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Abstract While Hidden Markov Models (HMMs) have been successfully applied to automatic speech recognition,
they are not still robust enough against differences in speakers, speaking-styles, and environmental noises. To tackle
this problem, we need to study the inner structure of speech by using large corpus and rich computational power. In
this direction, the model size tends to be increase and hence the data insufficiency problem becomes more serious.
In this paper, we focus on robust modeling against data insufficiency. Approaches based on information criteria such
as Minimum Description Length and structural approaches in which models are changed according to the amount

of data availabl are discussed. While these techniques have been important for HMM research, it will be more

important in the research beyond HMM.
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1. Introduction

Hidden Markov Models (HMMs) has been successfully ap-
plied to automatic speech recognition. They can efficiently
represent the variety of speech, and have an efficient algo-
rithm called Expectation-Maximization algorithm to esti-
mate its parameters. For read speech, in which each sen-
tence is clearly and rather slowly pronounced, their recog-
nition accuracy is more than 95%. For spontaneous speech
used in daily conversation, however, it degrades drastically.
In addition, it is largely influenced by speaker characteristics
and environmental noises. From these facts, it is clear that
HMMs are still not robust enough for our daily use.

One major reason for this lack of robustness is that the
recognition process using HMMs are rather superficial. It
may be compared to estimating the geological formation of
the bottom of the sea by observing the waves on its sur-
face. Its framework is easily applicable for recognizing any
time-series data, which means it is not related to the inner
structure of human speech. In order to improve the perfor-
mance of speech recognition, it is necessary to step into the
inner structure of speech, to analyze it, and to utilize it.

The following two approaches seem promising for this pur-
pose. One is to simulate human production and percep-
tion process (Analysis-by Synthesis approach, e.g.,[9]) and
the other is to extract useful information from large speech
corpus (Data mining approach, e.g.,[22]). While these two
approaches are both important and deeply related to each
other, we focus on the latter in this paper.

Since the search space for mining is vast while computa-
tional power available is limited, it is practically important
to utilize those methods that need few control parameters,
based on information-theory. In this paper we introduce two

such methods. One is for acoustic modeling and the other for
speaker adaptation. The author believes the investigation in
this direction is very important to construct statistical mod-
els beyond HMMs.

This paper is organized as follows. In the next section,
the acoustic modeling based on the Minimum Description
Length (MDL) criterion is explained. In Section 3, the
speaker adaptation method based on Structural Maximum
A Posteriori (SMAP) estimation is explained. In Section 4,
the future direction of these approaches is discussed.

2. Model Selection using MDL Criterion

2.1 Motivation

It is well known that in most speech recognition systems
the use of context-dependent phone units such as triphones
rather than context-independent phone units such as mono-
phones provides greater recognition accuracy. While the
large number of triphones employed in a typical system can
help to capture variations in speech data, the amount of
available training data is likely to be insufficient to sup-
port the use of such a large number. Such lack of data can
seriously degrade speech recognition performance and most
recognition systems using triphones cluster the model pa-
rameters to try to alleviate the problem. Various clustering
methods have been developed for this purpose.

One of the most successful approaches is that based on the
maximum-likelihood (ML) criterion [21]. In this approach,
state splitting based on phonetic decision trees is used as
a clustering scheme for single-Gaussian HMMs. The diffi-
culty with this ML approach, however, is determining when
to halt the splitting process, which could be carried on until
the model simply consisted of a full set of individual, unclus-
tered parameters. Usually, the splitting process is limited by
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Figure 1 The MDL criterion.

imposing a threshold value on the increase in the likelihood
or on the number of parameter clusters, but the process re-
quired to optimize such thresholds (a series of recognition
experiments, cross-validation, etc.) is computationally ex-
pensive.

In the following, an approach that uses the minimum de-
scription length(MDL) criterion for state splitting [16] is ex-
plained. This MDL approach is effective for deciding when
to stop splitting.

