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Abstract A problem with concatenative text-to-speech synthesis is that it sometimes fails to preserve the ap-
propriate consistency in the FO contours at the concatenation points of the speech segments. Since Japanese is a
pitch accent language, listeners perceive inconsistency in FO contours as strange accents or wrong accent nuclei.
Such problems occur more frequently when the database size is limited or when synthesizing voices for texts in new
application domains. In this paper, we propose an FO gradient model and FO adjustment to select consistent speech
segments and to restore the consistency by adjusting the F0 values only where necessary. This makes it possible to
generate synthetic voices with correct pitch accents while taking advantages of the acoustic quality of the recorded
speech segments even in new application domains.
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with prosody models. Since the selected segments are a com-
promise for multiple factors such as F0, duration, and energy,
the concatenation of the selected segments sometimes lacks

1. Introduction

Concatenative text-to-speech (CTTS), also called unit se-

lection, is one of the major approaches for TTS. When a
system of this kind successfully finds a proper sequence of
speech segments in its segment database (DB), it produces
a synthetic voice with an acoustic quality that is almost as
natural and lively as a human voice. One problem with the
approach is that it requires a large DB. To tackle this prob-
lem, the number of candidate segments is often reduced by
using criteria to preselect certain segments before the seg-
ment search. However, such preselection tends to cause in-
consistency in the fundamental frequency {F0) contours of
the selected speech segments. The concatenative approach
selects speech segments whose prosodic parameter values are
close to the target prosodic parameter values as estimated

the necessary consistency in the resulting FO contour. For
example, for Japanese, a small FO gap created by FO errors
may be perceived as an incorrect accent nucleus by listeners,
or a necessary accent nucleus may be lost because of the F0
errors. Such problems occur more frequently when synthe-
sizing voices for out-of-domain texts, because more frequent
concatenation is required compared to in-domain texts. An
in-domain text is a text in a domain for which a considerable
number of recorded human voices are in the DB. An out-of-
domain text is a text in other domains. A naive method
to deal with this problem is to force the synthetic voices to
have the target F0 values by modifying the waveforms of the
selected speech segments using pitch-synchronous overlap-
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Figure 1 FO handling of the conventional method.

and-add (PSOLA). However, this interferes with the merits
of the approach, by reducing the liveliness and the acoustic
quality of the synthetic voices.

How can we achieve a good balance between the acoustic
quality and the prosodic consistency of synthetic voices with
a concatenative method? In this paper, we propose a method
to do this. The two main ideas of the proposed method are
an FO gradient model and FO adjustment. The FO gradient
model is a stochastic model for modeling the consistency of
the FO contours using their gradients, and the model is used
both in the segment search and the FO adjustment. The FO
adjustment is an additional search process to search for a
sequence of proper amounts of FO modification that restore
consistency in the final FO contour. The effectiveness of the
proposed method for the acoustic quality and Japanese pitch
accents is shown by experimental results with subjective lis-
tening tests.

2. Conventional Concatenative Method

In this section, we describe a conventional method [1] from
which we develop the proposed method. Due to limitations
of space, we focus on how the method handles FO and on the
problems related to FO treatments. Since other concatena-
tive methods have some common features with this method,
we consider the problems are also more or less similar for
other concatenative methods.

2.1 FO Handling

The minimum unit of concatenation is a sub-phoneme.
The segment search searches for the sub-phoneme sequence
with the minimum cost. The cost consists roughly of a tar-
get cost and a concatenation cost. The target cost is the
weighted summation of an FO cost, a duration cost, and an
energy cost. These costs are penalties for the errors in the
prosodic parameter values of the segments compared to the
target prosodic parameter values. For example, the F0 cost
for a speech segment is a penalty for the difference between
the target FO value and the segment F0 value (the FO value
the speech segment originally has). The concatenation cost
is the weighted summation of a spectral continuity cost and
an FO transition cost. These costs are penalties for the gaps
between each consecutive pair of the segments.

