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Abstract
This paper addresses the problem of segmenting audio data recorded with embedded

devices for the purpose of intelligent sensing in the context of multi-modal interactions.
We propose a real-time method for robust speech detection in natural, noisy environments.
It is based on a fusion of high order statistics of the LPC residual and autocorrelation,
and adopts an on-line version of Expectation Maximization algorithm for the classification.
Experimental evaluations show that the proposed method provides better detection per-
formance under different types of natural noises, working robustly against other voices in
the context of multi-speaker interactive situations. As the proposed method is based on
features which have a low computational cost, and has a small latency, it is suitable for
real-time tracking applications.
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1 Introduction

The problem of detecting voice in audio sources,
also called VAD (voice activity detection), is a clas-
sical problem in speech processing. It is a common
front-end in most tasks involving speech process-
ing. It is for example used as a front-end to auto-
matic speech recognition (see [1]); having a VAD
algorithm robust to noisy environments is crucial
for recognition performance [2]; it is also used in
speech coders, such as GSM 729. More recently,
VAD has been used as a feature for conversational
scene analysis [3] and multi-modal recognition of
group actions or meetings ([4], [5]).

The VAD algorithm presented here was devel-
oped for those multi-modal applications; we intend
to use it on wearable capture systems, which cap-
ture audio and video data to help the users with
contextual information (see [6] for a presentation
of the system). Segmenting audio for this pur-
pose is significantly different from traditional tasks
where VAD is studied. First, in the context of au-
dio coding or speech recognition, the assumption of
high proportion of speech can be made, and miss-
ing speech sections has a higher cost than detecting
non-speech as speech. In other words, for those ap-
plications, the VAD algorithm is usually pretty con-
servative when detecting voice; a low False Rejec-
tion Rate (FRR) is preferred to a low False Alarm
Rate (FAR). In our case, we are more interested by
having a precise idea about when does the speaker
takes its turn, while keeping a small FAR.

VAD in the context of noisy environments is
a difficult task: simple methods based on features
such as energy on zero-crossing rate fall short in
those conditions. The situations we are interested
in are very adverse conditions for VAD: enviromen-
tal noise changes in time, and the volume of the user
utterances is not fixed because users may change
the microphone position and direction. Moreover,
as those situations inherently involve several speak-
ers, the algorithm must be insensitive to other
speaker voices. Recently, some new techniques have
been developed for VAD in adverse environments,
based on supervised methods ( [7] and [8]) or unsu-
pervised ([9]), but they do not attempt to be robust
against background voices. The proposed approach
uses a feature based on high order statistics to be
robust against background voices of moderate lev-
els, enhanced by the use of autocorrelation, and
adopts an on-line version of EM algorithm to adapt
the voice decision step to environment and speaker
variations.

The overview of the proposed method is de-
picted in Figure 1, and the details are explained
in the rest of the paper as follows: section 2 briefly

Figure 1: Overview of the proposed method

describes the task and data used in our work; in
section 3, the new feature based on LPC residual
and autocorrelation is introduced, and in section 4,
the use of on-line EM algorithm for classification is
described; and results on a subset of an interaction
corpus are discussed in section 5.

2 Task and database

We are building an interaction corpus, which con-
sists of a large amount of data of human commu-
nications. The goal of this corpus is to support
the users using contextual, automatically extracted
information ([6]), gathered with wearable sets and
sensors in a smart room. VAD is one of the features
used to sense the interactions and control other de-
vices.

In this paper, we a use portion of this interactive
corpus to develop and test an effective VAD algo-
rithm. The data were recorded in the following con-
ditions: people were wearing the embedded device
equiped with a microphone in a room with other
people. They were visitors to the lab during an
openhouse. The data contain several kind of noises
(air conditioning, other people, cars running on the
street, etc.). The test database contains around
45 minutes of audio data, split into around 30 files
of the same length, each file containing different
speaker (thus different microphone position), dif-
ferent gender, different language (mainly Japanese,
but also English), different sparsity and different
SNR (between 10 dB and 25 dB).