2.2 MDL Criterion

The MDL criterion [11] has been proven to be effective
in selecting the optimal model from among various prob-
abilistic models. It selects the model with the minimum
description length for given data. When a set of models
{1,...,i,...,1} is given, the description length L;(x") for

data {xN = z31,...,xn} and an underlying model i is given
by
N Ny, Ki
L(x")= -logPﬂ(,-)(x )+ TlogN-f-logI, (1)

where K is the dimensionality (the number of free parame-
ters) of model ¢ and 9 represents the maximum likelihood
estimates for the parameters u'¥ = (OY), . ,9%) of model
i. The first term on the right-hand side of (1) represents the
code length for data x"V when model i is used as a proba-
bilistic model. This term is identical to the negative of the
log likelihood used in the ML criterion. The second term is
related to the complexity of model ¢ and the number of data
samples, N. The third term is the code length required for
choosing model i and is assumed here to be a constant. As
a model becomes more complex, the value of the first term
decreases and that of the second term increases. The sec-
ond term works as a penalty imposed for employing a large
model size (see Figure 1). In a comparison among models,
the model with the shortest description length ! may be con-
sidered the one having the most appropriate size and com-
plexity. As may be seen in (1), the MDL criterion does not
need any externally given parameters; the optimal model for
the data is automatically obtained once a set of models has

been specified.
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Figure 2 Model (node set) in the decision tree.

2.3 Description length for HMMs

For the use of the MDL criterion, it is first necessary to
prepare the model set from which that optimal model is to be
selected. For speech recognition using CDHMMs, it is impos-
sible to prepare all the possible models because of the large
number of possible structures of CDHMMs. In this study,
the focus is on the clustering of the states in CDHMMs and
constant values are given to those parameters unrelated to
state clustering, such as the number of states in a single unit.

Here a model is defined as a node set in a phonetic deci-
sion tree in which a Gaussian pdf is assigned for each node.
When the root node Sp, which represents the whole set of the
,Sm,
as shown in Figure 2, one model U(S), ..., Sun) is defined for

triphone states in the tree, is split into M nodes, S, ...

the node set {S1,...,Sm}. Different node sets correspond
to different models. The description length for each node set
is calculated and the node set with the minimum description
length is selected from among various node sets as being the
optimum model.

The first term on the right-hand side of Eq. (1) is the
negative of the log-likelihood of a probabilistic model with
respect to given data. Under some assumptions, the log-
likelihood of the data for all the nodes in set U is calculated
as follows(for details, see[16]):

M
Lau = ) L(Sm)
m=1

14

M
-3 %P,,.(K + Klog(2m) +10g|Zml). (2
m=1
where K is the dimension of each feature vector, ', is the
occupancy count for state m, ., is the covariance of Gaus-
sian distribution for state m.

The second term on the right-hand side of Eq. (1) repre-
sents the complexity of a model. In the proposed approach,
it is assumed that the covariance of each Gaussian pdf is di-
agonal. The number of parameters to be estimated for model
U is 2KM (with model U containing M mean vectors and
M diagonal covariances). The total number of data samples
is the sum of Iy, over m. With this total, the second term
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may be approximated as:
R = KMlogW, 3)

where W = Z'A,{:l I'm. As has been previously noted, the
third term on the right-hand side of (1) is fixed at a constant
value, C, for all possible models.

Finally, using (2) and (3), the description length {(U) for
model U is calculated as follows:

M
w =~y %r,..(K + K log(2n) + log [Sm)
m=1

+KMlogW +C. 4)

2.4 State splitting using the MDL criterion

In order to get an optimal model, it is needed to calcu-
late description lengths for all possible models, which would
involve prohibitively high computational costs. Instead, an
algorithm that obtains only a suboptimal solution is used.

Let us first assume that node S of model U splits into two
nodes Sgy and Syn,in response to question g. Let A(q) be the
difference between the description lengths after the splitting
and before it (i.e., {(U’) — I(U)): Then this An(g) will be
given by the following equation:

Afq) = I(U') - (V)

1
= §(qu log | gy | +1gn log | Tgn |
—I'log | 3 |)+ KlogW. (5)

where I,y is the state occupancy count for node Sy and
Tyn is that for node Sgn. In state splitting, the question ¢’
which would minimize Ao(g’) when used to split root node
So is first determined. If Ao(g’) > 0, then no splitting is con-
ducted. If Ag(q') < 0, then node So is split into two nodes,
Sqry and Sy, and the same procedure is repeated for each
of these two nodes. This node splitting is carried out until
there remain no nodes to be split and is conducted for the
root nodes of all the phonetic decision trees in all the HMMs.