The target FO values are predicted by using a decision tree.
The set of F0-prediction features includes text-based infor-
mation such as the pitch accent of the current syllable and
the part-of-speech of the current word. A set of 14 features
per syllable is extracted over a context window of five sylla-

bles consisting of the current syllable plus the two preceding
and two following syllables. For each node of the tree, the
average of the FO distribution of the training data is used as
the target FO value for the node at run-time.

There are two basic options for handling the FO values of
the output speech. The first option (Target) is to use the
smoothed target FO values ignoring the segment F0 values
(Fig. 1a). The other option {Copy) is to use the FO val-
ues of the selected segments after removing the warbling by
smoothing the FO values (Fig. 1b). Though the speech sig-
nal is processed to match the resulting FO contour in either
case, Copy produces synthetic voices with a better acoustic
quality because of the smaller amount of signal processing.

Smoothing sometimes damages the acoustic quality and
the liveliness of the original voice. To preserve the origi-
nal quality whenever possible, the method bypasses signal
processing completely for sufficiently long sequences of seg-
ments which were contiguous in the original corpus. This
mechanism ( Contiguous Bypassing) is usually used in a com-
bination with Copy (Fig. 1b%).

The DB size can be reduced by eliminating the segments
least likely to be used. This procedure ( Preselection) is per-
formed by collecting usage statistics of the segments [2]. The
method synthesizes a large number of sentences, counts the
number of times each speech segment is used, and then re-
moves the segments with small counts. A DB reduction tech-
nique based on usage statistics has also been proposed by [3].

2.2  Problems

There are various causes of FO contour inconsistency: (1)
the FO model may predict improper FO values, {2) there may
be no speech segments having F0 values close to the target FO
values, or (3) the varying FO errors before and after concate-
nation points may produce unintended effects on the full FO
contour. The concatenation points have the highest prob-
abilities of causing FO contour inconsistency when Copy is
used. If the DB is sufficiently large, it is likely that long
contiguous speech segments having proper F0 values will be
found, based on the target FO values and the context infor-
mation such as pitch accent values and phoneme identities.
Therefore, a combination of Copy and Contiguous Bypass-
ing seems to be the best choice for handling the F0 con-
tours. However, when Preselection is used, the best choice
depends on the size of the preselected DB, the domains of
the application and the recorded voices, and listeners’ pref-
erences for synthetic voices. With aggressive Preselection,
frequent concatenations are unavoidable. While the com-
bination of Copy and Contiguous Bypassing may still pro-
duce good acoustic quality for in-domain texts, it may cause
unstable FO contours for out-of-domain texts. Use of Tar-
get would produce rather more stable FO contours. However,
the liveliness and the acoustic quality for the in-domain texts
would be reduced.

3. Method

In this section, after the main ideas of the proposed method
are briefly introduced, we describe the training procedure
and the run-time processes.

3.1 Main Ideas
3.1.1 FO Gradient Model
Because the human auditory system is more sensitive to

frequency changes than to absolute frequencies, we use a
GMM-based (Gaussian-Mixture-Model-based) F0 gradient
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Figure 2 The process flow of the proposed method.

model to evaluate the consistency of the FO contours. The
model makes it possible to evaluate all of the segments in an
interval for a fixed duration by linearly approximating the
FO values in the interval. Meanwhile, as long as consistency
of F0 gradients is preserved, being close to pitch target val-
ues is unimportant. Therefore, we also use a GMM-based
absolute FO model, instead of target FO values, to allow a
wide range of absolute FO values.

3.1.2 FO Adjustment

The proposed method modifies the segment F0 values only
where necessary, so that it is able to preserve high acoustic
quality for in-domain texts and so that it is able to gener-
ate accurate FO contours even for out-of-domain texts. To
determine the proper FO modifications, in addition to the
existing segment search, we use a second search, called F0
adjustment, to search for the sequence of FO modifications
that minimizes the FQ-related costs. In addition, the Con-
tiguous Bypassing mechanism is also modified. Contiguous
segments may not have the correct F0 contour in the con-
text of the text to be synthesized. Hence, the method checks
the FO contours of the contiguous segments by using the F0
gradient model. Omly the contiguous segments having ap-
propriate consistencies ( Prioritized Contiguous Segment) are
given special priorities in the second search and are then used
for Contiguous Bypassing.

