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Abstract

At many levels our models continue to model speech as a surface phenomenon. Typically, hidden Markov model

Acoustic modeling in speech recognition uses very little knowledge of the speech production process.

(HMM) parameters operate primarily in the acoustic space or in a linear transformation thereof; state-to-state evo-
lution is modeled only crudely, with no explicit relationship between states, such as would be afforded by the use of
phonetic features commonly used by linguists to describe speech phenomena, or by the continuity and smoothness
of the production parameters governing speech. This article attempts to provide an overview of proposals by several
researchers for improving acoustic modeling in these regards. Such topics as the controversial Motor Theory of
Speech Perception, work by Hogden explicitly using a continuity constraint in a pseudo-articulatory domain, the

Kalman filter based Hidden Dynamic Model, and work by many groups showing the benefits of using articulatory

teatures instead of phones as the underlying units of speech, will be covered.

Key words

1. Introduction

The dominant approach to acoustic modeling in the speech
recognition community continues to be the “beads on a
string” view of phonetics. The speech signal is essentially
modeled as a concatenation of phones. The fact that, due to
co-articulation, the acoustic realization of phones is context-
dependent is accounted for by the use of triphone or higher-
order context models. Since the set of possible contexts is
difficult to estimate robustly, statistical clustering techniques
must be used. It can be surmised that this approach is not
optimal, and perhaps effective only for relatively constrained
tyvpes of speech situations. Variations in speech production,
resulting for example from changes in speaking rate, are
currently modeled only by (1) absorption of this variation
into the acoustic model parameters. resulting in models with
overly broad variances, (2) the creation of situation-specific
models. leading again to the problem of robust estimation,
or (3) explicit modeling of phonetic re-organization, which is
somewhat limited by the coarseness of the phone unit. These

speech recognition, speech production. articulatory modeling, linear dynamical systems

limitations can all be viewed as the result of the “beads on
a string” approach. Incorporating better models of speech
production into ASR may be able to alleviate these prob-
lems[1] and as a result significantly improve recognition of
spontaneous speech. robustness to noise and the construction
of multi-lingual acoustic models.

2. The structure of speech

Speech as articulatory gestures

Many speech recognition engineers would profit from the
study of fundamental texts in acoustic and articulatory pho-
netics [2] [3] [4]. An influential, if controversial, perspective
on speech organization is that developed at Haskins Lab-
oratories in the 1980s[5]. A central tenet of this perspec-
tive is that speech percepts fundamentally correspond to the
articulatory gestures that gave rise to the acoustic signal.
Gestures typically involve several articulators working to-
gether in (loose) synchrony: their description is thus multi-
dimensional and time-varying. similar to that of a musical
score. An example of such a gesture. defined in terms of the
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Browman and Goldstein features [6], is shown in Figure 1.

The power of the gestural approach is that it provides a
natural account of variation in spontaneous or casual speech.
Instead of using complex phonological rewrite rules to ac-
count for phenomena such as lenition, reduction and inser-
tion, simple and predictable changes in the temporal rela-
tions between different vocal tract variables can account for
the same phenomena [6]. A vivid example of the representa-
tional power of the gestural approach is provided by (7] for
the utterances /banana/, /bandana/, /badnana/ and /bad-
data/. The differences between these utterances all come
down to differences in the timing of velar movement.

3. The Motor Theory

The mechanism by which listeners analyze the acoustic
speech signal into articulatory gestures has been the sub-
ject of great conjecture and controversy. The Motor Theory
of speech perception [8] holds that during speech perception
listeners access the parts of their brains involved in speech
production.

fMRI-observed neural activity during speech per-

ception

The “strong” version of this theory holds that speech is al-
ways perceived using production-related neural mechanisms.
Though few still ascribe to this belief, weaker versions of
the theory are still influential. It is interesting to note that
recent work using fMRI to measure brain activity during
speech perception has found evidence that production cen-
ters are in fact activated during perception. This happens
especially during difficult perceptual tasks, such as percep-
tion in noise, or second language perception, but also during
normal perception as well [9] 10] [11].

4. Feature detection; integration with ex-
isting HMM /hybrid architectures

A number of studies exist in which articulatory (or more
generally, phonetic) features are individually estimated, typ-
ically with an Artificial Neural Network (ANN), and then
used to either replace or augment acoustic observations in
an existing HMM system.

4.1 Multi-stream architecture

Metze and Waibel describe a multi-stream architecture
in which a standard CD-HMM system is supplemented
with feature-detecting Gaussian mixture models (GMMs)
[12]. Each of the additional GMMs is a one-layer decision
tree representing either the presence or absence of a particu-
lar feature. These are trained independently of one another.
Several methods were considered for selecting which feature
GMMs to combine with the baseline system. such as the
selection of feature GMMs according to their feature classi-
fication rate, or successively considering overall performance
resulting from the addition of each new feature. The best

of the methods improved the baseline performance of 13.4%
to 11.6% WER on a read Broadcast News task, and also
vielded a clear benefit on ESST (Verbmobil) data. It is in-
teresting to note that the features they use come directly
from the phonetic decision trees already used by the (stan-
dard) context-dependent models of the baseline system.