Most ML approach apply a threshold value to the total
occupancy count and/or to the log-likelihood increase. How-
ever, the optimization of these parameters requires a series
of recognition experiments which are computationally expen-
sive and require additional data. The MDL approach needs
no external control parameters; the term K log W in (5) cor-
responds to the threshold for likelihood increase, and this
term is estimated automatically on the basis of the training
data. Additionally, the threshold term K log W is specified
for each phone in the MDL approach, while the threshold
for likelihood increase is shared among all the phones. This
indicates that the MDL approach is more robust against the
data imbalance among phones than the ML approach.

2.5 Discussion

A number of problems remain to be solved, however. First,
the degree to which the assumptions implicit in the proposed
method affect its performance with regard to the control of
model size has to be determined. A second problem is that

the set of models provided beforehand may not include the
most optimal model (“true model”) for the given data. A
third problem is that, since it is assumed that the amount of
data is sufficiently large in the MDL criterion, it may not ap-
ply to the case where the amount of data available is small.
These latter two problems are of course true not only for the
proposed method but also for other model selection strategies
using the MDL criterion, and further theoretical research ad-
dressing these problems is needed. A fourth problem is that
the minimization of the description length does not neces-
sarily minimize recognition error. It should be noted that
conventional ML approaches encounter the same problem.

Two other widely known information criteria used for con-
trolling model size are the Bayesian information criterion
(BIC) [12] and the Akaike information criterion (AIC)[1].
The formula for the BIC is

Ki
P70 (xM) = ~log Pyo (M) + S log V. ©

Comparing this criterion with the MDL criterion (Eq.1), one
can easily see that the first and the second terms are iden-
tical and that the only difference is that the MDL criterion
has a third term. Since throughout this thesis the third term
is assumed to be constant, the BIC gives exactly the same
results as the MDL criterion here. After the result of our re-
search was first published [15], the approach using the BIC to
control the model size in speech recognition was extensively
studied. It has been successfully applied to speaker cluster-
ing [3], Gaussian mixture modeling [4], modeling of mixture
of Gaussian pdf for HMM [5], and segmentation of speech
data[19]. Since the BIC gives exactly the same results as
the MDL criterion does, the results of these studies strongly
support the effectiveness of our approach. They also proved
that our approach can be applied to many other data insuf-
ficiency problems in speech recognition.

In the AIC, the second term in (1) is replaced by K; and
there is no third term:

119 (xN) = ~ log Py ") + K. (7)

Practically speaking, it is well known that in many appli-
cations the results given by the AIC differ little from those
given by the MDL criterion. The MDL criterion and the AIC
are therefore not compared here. In theory the difference be-
tween the MDL criterion and the AIC is still controversial
but it is not discussed here because it is not an important
issue here. One typical claim supporting the MDL crite-
rion is that the AIC tends to overestimate the number of
parameters needed [13]; while the AIC is likely to select the
correct model when the complexity of the true model grows
with sample size, such a case is unlikely to happen in actual
applications.
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Figure 3 Recognition performance of maximum a posterior:
(MAP) adaptation, maximum likelihood linear regres-
sion (MLLR), and maximum likelihood estimation
(ML).

3. Structural MAP Approach to Speaker
Adaptation

3.1 Motivation

Mazimum a posteriori (MAP) estimation has been suc-
cessfully applied to speaker adaptation [7]. The MAP esti-
mate of the parameter vector is defined as the mode of the
posterior pdf given the adaptation data. It is well known,
since MAP estimates are asymptotically equivalent to ML es-
timates, that the resulting recognition performance is similar
to that of speaker-dependent (SD) HMMs when the amount
of data becomes large. In these conventional MAP estima-
tion methods, HMM parameters of different speech units are
often assumed to be independent. Therefore, each model
can be adapted only if the corresponding speech unit has
been observed in the current set of adaptation data. The
improvement is consequently rather small when the amount
of adaptation data is extremely limited.

Another category of adaptation techniques, which do
not use the MAP framework, are often referred to as
transformation-based approaches, such as mazimum likeli-
hood linear regression (MLLR) [10]. This family of techniques
limits the number of free parameters by tying the HMM pa-
rameters or by applying some constraints on the parame-
ters in order to improve recognition accuracies with a small
amount of data. When the amount of adaptation data ex-
ceeds a certain value, however, the recognition accuracy often
becomes inferior to that obtained with ML estimation of the
model parameters. This is because a model with a small
number of free parameters could not fully utilize the poten-
tial information embedded in the large amount of data. In
Figure 3, the difference between the recognition performance
of MAP and that of MLLR is shown.