3.2 Training Procedure ' :
The FO gradient model and the absolute F0 model are
trained in the following procedure.

3.2.1 Smoothing

‘We smooth the FO contours of the narrator’s voices by con-
volving a Gaussian function to the original contours before
collecting the training data. This is because overly detailed
F0 changes are only noise for the models. Linear interpola-
tion before smoothing can fill in missing FO values for devo-
calized regions. An example of smoothing is shown in Fig. 3.
The smoothed contour was shifted downward by 50 Hz for
better visualization.

3.2.2 Observation
We check the absolute FOs and FO gradients at three
equally-spaced points for each syllable™! (as illustrated in

(1) : Actually mora in the case of Japanese.
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Figure 3 An example of a smoothed FO contour and linear ap-
proximation lines. ’
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Figure 4 Three observation points for a syllable.

Fig. 4). For an F0 gradient, we linearly approximate the log-
arithmic values of the smoothed F0s in the interval for a fixed
duration (T, seconds) ahead of each observation point. Ex-
amples of the linear approximation lines are shown in Fig. 3.

_These lines.are shifted downward by 100 Hz for better visu-

alization. We do not use the intercepts of these lines, but
only the gradients of the lines are used for the model.

3.2.3 Decision Tree Training

The absolute FO model and the FO gradient model are
trained in very similar manners. The input features are the
70 features of the conventional F0 model plus an additional
feature indicating the observation point within the syllable.
The values of 1, 2, and 3 correspond to the points that are
1/3, 2/3, and 3/3 from the beginning of syllable. Both of
these models predict a scalar real value (an absolute F0 value
or an FO gradient). After the regression trees are trained, we
build a GMM for each of the nodes of the trees, to model
the distribution of the output features of that node.

3.3 Run-time Procedure

The proposed run-time procedure is different from the con-
ventional method primarily in the following two ways: (1) it
performs FO adjustment after the speech segments are se-
lected, and (2) both the segment search and the FO adjust-
ment use the new GMM-based likelihood costs for the FO-
related costs. The processing steps related to F0O handling
are as follows (and illustrated in Fig. 2).

3.3.1 Decision Tree Traversing

First, this step collects the input feature vectors for the
decision trees based on the context information obtained by
analyzing the input text. Then, by traversing the decision
trees with the feature vectors, it obtains for later use a set
of GMM parameters for each of the three observation points
of each syllable.

3.3.2 Segment Search

The segment search searches for the best segment sequence
with the minimal cost. The cost now consists of the three
new FO-related costs as well as the other costs, such as the
duration cost and the spectral continuity cost. Before cal-
culating the FO-related costs for a segment, the closest F0
observation point within the syllable is determined for the
segment. The three new costs are:

(1) The absolute F0 cost
We calculate the likelihood of the logarithmic FO value, f; .,
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Figure 5 An example of segment F0s and an approximation line.

at the center of the current segment, where i has a value
ranging from 1 to the number of segments, N,, in the syn-
thetic voice. The likelihood Pr(f.;) of the absolute FO feiis
then calculated by using the GMM parameters of the closest
FO observation point. The absolute FO cost is finally cal-
culated as C,;: = ~w,log (Pr( fc‘,-)) , where w, is a given
constant weight.
(2) The FO gradient cost

To calculate this cost, we calculate the F0 gradient in the last
Ts-second period of the current segment sequence. First, we

take the logarithmic F0 values of the starting points and the.

ending points of the segments in the interval. By combining
them with the durations of the segments, we can obtain the
coordinates (z;[sec],y;[log Hz]) of these points. Then we
find the line that best approximates the points (as shown in
the example in Fig. 5). The gradient and the intercept of the
line are g; and s;, respectively. The likelihood Pr(g;) for the
pitch gradient g; is calculated by using the GMM parame-
ters for the gradient model. The FO gradient cost is finally
calculated as Cy,; = —w, log (Pr(g:)), where w, is a given
constant weight.
(3) The linear approximation error cost

We calculate this cost as

Nf
Crs = wy Nif Dy — (gzs + 0¥, 6y

j=1

where wy is a given constant weight and N f is the number
of points to be approximated in the period. The first reason
we use this cost is that the FO gradient cost becomes invalid
if the linear approximation error is too large. The second
reason is that the change of the segment F0s in the short
intervals such as T; seconds should be smooth to allow for
linear approximation.

