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Abstract This paper presents a phonetic based approach for speaker identification performed in text-independent 

mode. The aim of this work is to improve identification performance by using information about the phonetic 

content of the speech. The identification systems is based on the technique of anchor models. In this system, the 

location of each speaker is represented by the speaker vector which consists of the set of the likelihood between a 

target utterance and the anchor models. In order to improve the identification performance, phonetic modeling is 

used instead of Gaussian Mixture Model (GMM) scheme as anchor models. This approach utilizes a phonetic speech 

recognizer to calculate the log-likelihood with phonetic HMMs. We also investigate the number of parameters of 

anchor models. The proposed method was evaluated on Japanese speaker identification task with 30 speakers. It 

showed that the proposed method achieved 72.1% relative improvement over the GMM-based system. 

Key words Speaker recognition, speaker identification, hidden Markov model(HMM), Gaussian mixture 

model(GMM), phonetic class 
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Fig. 1 A conception diagram of vector space 
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Values of speaker vector for utterance number 26 

Fig. 2 Example of values of speaker vector 
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Fig. 3 A conception diagram of phonetically structured GMM 
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