3 Proposed feature

3.1 LPC residual and high order
statistics

To be robust against background voices, we cannot
directly use standard features related to pitch such

2

島貫
テキストボックス
－14－



0 0.005 0.01 0.015 0.02 0.025 0.03
−0.1

−0.05
0

0.05
0.1

0.15

A
m

pl
itu

de
near field voice glottal excitation

glottal excitation
standard deviation

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.01

−0.005
0

0.005
0.01

0.015

time (s)

A
m

pl
itu

de

far field voice glottal excitation

Figure 2: Glottal excitation signal for near-field
speech (top) and far-field speech (bottom).

as autocorrelation or zero-crossing. The most ob-
vious feature would be energy, since the energy of
recorded signal is directly dependent on the dis-
tance between the source of the sound and the
microphone. But then we have to cope with the
normalization problem for real-time applications
[2]. Another characteristic observed on distanced
speech is the loss of low frequency harmonics, and
thus far-field speech has less harmonics than near-
field speech. This loss of structure in the low
spectrum is caused by environmental noises which
”hide” the low frequency harmonics in the noise.
Also, because the microphone used for close talk-
ing usually have a cardioid-like directionality, they
are sensitive to the so called proximity effect, which
boost low frequencies for near-field sounds.

Instead of trying to capture directly the number
of harmonics in the spectrum, we use the cumu-
lants, also called high order statistics (HOS). Cu-
mulants of a random signal X are derived from the
logarithm of the moment generating function Φ(t)
of X. More exactly, the cumulant of order n is de-
fined as the nth coefficient of the Taylor expansion
series of the logarithm of Φ(t):

log Φ(t) = log E[etX ] (1)

=
∞∑

n=0

κn
tn

n!
(2)

The usual cumulant estimators are simply the
sample cumulant estimators, which can be com-
puted directly from the sample moment estimators.
We primarly considered normalized kurtosis (cumu-
lant of order 4 normalized by the squared variance)
and normalized skewness (cumulant of order 3 nor-
malized by the variance at power 1.5) of the LPC
residual: as proved in [10], both increase with re-
spect to the number of harmonics when the signal
can be well approximated by a sinusoidal model.
An intuitive explanation on the use of kurtosis can

be given as followed: in the traditional source-filter
model, the LPC residual should only contain the
glottal excitation. Taking into account the proxim-
ity effect we described before, the periodic aspect
of the glottal excitation is emphazised for near-field
voice, and much weaker in the far-field case (see
Figure 2). In both cases, the period can be seen,
but the pulses are much stronger in the signal for
the near-field case. If we consider the distribution
of the amplitude of the glottal signal, most samples
will be around 0, inside the range [−σ, σ], where σ
is the standard deviation; the samples related to
the glottal pulse will be far from one standard de-
viation, thus resulting in high values tails for the
distribution. Kurtosis is high for those kind of sig-
nals, with ’fat tailes’, ie several high values far out-
side from the range [−σ, σ]. As an example, for
the excitation shown on Figure 2, normalized kur-
tosis is approximatively 15.8 and 0.4 for the signals
depicted in the Figure 2. By removing a few sam-
ples corresponding to the pulses, kurtosis quickly
decreases towards 0.

Also, all cumulants of order stricly bigger than
2 are 0 for Gaussian distributed signals. This
property makes them robust against some kinds of
noises such as wideband noises. As there is an ex-
plicit relationship between the cumulant of order n
and the moments of order n and below, we can eas-
ily compute their values 1 . Both kurtosis (noted
k) and skewness (noted s) were considered, either
separately or together; the kurtosis was found to be
more effective than skewness for our use.

3.2 Enhancing cumulant estimators

Use of cumulants involves several problems for
VAD. Because of the weak convergence properties
of standard estimators for skewness and kurtosis,
the estimated values can be quite different from the
true value; they are also quite sensitive to outliers,
problem aggravated in the case of normalized es-
timators. This is a problem for certain kinds of
noise, such as transient noises (noises well located
in time). To enhance the behaviour of the estima-
tors, we have to incorporate another feature whose
behaviour does not change HOS distribution in the
case of speech, but is insensitive to transient noises.
In this study, we propose to combine HOS with nor-
malized autocorrelation.