4.2 Using estimated features to augment the

acoustic feature vector

King and Taylor [13][14] describe an approach in which
phonetic features are first estimated from the acoustics us-
ing an ANN. The output of the ANN is then used to form a
feature vector. that is then passed to a conventional HMM.
This study considered both a binary, “distinctive” feature
set [15] and the multi-valued feature set used in [16] (similar,
it appears, to the Browman and Goldstein features [6]). It
was found that replacing the MFCC feature vector with a
feature vector based on automatically determined phonetic
features yielded nearly identical performance to the original
MFCC-based system on the TIMIT task.

Eide [17] describes the use of GMMs to model distinctive
features, followed by the use of a mutual information crite-
rion to select the features to use in augmenting the acoustic
feature vector.

Kirchhoff [18] [19] [20] describes a similar use of multi-
valued feature estimation and integration, but in addition
considers both additive and multiplicative feature integra-
tion. This work also considers the use of two distinct acoustic
representations, PLP/RASTA as well as modulation spec-
trogram. Acoustic-only, articulatory-feature only, and com-
bined acoustic/articulatory models were evaluated on the
OGI Numbers and Verbmobil task, showing significant bene-
fits to acoustic/articulatory combination. Furthermore. ben-
efits of articulatory representations were found in noisy and
reverberant environments.

In earlier work [16], Kirchhoff considered a syllable-based
parallel feature decoding architecture that used dynamic pro-
gramming based on string edit distance to find optimal syn-
chronization of multi-featured syllable templates to ANN-
detected features. This approach specifically accounts for
the well-known phenomenon of partially de-synchronized ar-
ticulator movement.

Recently, Webster described a different use of ANN-based
feature detector with syllable templates, evaluated on the
TIMIT task [21].

5. Articulatory configurations as HMM
states

5.1 Li Deng and colleagues

An early and well-known approach to introducing artic-
ulatory knowledge into HMM systems is that of Deng et
al. [22] [23] [24]. In this approach, multi-valued features simi-
lar to the Browman and Goldstein features are used to spec-
ify different lexical entries in terms of state networks rep-
resenting different possible feature trajectories. Each HMM
state represents a different articulatory feature configuration.
The approach is to take the canonical feature representations
for each phoneme in a lexical entry, but to then model possi-
ble variations in the feature transitions, such as anticipatory
or inertial feature spreading. This is a knowledge-oriented
way of designing context-dependent states, that explicitly
allows for de-synchronization of feature movements, within
bounds. A danger with the approach is that the state net-
works risk becoming very large if too much leeway is allowed
for feature de-synchronization. For more recent work with
this approach, see [25].

5.2 Related work

A similar approach was investigated by Richardson et al.
[26]. Static constraints on allowable articulatory configu-
rations, and dynamic constraints imposing continuity and
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limiting maximum articulator velocity, were used to reduce
the size of the state network significantly. The approach was
shown to provide benefits when tested on noisy speech, and.
in combination with a standard HMM, when tested on clean
speech as well. Good results were obtained on the large vo-
cabulary isolated word PHONEBOOK task.

6. Between feature bundles and feature
detectors: Factorial HMMs

Representing different feature configurations with HMM
states is clearly not a parsimonious representation of the
data. Extracting individual features from the data indepen-
dently offers a much more compact representation, but raises
questions about feature combination. One approach that at-
tempts to find a happy medium is that of Factorial HMMs,
also referred to as “loosely coupled HMMSs” [27] [28]. Thisis a
way of representing different streams while modeling varying
degrees of coupling between the streams. The architecture
is well-suited to the multi-band approach to acoustic model-
ing, as well as to articulatory-based modeling. However, to
our knowledge, no studies have reported the use of factorial
HMMSs with explicitly production-oriented representations —
with the exception of work in audio-visual speech recogni-
tion [29] [30]. (Visual observations, for example of lip mo-
tion, correspond to direct observation of speech production
parameters).

7. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) [31] are a new ap-
proach for statistical modeling that has been applied to
speech recognition [32] [33]. Compared to standard HMMs,
DBNs may offer a substantially better platform to model
production-related effects in speech. In particular, rather
than combining hand-coded rules and probabilistic inference
- a description that seems to apply to the studies reviewed
here using articulatory features in various schemes - DBNs
allow a more natural integration of production knowledge
with statistical pattern recognition [33]. In principle, depen-
dencies on speaker type and speaking rate, for instance, or on
higher-level prosodic structure [34], can be represented more
easily than in standard HMMs.