3.3.3 Consistency Evaluation of Contiguous Segments

The Contiguous Bypassing mechanism of the existing
method cancels the signal processing for long segment chunks
when sufficiently long chunks are found in the DB. However,
the chunks may not have the required consistency in the cur-
rent context. If the chunks do not have sufficient consistency,
we should also do signal processing for these chunks. If the
chunks are adequately consistent, then we should leave the
chunks unchanged and modify the neighboring segments to
make best use of those chunks. For this analysis, we compare
the FO gradient costs of the contiguous segments with a given
threshold. Only the contiguous segments whose costs are be-
low the threshold, the Prioritized Conliguous Segments, are
used in the following steps and to cancel the signal processing
for these segments.

3.3.4 FO Adjustment

This step searches for the best sequence of modifications
for the segment FO values. The i-th modification amount,
m;, is added both to the ending F0 of the (i — 1)-th segment

z Segment
S Ending FO . Segment F0s
fe,l:/o/
-4 0_/0
T fsi +
= ' Starting F4 m ' T
§ ob— t Modification
2 ime [sec]
2 ) |
Foi1
o/" Modified FOs
fsi

Figure 6 An FO modification value is added to the ending FO of
the preceding segment and the starting FO of the fol-

lowing segment.

and the starting FO of the i-th segment per the following
equations (and as illustrated in Fig. 6):

feic1 = feimr+ms (2)
foi = foi+mu, . (3)

where i has a value from 1 to N; + 1 and f; and f.; are
the FO values at the starting point and the ending point of
the i-th segment, respectively. f,; and f.; are the modified
starting FO and the modified ending FO, respectively. The
value of m; is chosen from a discrete candidate list (for ex-
ample, —100,-90, .., +0,.., +80, +100{Hz]). The best mod-
ification sequence (m;,..,mn,+1) with the minimum cost is
searched for by using a Viterbi algorithm. The cost of the
modification sequence C; evaluated at the i-th segment is the
summation of Ca, Cy, Cy, and the modification cost Cy, as
Cii = Cai + Cy,i + Cfi + Cmi. We ignore the other costs
such as the duration cost that are irrelevant to the F0 values.
The modification cost is calculated by

Cos = w,,m?2 (Prioritized Segments) ’ @
WM (otherwise)

where wm and w, are given constant weights. When the i-
th segment is a Prioritized Contiguous Segment, the special
weight w, with a huge value is used to block modification of
the FO values of the segments.

3.3.5 Final FO Smoothing

This step determines the final FO values of the segments by
smoothing the modified FO values. The Prioritized Contigu-
ous Segments are treated as exception without smoothing by
the Contiguous Bypassing mechanism.

4. Experiments and Results

‘We conducted subjective listening tests to investigate the
effectiveness of the method, assessing both the acoustic qual-
ity and the pitch accent naturalness in a situation where the
DB size is limited. We compared the following three meth-
ods: (Copy) for the conventional method with the Copy mode
and the Contiguous Bypassing mechanism, ( Target) for the
conventional method with the Target mode, and (Proposed)
for the proposed method. We used a speech corpus from
a professional female narrator for building a TTS data set.
Table 1 shows the statistics of the data set. The corpus con-
tains readings of news, weather forecasts, traffic information,
etc. We built an absolute FO model with 164 nodes and an
FO gradient model with 267 nodes. Based on informal pre-
liminary experiments, we decided to use 0.15 seconds as the
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Table 1 The DB size before and after Preselection.