Autocorrelation is a good cue to indicate pitch,
and is fairly robust to transient noises; for thoses
reasons, it has often been used for VAD (for exam-
ple in [7]). To improve robustness to energy varia-
tion of the signal, we use the normalized autocor-

1 more exactly their estimated value
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Figure 3: Audio example with spectrogram (top),
energy (2nd), main autocorelation peak amplitude
(3st), ”log kurtosis” (4th) and the proposed feature
(bottom). The black boxes are speech segments of
the main speaker, hand-labeled.

relation a[k] for a frame x[t], given by the following
formula:

a[k] =
∑N

n=k−1 x[n]x[n − k]
(∑N−1

n=0 x[n]2
) 1

2
(3)

For periodic signals of period T samples, the auto-
correlation will have maxima at multiple of T lags.
We detect a peak if its value is strictly bigger than
its nearest neighbors on both sides. Because of the
normalization process, though, peaks can appear
for low energy noise which have a sharp spectrum
(an example of such noise is motor noise); also,
it is near useless by itself to discriminate between
the main speaker’s speech and background voices.
However, in this study, the motive to use autocor-
relation is that its peaks have low amplitude for
transient noises, which are the most problematic
noises when using HOS.

We combine autocorrelation’s peak amplitude
m and kurtosis of the LPC residual k as follows:

f = m log (1 + k) (4)

The logarithm is used to compensate high val-
ues of kurtosis in the case of really strong voiced
frames; it also gives a more Gaussian-like behaviour
to the feature, which is important for our classifi-
cation method (see section 4). In the case of voice,
both kurtosis and autocorrelation peak should have

a high value; for distanced voice, the low kurto-
sis should compensate for the high autocorrelation
value, and for transient noises, near 0 autocorrela-
tion should compensate for the high kurtosis value.
Figure 3 shows the behaviour of this feature for a
small example. This extract contains mostly speech
in the second half, and transient noises can be
seen around 10 second. The enhancement of the
proposed feature on standard kurtosis is apparent.
Also, the relatively loud background speech noise
in the first seconds, which present high autocorre-
lation peaks, is effectively suppressed by the low
kurtosis values.

4 Tracking the feature on-line

4.1 On-line EM algorithm

To demonstrate the effectiveness of the proposed
feature in a straightforward manner, we adopt a
naive Bayes classifier: each class ci (main speaker’s
speech / other) is modeled as a Gaussian of mean
μi and variance σi, with a prior P (ci) = wi; this is a
simple binary Gaussian mixture model. The Gaus-
sian parameters were estimated by the Expectation
Maximization algorithm. The classification using
the standard EM algorithm run on the whole sig-
nal for each audio file gives satisfactory results, but
is obviously not suited for real-time applications.

This section presents a simple adaptation of the
batch EM algorithm for the on-line case. On-line
versions of the EM algorithms have been proposed
by several authors, for example [11]. The basic idea
is simple: instead of running on the whole feature
signal, the internal state of the EM algorithm (that
is, the parameters of the E step) is updated at each
frame, taking into account both the current feature
vector and past feature vectors. The learning rate
λ(n), where n is the frame index, influences the
convergence, and [12] gives the conditions on λ to
obtain convergence.

We have to use some values for the EM algo-
rithm’s initial state; using random data may lead
to problems such as one weight tending toward 0.
Two simple solutions were implemented: one is to
use some initial data (below one second of signal is
enough); the other is to use random data generated
from a Gaussian mixture model using prior param-
eters. Both methods gave similar results. Another
issue is how to handle the case where the condition
number of a covariance matrix approaches zero. In
the on-line case, we use a regularization scheme, as
presented in [11].
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Figure 4: Results of the proposed VAD algorithm in
function of the speech/non speech ratio, in compar-
ison with energy-based method. The dashed lines
show the standard deviation of each criterion, and
solid line the mean.