A number of studies have specifically examined the incor-
poration of articulatory knowledge into DBN structures; in
particular, see work by Markov et al. [35] [36], and Livescu et
al. [37] [38] [39].

8. Dynamical systems

Several studies have made use of the classic Linear Dy-
namical System / Kalman filter paradigm:

x¢ = Ax¢-1 + by
Y. Cx: + d, (1)

where x; is the state of the system at time ¢, y, is the obser-
vation at time ¢, 4 and C are matrices, and b; and d; are
(typically Gaussian) noise. This type of dynamical system
is often referred to as a continuous state HMM. In a well-
known study. Digalakis et al. proposed the use of a linear
dynamical system for speech recognition, and obtained good
phoneme classification rates on the TIMIT task [40].

A natural interpretation of this model in the context
of speech modeling is that x; represents an articulatory
or pseudo-articulatory state vector, and y, represents the
acoustic consequence of that state. Such a model of speech
production was investigated in Honda's 1977 doctoral the-
sis[41). The use of linear equations to describe both state
evolution and mapping from state to observation may be
questioned in the case of speech, but linear models can still

afford insight [42], and non-linear extensions of the paradigm
abound.

8.1 Co-articulation modeling with targets

The use of a spatial target in the articulatory domain to ac-
count for co-articulation has attracted many researchers. On
this view, co-articulation is the natural result of smooth mo-
tion from target to target. In the field of speech production,
many ideas have been proposed to achieve this[43]. The tar-
gets may be attractors [44], via points [45], spatio-temporal
regions [46], or abstract goals which may be defined in artic-
ulatory, acoustic, or oro-sensory terms [47].

Bakis proposed the use of targets in a continuous state
HMM to model co-articulation for speech recognition [48].
More recently, Richards and Bridle proposed the well-
known Hidden Dynamic Model (HDM)[49]. - In this ap-
proach, low-dimensional phoneme-dependent target vectors
are smoothed to yield trajectories in the hidden dynamic
space, namely, the state evolution part of Equ. (1). The
mapping from hidden state to acoustics is performed with
an ANN. The entire architecture is optimized jointly; the
phoneme-dependent targets are learned as well. Prelimi-
nary evaluation results on Switchboard using the N-best re-
scoring approach were reported in[50]. An efficient search
algorithm for a related approach was investigated in [51].

In most HDM studies, the hidden state space is taken
to correspond to formant tracks / vocal tract resonances
(VTRs) [52] [53]. Gao et al.[54] proposed to initialize the
HDM target vectors using articulatory features derived from
phonetic knowledge. They describe use of the same model
for both recognition and synthesis.

For an earlier approach to a production-oriented dynami-
cal system, also using ANNs to map from pseudo-articulator
positions to acoustics, see work by Blackburn [55] [56].

8.2 Switching State-Space Models

The HDM (again, using target vectors corresponding to
vocal tract resonances) has been extended to use the re-
cently proposed Switching State-space Model [57] [58]. This
enables the carrying over of the posterior distribution of the
state vector across segment boundaries - potentially a crucial
issue in modeling co-articulation with linear dynamical sys-
tems. Other recent work using switching state-space models
for speech recognition includes [59], [60], and [61).

8.3 Use of articulatory data

A number of studies have investigated the use of actual
articulatory data, measured for example using Electromag-
netic Articulograph (EMA) sensors, to supplement acous-
tic observations in novel model structures. In particular,
King and Wrench [62] describe the use of a linear dynamical
system to model various combinations of articulatory data,
ANN-estimated articulatory data, acoustic data, and hidden
variables in the two layers of the linear dynamical system
in Equ. (1). This study also considered different types of
parameter tying in Equ. (1). A natural approach might be
to tie C across all phone/syllable models, but keep A model-
dependent, thereby distinguishing models by their state evo-
lution, yet using a common mapping from state to obser-
vations; however, this did not yield the best result. Good
syllable classification results were obtained for some of the
combinations examined on a small speaker-dependent task.
Further work along this direction was reported in [63], which
discussed the use of the linear dynamic model with a stack
decoder for recognition, and examined articulator criticality
in terms of estimated variance. This study used articulatory
and acoustic data from the MOCHA database [64]. Sun et
al. recently described the use of articulatory data in the con-
text of the Deng-style articulatory-feature based HMMs [65).
Also see work by Blackburn [66).
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9. Acoustic-to-articulatory inversion

9.1 Inversion in general

Estimating vocal tract shape and trajectory from acous-
tic data is one of the classic problems of speech science.
Some fundamental difficulties of the inversion problem are
discussed in [67]. For recent work using a detailed acoustic
and physiological model to estimate vocal tract shape trajec-
tories, see Dang [68], and for a discussion of issues in using
inversion for speech recognition, see Bailly [69].