Data set # of segments Total duration
Before Preselection 1,185,329 10 hours
After Preselection 103,725 0.9 hours

Table 2 The results of the subjective listening tests.
Pitch Acoustic RMSM

Accent  Quality [Hz]
Copy 3.39 3.33 12.6
Target 3.59 3.01 311

Proposed  4.08 3.20 18.0

duration of each linear approximation window (7%). A GMM
with 4 components was trained for each node. The conven-
tional method used an FO tree with 474 nodes to each of
which an average FO value was assigned.

To separately clarify the effects of the method on in-
domain texts and out-of-domain texts, we assumed the pres-
elected system was dedicated to traffic information and route
navigation, which are included among the major domains in
the original recorded DB. For this purpose, we performed
preselection exclusively biased on the application domains.
We collected usage counts for the segments by synthesizing
the texts of the 8,851 sentences of the corpus. We multi-
plied the usage counts for 1,000 sentences in the application
domains by 10 to preselect many segments in the domains,
while we did not multiply the usage counts for the other
7,851 sentences with any weight. To make the experiments
fair, the usage counts for both of the existing methods and
the proposed method were collected and summed. Based on
the summed usage counts, we built a preselected DB, which
was used for both of the existing methods and the proposed
method in the experiments. We noticed the segment search
sometimes selected segments whose durations were seriously
different from the duration targets. We used time-scale mod-
ification for these outliers in the run-time instead of manually
removing such outliers from the DB.

4.1 Test Design

‘We generated synthetic voices for 100 in-domain sentences
and 100 out-of-domain sentences by using each method. The
in-domain sentences are from the application domains of traf-
fic information or route navigation. The out-of-domain sen-
tences are the first 100 sentences of the phonetically balanced
ATR 503 sentences. These sentences were not included in
the training data. We manually corrected the text process-
ing output for the sentences to exclude the effects of the text
processing accuracy.

The tests were 5-grade MOS (Mean Opinion Score) listen-
ing tests. A total of 15 subjects participated in the tests.
The subjects evaluated each synthetic voice using two cri-
teria, the naturalness of the pitch accents and the acoustic
quality, by selecting answers from 5 (Very Natural or Very
Good) to 1 (Very Unnatural or Very Bad). Each subject lis-
tened to 10 randomly chosen sets of synthetic voices. One set
consists of synthetic voices generated with all three methods
for the same sentence. The order of the methods in each set
was random and we did not inform the subjects which system
generated which voice. The first 5 sets of each subject were
randomly chosen from the 100 out-of-domain sentences. The
other 5 sets were randomly chosen from the 100 in-domain
sentences. Since a sentence is too long to assess, each test

Very Natnral  /Very Good
Natural /Good
1 Acceptable

Unnatural /Bad

5
4
3 Acceptable
2
1 Very Unnatural /Very Bad

Figure 7 Graph legends for Fig. 8 and Fig. 9. -

Proposed
Taget

% 2% 40% 6% %% 100%

{a) Naturalness of Pitch Accents for Out-of-domain Texts
Proposed
Target
Copy

% 20% 40% 60% 80% 100%
(b) Naturalness of Pitch Accents for In-domain Texts

Figure 8 Experimental results of accent naturalness.

Proposed
Target

[ 20% 40% % 8% 100%
(8) Acoustic Qualily for Out-of-domain Texts

0% 20% 40% 60% 80% 100%
(b) Acoustic Quality for In-domain Texts

Figure 9 Experimental results of acoustic quality.

sentence was divided into intonational phrases. We asked
each subject to evaluate each of the phrases. Very short in-
tonational phrases (< 1.5 seconds) were combined for the
convenience of the subjects.