4.2 Tracking in correlogram

For computing the peaks of the autocorrelation for
our feature, we also track them in real-time. We im-
plement a tracking algorithm which simply builds
tracks of peak positions between the current and
the former frame; at frame t, for each peak candi-
date, we use the peak of frame t+1 which minimizes
the distance between frame t and frame t + 1. The
parameters are quite ’loose’, as the actual classifi-
cation will be done by the on-line EM anyway.

5 Experimental evaluation

5.1 Evaluation measure

We use the most traditional metric: frame-level
classification error, that is

• False Rejection Rate (FRR), defined as the
ratio between the number of missed speech
frames and the total number of speech frames

• False Alarm Rate (FAR), defined as the ratio
between the number of incorrectly detected
speech frames and the total number of non-
speech frames

• Global Error Rate (GER), defined as the
number of missed and incorrectly detected
speech frames divided by the total number
of frames
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Figure 5: Comparison between the proposed fea-
ture and kurtosis-only based feature

5.2 Results

We used the test data of 45 minutes split into 30
files, as described in section 2. The ratio of speech
frames ranges from 10 to 90 %, with 33 % on aver-
age. We compare the proposed method with three
other methods: replacing the enhanced kurtosis
with energy, using kurtosis only without enhance-
ment by autocorrelation, and using offline EM in-
stead of on-line EM.

The results are summarized in Table 1. With
the proposed method, FAR is kept quite low, which
is our main concern in the design of this algo-
rithm. To get a more precise idea of the behavior of
our implementation, we give in Figure 4 the frame
error rates with respect to the ratio (speech/non
speech) for each file from the test database, com-
pared against the implementation using energy in-
stead of enhanced kurtosis. The proposed feature
has half as much false alarms as energy, and even
though the FRR is a bit higher, it can be seen in
Figure 4 that the two methods are not significantly
different. On the contrary, it is observed that the
energy-based method has significant higher FAR
over the data of low speech ratio (below 20 %),
which severely degrades GER as well.

To see the effect of the enhancement on the cu-
mulant based feature, Figure 5 shows the frame
error rates for the proposed feature and the stan-
dard normalized kurtosis (we still converted to log-
arithm to get a Gaussian-like behavior, though).
Again, significant degradation due to enormous
false alarms is observed for data of low speech ra-
tio. Thus, without the autocorrelation enhance-
ment, using directly the kurtosis is not really effec-
tive.

It is also interesting to see how effective the on-
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FAR FRR GRR
Proposed algorithm 7.8 % 13.0 % 9.5 %

(kurtosis)
Using energy 15.8 % 10.6 % 13.3 %

Using kurtosis only 19.0 % 13.8 % 16.3 %
Offline EM 8.0 % 12.0 % 9.5 %

Proposed algorithm 8.2 % 14.6 % 10.6 %
(skewness)

Table 1: Frame error rates for the proposed al-
gorithm (top), using on-line EM on kurtosis only
(2nd), on-line EM on energy (3rd) and using offline
EM on the proposed feature (bottom)

line EM is; we compare our results with an offline
implementation of EM (i.e. the standard version
of EM). The results are at the last row of Table 1.
Within our experiment, the on-line EM is almost
as effective as the traditional batch version; both
results are nearly identical on every test sample,
and we lose almost nothing by having a real-time
version of the algorithm. The proposed method was
also tested by replacing kurtosis by skewness: the
results are pretty simlar, but a bit worse on each
error rate.

6 Conclusions

We have presented a new real-time algorithm for
voice activity detection in natural environments. It
works effectively to detect speech, while being ro-
bust against various kinds of noises, including other
speakers’ voices. On-line EM algorithm was also
succesfully imlemented as an on-line adapting al-
gorithm. As the proposed method is based on fea-
tures which have a low computational cost, and has
a small latency, it is suitable for real-time tracking
applications.
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