Combinations of MAP and transformation-based ap-
proaches have also been studied intensively. Notable ex-
amples were in combining MLLR and MAP [6]. The short-
coming of these combined methods is again the use of fixed

structures, i.e. fixed ways of parameter tying, in the acous-
tic space. Therefore they have only been shown useful with
adaptation data sizes within a narrow range. To alleviate
this problem, a tree structure has been used in adjusting the
number of layers in a tree and the degree of parameter tying
according to the amount of available data (e.g., [14]).

Structural mazimum a posteriori adaptation(SMAP)
method takes advantage of both the nice asymptotic prop-
erty of MAP estimation for large size adaptation and the
flexible parameter tying strategy in a tree for small sam-
ple adaptation, and achieves the two desired objectives men-
tioned earlier. In this method, it is assumed that the prior
knowledge in a tree node can be used to construct prior den-
sity needed for MAP estimation of all the parameters in the
successive child nodes.

3.2 Tree structure

In SMAP, a tree structure is adopted as the structure to
aid MAP estimation, because it offers a natural evolution of
prior knowledge embedded in the parent-child relationship
between nodes at different tree layers.

Given the set of all the mixture Gaussian componer{ts
in the set of HMMs, it is needed to first define a distance
measure, d(m,n), between Gaussian components, gm(-) and
gn(+), in order to build a tree. Here the distance is defined
as the sum of the Kullback-Leibler divergence from gm(-) to
gn(-) and that from gn(-) to gm(:).
ance matrices are assumed, the distance d(m,n) is evaluated

When diagonal covari-

as follows:
d(m,n) = / gm(z)log g’"(( )) dz + / gn() log g"((;”))dz,
Z[Um(t) o t)+2 Ef)n(l) pm(8))
L CECETE

where pm(i) is the i-th element of the mean vector .,
and o2,(3) is the i-th diagonal element of the covariance
matrix X,,. Next, at each node k in a tree structure,
the collection of Gaussian components belonging to node k,
{g(X) = N(X[u®,20) :m =1,...,

mated by a single Gaussian pdf, where M} is the number of

M.}, is approxi-

Gaussian components at node k. This pdf is called a node
pdf. When it is assumed that the number of data samples
from each mixture components are equal, the parameters for
the node pdf are calculated as follows:

M; M
W) = 5 L BERO) = 5 SO, O
okl) = 31 ZE((z‘“(z) — m(©))°)

Z o (@) + Z HR2() - Mipk () |, (10)

m=1
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Figure 4 SMAP adaptation for Gaussian pdfs in COHMMs. For
simplicity, the case when the dimension is one (scalar)
is shown.

where x¥) is a data vector from Gaussian pdf g,(,'f).

Then, the k-means clustering algorithm is used to con-
struct a tree structure for the mixture components in G.

Finally, we have available a tree structure like the one
shown in Figure 4, where K is the total number of layers
or the depth of the tree. Each node in the K-th layer (leaf
node) corresponds to one Gaussian mixture component in
the set of CDHMMs. The root node (the first layer) corre-
sponds the whole set G of the mixture components in the
HMMs. Each intermediate node corresponds to a subset of
G, and each of its subordinate leaf nodes corresponds to an
element of a subset.

3.3 SMAP adaptation using hierarchical priors

At each node in the tree, a pdf, which is shared among
the mixture components in the corresponding subset of G, is
assigned. The ML estimates of the pdf parameters for each
node in the tree are calculated using the adaptation data.
From now on, the focus is on estimation of the parameter
set, Om = (K, Bm), for a particular m-th mixture compo-
nent in G. The procedure described below is general and
can be used to estimate the parameter sets of all the other
mixture components in CDHMMs.

Let the node sequence from the root to the leaf correspond-
ing to the m-th mixture component be {Ny,..., Ni,..., Nk},
where N, is the root node and N is the leaf node directly at-
tached to mixture component m. We denote A\x = (Vi, ¥k)
as the mean vector and the variance of the Gaussian pdf for
node Nk.