4.2 Results

Table 2, Fig. 8, and Fig. 9 show the experimental results.
Fig. 8 shows the distribution of the assessments of the pitch
accent naturalness for out-of-domain texts and in-domain
texts. Fig. 9 shows the distribution of the assessments of
the acoustic quality. Table 2 shows the average scores for
the compared systems to give a brief overview of the results.
In addition, we also show the values of Root Mean Square
Modification (RMSM) in the table. An RMSM is calculated
by

Ny Ny
1 Z 1

i=1

where NV, is the number of test sentences, N, is the number
of segments in the sentence, and my,; is the difference be-
tween the original segment FO of the i-th segment and the
final FO value. The RMSM can be considered as an indicator
of the average modification amount. A large RMSM value
indicates much signal processing and poor acoustic quality.
Fig. 8 shows that Proposed performed better than the other
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two methods both for the in-domain texts and the out-of-
domain texts. Copy was the worst method in the pitch ac-
cent naturalness. The reason of the inadequate naturalness
of Target was that predicting the absclute F0 values individ-
ually for each mora was not suitable for producing natural
pitch accents of Japanese.

We can see in Fig. 9 that the acoustic quality of Pro-
posed were better than Target though Copy was best in the
acoustic quality both for the in-domain texts and the out-of-
domain texts. We can see this rank order also in the RMSM
values shown in Table 2.

You may wonder why the quality of Target was not far
worse than that of Copy despite the different RMSM values.
The acoustic quality scores of the three methods were gen-
erally poor. This was because the major source of the poor
scores was discontinuity rather than signal processing, and
because the small size of the preselected DB commonly used
for the three methods caused the discontinuity.

5. Related Work

Some FO modeling methods [4]~[6] in this field model dis-
tributions of delta F0 values as well as distributions of abso-
lute FO values. An advantage of our FQ gradient model over
the delta FO models is that the F0 gradient model takes all
of the segments within the linear approximation interval into
consideration, while the delta models compare the F0 values
only with a few specific points in the past. In addition, if we
try to use a delta FO mode! for calculating the F0 likelihoods
of sub-phonemes, the wide variety of the durations of sub-
phonemes makes it difficult to choose which sub-phoneme
from the past we should use for reference F0 values for the
delta FO. In contrast, the FO gradient model uses a fixed
duration (T5) regardless of the sub-phoneme durations.

For FO treatments, leaving segment F0s unmodified is cur-
rently the most common treatment [7]. The main reason to
avoid signal processing is to preserve the acoustic quality of
the original voices. It was reported by [7] that signal process-
ing is harmful to the acoustic quality rather than helpful to
the prosody when there is more than 2 hours of speech data.
However, there are pressures to reduce the size of the DB to
less than 2 hours. In addition, (8] reported that intonation
was still the largest problem for their system with a 2.5-GB
uncompressed DB. For these reasons, we consider the naive
use of segment FOs to be sometimes problematic. In con-
trast, [9] modified the selected segments to the target FO val-
ues. While that method has advantages in producing stable
and smooth synthetic voices, it is difficult for the method to
produce lively synthetic voices with the good acoustic quality
found in unmodified segments.

To fix the pitch accents of a concatenative method, the
methods [10], [11] use & support vector machine (SVM) to as-
sess the correctness of the pitch accents. The SVM is trained
with a set of training data labeled with “correct” or *wrong”.
After judging the correctness, {10] modifies the segments in
the "wrong” phrases to have the target F0s, while[11] al-
ters the "wrong” segment sequences to ”correct” ones and
concatenates the ”correct” segments without modification.
Though we have a similar objective, the largest difference is
that our gradient model is not modeling the correctness of
pitch accents, while their SVMs are trained to assess correct-
ness. The main reason our model has the effect of producing
correct pitch accents is because the narrator was originally
producing correct pitch accents. However, since our models

are not trained exclusively for modeling correct pitch accents,
they should also be useful for reproduction of the narrator’s
speaking habits. In addition, our method searches for the
sequence of proper amounts of F0 modifications instead of
just using the target F0O values to minimize the modification
amounts.

6. Conclusion

In this paper, we showed the effectiveness of the proposed
method for the acoustic quality and the pitch accent natural-
ness by the experiments conducted separately for in-domain
texts and out-of-domain texts.

Our future work includes additional subjective listening
tests to clarify the contributions of each sub-mechanism of
the proposed method. In addition, we also need to assess the
effectiveness of the method for reproduction of the narrator’s
speaking habits.
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