9.2 MALCOM

The Maximum Likelihood Continuity Map (MALCOM) is
an original approach to exploiting speech production knowl-
edge for recognition purposes, proposed by Hogden [70]. This
is a method for acoustic-to-articulatory inversion that has
as its central assumption the fact that articulator trajec-
tories are band-limited. A cutoff frequency of 8-15 Hz is
frequently cited; such low-pass filtering is common in the
speech production research community [71]. Figure 2 illus-
trates the scenario. When considered only in acoustic terms,
speech utterances can follow highly jagged or discontinuous
paths in a high-dimensional acoustic space. However, viewed
in articulatory terms, the trajectories are smooth and low-
dimensional. Since the acoustic and articulatory spaces are
linked by the physics of speech production, this suggests that
in fact acoustic speech trajectories are constrained to lie on a
manifold determined by the smooth articulatory trajectories
and the articulatory-to-acoustic mapping. The idea in MAL-
COM is to incorporate the smoothness constraint explicitly
into a statistical model of speech.

MALCOM uses two layers of representation: an acous-
tic space, modeled using vector quantization (VQ), and a
(low-dimensional) pseudo-articulatory space, modeled with
Gaussian pdfs. There is a one-to-one link between VQ
codes in the acoustic space and Gaussian pdfs in the pseudo-
articulatory space. Incoming (acoustic) speech is VQ en-
coded; MALCOM then finds a smooth trajectory in the
pseudo-articulatory space that maximizes likelihood given
the VQ code sequence. This is done elegantly by represent-
ing pseudo-articulator motion in the frequency domain. The
training phase (in which Gaussian pdfs are estimated in the
pseudo-articulatory space) incorporates the smoothness con-
straint as well.

The recovered pseudo-articulatory positions were com-
pared against real articulatory data — while allowing for an
estimate of the rotation, scaling and translation of pseudo-
articulatory positions — and good correlation was found. In
particular, significantly better correlation was found when
using a low cutoff frequency (8-15 Hz) compared to when not
band-limiting pseudo-articulator motion [70]. (For a related
use of smoothness constraints in acoustic-to-articulatory in-
version, see(71]). MALCOM is an unsupervised method
that can be applied to acoustic-to-articulatory inversion, but
has been extended for recognition as well [72]. Recently the
mathematical aspects of this approach to general function
inversion have been investigated in greater depth [73].

10. HMDMs as production models

Finally, it should be remembered that the HMM, in its
conventional form, is itself a production model. With no
special measures, HMMs run in production mode yield no-
toriously poor, barely intelligible speech. However, in recent
years, the fact that state-of-the art HMM systems use dy-
namic acoustic features (e.g. delta and delta-delta MFCC
components) has been used to constrain the corresponding
synthesized output [74]. The resulting smooth trajectories
result in much better speech quality.

10.1 Speech-producing HMMs for speech recog-

nition

Minami et al. have proposed turning the Tokuda approach
around, back onto the recognition task [75]. The idea is to
use a standard HMM for a first recognition pass. The N-best
recognition candidates are then used in the Tokuda synthesis
method, i.e., using the delta and delta-delta components to
constrain the search for a likelihood-maximizing feature tra-
jectory. The resulting smooth trajectory (and corresponding
sequence of model variances) is then used to re-score each
recognition candidate. This approach applies the smoothness
constraint purely in the acoustic domain, but can be viewed
as a production-oriented recognition method. A modified
HMM learning method using this approach has also been
proposed [76].

10.2 Listening to our acoustic models

The same approach provides an interesting diagnostic for
speech recognition research. Since the same system can
be used to perform recognition and synthesis[77] (78], one
can now listen to the synthesized speech corresponding to a
recognition error. Doing so reveals that the Gaussian pdfs
used by incorrectly recognized phone sequences to model the
utterance can include sounds rather different from their in-
tended coverage. Such analysis by synthesis could be used
to identify acoustic modeling problems.

11. Conclusion

Incorporating knowledge about the speech production pro-
cess into speech recognition systems has attracted the inter-
est of many researchers. Of the approaches considered, the
ones that seem to have yielded the best results for practical
speech recognition appear to be those that do not require
a significant modification of existing HMM architectures. It
is interesting to note the parallel between the many studies
described using articulatory feature detection and the ap-
proach called for by C.-H. Lee [79]. Future work needs to ad-
dress the practical usability of the more drastic departures
from current modeling architectures. Furthermore, no one
(to my knowledge) has evaluated speaking-rate conditioning,
speaker adaptation, or conditioning on higher-level prosodic
structure (such as advocated by Ostendorf[34]), in terms of
production-oriented modeling. Finally, only a few studies to
date have examined discriminative training of production-
oriented models[80]. Such topics should provide rich areas
for future research.
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