Here, the pdf for node Nk, which has the parameter set,
Ak, is assumed to have a hyperparameter, 5\,,_1, directly ex-
tended from its immediate parent node, Nx—1. Then, the
MAP estimates, (vk, ¥x) = (P, Wi), are calculated as fol-
lows: fork=1,...,K,

_ DkDk + Tilr

e P a1

Y1 + MW + ,—:“f&(ﬂk — Dko1) Pk — Dk-1)T

(éx — D) + TI'c ’
(12)

b, =

where 7, and ¥, are ML estimates for node k, I'x is the
occupancy count for node k, and 7 and £ are control param-
eters. The mean Dk and the variance W for the leaf node
Nk are obtained by applying Eqs. (11) and (12) successively
from the root node to the leaf node.

Equation (11) can be rewritten for the leaf node as follows:

K
Uk = Z‘wkﬂk, (13)

k=1

where the weighting factor wy is
K
Iy Ti

= e . 14
e Fk+TkiE1Pi+Ti (14)

The mean vector estimated using the SMAP method can be
considered as a weighted sum of the ML estimates at the
different layers of the tree. Two important characteristics of
the weight, wg, are highlighted in the following:

(1) The weight wx at node Ni becomes larger as the
amount of data at that node, Ik, becomes larger.

(2) The weight wi at node Ni decreases as k becomes
smaller.
When the
amount of data is small, the ML-estimated parameters in

These properties are desirable for adaptation.

the upper layers, which represent global transformation, are
And when the
amount of data is large, the parameters in the lower layers,

mainly responsible for the resulting pdf.

which represent localized transformation, predominate.

3.4 Discussion

This SMAP approach is quite general in its framework and
can be easily applied to other adaptation methods. For ex-
ample, SMAPLR, in which SMAP is applied to maximum a
posteriori linear regression (MAPLR), was recently proposed
and proved to be significantly better than MAPLR when the
amount of adaptation data is extremely small [18].

The SMAP method described here uses a tree structure
in the model parameter space. While many kinds of tree
structures can be used for SMAP estimation, it is impor-
tant to choose one which represents the similarity of the nor-
malized pdfs of the mixture components well. Good results
were obtained when the Kullback-Leibler divergence between
mixture components was used as a measure of similarity in
constructing the tree structure, but many other similarity
measures can be used. Other structures reflecting the rela-
tionship between acoustic model parameters are also worth
investigating.

4. Future Research

We have explained two approaches for robust acoustic
modeling in the previous two sections. While they were ap-
plied to HMMs, it is clear that these approaches are easily



applicable to most statistical models for speech signal.

One of the most promising models may be Dynamic
Bayesian Networks (DBNs) (e.g. [2]). It can be regarded as
an extension of HMMs and can deal with much more vari-
ations in speech. Examples of those variations are asyn-
chronous input of more than one features and long-term
dependencies among features in different time. These are
thought to be very important to represent the inner struc-
ture of speech.

While there is a large possibility that this extension leads
to better understanding of the nature of speech and hence
more robust speech recognition, the parameter space in
which we have to search the structure is much larger and
hence much more computational resources are needed. In
addition, as the model size increase and accordingly the num-
ber of parameters increases, the data insufficiency problem
becomes more serious. It is clear that the data insufficiency
problem addressed in this paper becomes more serious.

Since the amount of data is limited and often changed, it
is important to have a framework which is robust against the
change is the amount of data; we have to provide a method
that autonomously control model complexity according to
the amount of data. While, in this paper, we used MDL
criterion, there are other methods that can be used for this
purpose. One of the promising method is is Variational Bayes
(VB) method [20]. By using the VB method, we can easily
introduce related knowledge in the form of prior distribution.

We would like to refer to two other issues which seems to
be important to tackle the problem. While in our adaptation
method we use Kullback-Leibler Divergence for the distance
measure between Gaussian distributions, the distance mea-
sures between more complicated probabilistic distributions
such as mixture of Gaussians or HMMs should be explored.
While the most useful measure in such situations is multi
dimensional scaling, its solution is only locally optimal.

The other important issue is “divide and conquer” ap-
proach [8]. At present, only MFCCs and their dynamic fea-
tures are used for speech features, but they may be not good
enough to represent all the information needed to represent
the inner structure of speech. Multi-stream features of dif-
ferent resolutions in time scale seems to be promising.
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