate was 250
Hz for the articulatory channels and 12 kHz for the acoustic
channel. All articulatory data were subsequently corrected
for head movements and rotated to bring the occlusal plane
into coincidence with the horizontal axis. The speech ma-
terial consisted of 350 Japanese sentences that were read at
normal speed by three male subjects. 300 sentences were se-
lected for training and the rest 50 were used for evaluation.

Since both the acoustic and articulatory features are real
valued vectors, direct integration using the HMM/BN model
is difficult. In order to make this task feasible, we transform
the articulatory parameters into discrete data by using Vec-
tor Quantization (VQ). Of course, some information will be
lost, but this is a trade-off between the model’s accuracy and
its complexity.

The BN structure we used to combine the acoustic MFCC

data and the articulatory parameters is shown in Fig.5.

¥ 5 BN structure modeling dependencies between acoustic X,
articulatory position Ag, velocity A, and acceleration A,

variables.

Here, X depends on three articulatory variables: position,
velocity and acceleration. In addition, the possible correla-
tion between these variables is taken into account by making
them dependent on each other. The output likelihood ob-

tained from this BN structurc is as follows:

K

K, K,
pladq.) =ZZZPaJ|qJ P(ay]a,q:)

'P(am|an: ‘II) .
-P(zi|aj, an. am. q:) (5)

A closer look at this equation reveals that it is a mix-
ture of Gaussians equation. Indeed, the first three
terms of the right side are discrete probabilities, and
their product P(a;|q:)P(anla;. ¢:)P(an,|an. g;) is simply the
weight of the corresponding Gaussian mixture component
P(xt|aj,an, am. q:), which can be calculated in advance.

Since the BN articulatory variables are discrete, before
HMM/BN training, all of the articulatory data had to be
quantized. First, we reduced vector dimension to four by
the principal component analysis (PCA) technique. The es-
timated information loss from this procedure in all cases was
less than 15%. Then, for each articulatory parameter type
(position, velocity, acceleration as well as concatenation of
all three) we trained VQ codebooks of different sizes ranging
from 4 to 1024. These codebooks were used to quantize the
corresponding type of data, and their VQ labels served as ar-
ticulatory observations for the BN training. Observations of
the state variable () were obtained using Viterbi alignment as
described in section 2. 2. Thus, all BNs were fully observable,
and ML training was sufficient for the BN parameter estima-
tion. Instead of initializing its parameters randomly, we used
a HMM trained on acoustic data only as a bootstrap model
which also serves as a baseline. Transition probabilities of
this model were taken as initial values of the corresponding
HMM/BN state transitions. The bootstrap model was also
used in the Viterbi alignment step of the first training iter-
ation to obtain good initial state segmentation. After such
initialization, one or two training iterations were performed
for all of the HMM/BN models. Since the number of states
of both the baseline and HMM/BN models is the same, the
only difference between them becomes the number of mix-
tures and the way they are trained.

The evaluation cxperiments were done using models
trained on data from all three speakers. The test set con-
sisted of each speaker’s test data pooled together. In addition
to the baseline model, we trained a HMM using concatenated
Note that this

model regires articulatory observations to be available dur-

acoustic and articulatory feature vectors.

ing recognition. We will refer to this models as HMM(AC)
and HMM (AC+ART) respectively.

The phoneme recognition accuracies obtained from all
As the
results show, the HMM/BN model performed much bet-
ter than HMM(AC), achieving the same accuracy as the
HMM(AC+ART). This suggests that the lack of addi-

the three types of models are plotted in Fig.6.



tional speech features during recogntion can be effectively
compensated by the correlation information learned during
HMM/BN training.
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speaker case).

4. Conclusion

In this paper, we described the hybrid HMM/BN model
and discussed some issues related to its design and imple-
mentation. Although this model can be regarded as a pure
Bayesian Network, its structure allows simple algorithms to
be used for training and recognition instead of general BN
learning and inference methods which depending on the task
may often become computationally intractable.

Since the HMM/BN has the same state topology as the
HMM, the way we build acoustic models is not altcred at
all. The only difference is the need of BN training which in
many cases can be reduced to an easy ML parameter estima-
tion. The implementation of the HMM/BN can be simplified
by forcing all the additional BN variables to be discrete. This
way, the inference becomes equivalent to a Gaussian mixture
computation.

As the provided examples of HMM/BN application show,
even with a few additional variables and simple BN topolo-
gies, the hybrid model achieved better performance than the

conventional Gaussian mixture HMM.
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