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Abstract

We propose a new approach for dealing with multipitch analysis of musical signals that makes use of the
fact that such signals are highly structured. This structure comes from the many musicological rules of
the western tonal music, and we model it by using the recently developed method of Hierarchical Hidden
Markov Models. We propose a model with four layers: song, key, chord, and note combination layer. One
of the big advantage of this approach is that, besides from information about pitches, we get higher level
musical information about chord progression and key modulation.

1 Introduction

Automatic music transcription of recorded music is usually a two stage process. The first stage is the event
detection phase, where music events (note onsets, note offsets, pitch changes) are detected and identified.
In the second stage, these events are transformed into a musical score. This paper focuses on the event
detection stage, main part being multipitch analysis, which aims to uncover the fundamental frequencies
of simultaneously played harmonic sounds.

Different approaches has been used to deal with the task of multipitch analysis, but recently some
attention (e.g. [1]) is given to develop methods that would, as do human transcribers, use higher level
musicological knowledge in the process. Researchers from other areas of music analysis share this tendency.
The most popular models used for this purpose are Hidden Markov Models [2, 3, 4, 5, 1, 6] (to mention
just a few), Probabilistic Context-Free Grammars [7] and, recently, Hierarchical Hidden Markov Models
[8]. The latter is gaining popularity due to low complexity as compated to Probabilistic Grammars and
ability to capture more signal structure than Hidden Markov Models.

This paper is organized as follows. Sections 5, 3 and & briefly describe the methods of Harmonic
Nonnegative Matrix Approximation (HNNMA), Hidden Markov Models (HMMs) and Hierarchical Hidden
Markov Models (HHMMSs). Section 4 contains arguments against direct application of HMMs to the
problem of multipitch analysis. Finally, section 6 describes an experiment of using the proposed method
to analyze a simple piece of music. Conclusion is given in section 7.

2 Harmonic Nonnegative Matrix Approximation

Harmonic Nonnegative Matrix Approximation [9] is a modification of the Nonnegative Matrix Approx-
imation (NNMA, described in [10]). NNMA is a method for decomposition of a nonnegative (having
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only nonnegative elements) matrix X (later referred to as the data matrix) into a multiplication of two,
also nonnegative, matrices X & AS = X (later referred to as the basis matrix and the activity matrix,
respectively). The NNMA solves this problem by minimizing a Bregman divergence between the data
matrix X and its approximation X. A special case of Bregman divergence is the I-divergence (generalized
Kullback-Leibler divergence):

Dx1(P,Q) = P@logg—mq, (1)

where the logarithm, multiplication (denoted by ®) and the division are calculated element-wise. Using
the I-divergence leads to the Nonnegative Matrix Factorization (NMF), for which Lee and Seung [11] has
proposed a very fast multiplicative update algorithm. A very similar algorithm exists for different Bregman
divergences as well. Also, under particular assumptions, this algorithm can be extended to minimize an
objective function containing additional penalizing terms [9]. The final algorithm takes form of two update
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where a(A) and S(S) are the minimized penalizing functions.

Such update rules are used in HNNMA together with a special initialization of the basis matrix. Because
zero-valued elements of basis vectors will remain zero-valued throughout the learning process (eq. 2 and
3), we can initialize the basis matrix to have zeros everywhere but at the positions of fundamentals of notes
from a specific range of the equal temperament scale and their harmonics. That would guarantee that
the basis vectors are sorted by their fundamental frequencies, and that corresponding rows in the activity
matrix contain activities of consequent notes from that range, resulting in a harmonically-constrained
NNMA. This would make analysis of the results of the algorithm straightforward — one would. only have
to analyze the note activities and find peaks corresponding to instances of these notes. This technique is
a good tradeoff between full basis estimation methods (such as NMF and other NNMA-based approaches)
and methods that use pre-learned basis vectors.

3 Hidden Markov Models

Hidden Markov Models (HMMSs) are statistical models that belong to the big family of Dynamic Bayesian
Networks. They are often thought of as a probabilistic generalization of the Finite State Machines. They
consist of a finite number of unobserved (hidden) states, each of which can generate a single symbol
(output) at a time. An extension to HMMs allows them to generate continuous output (that doesn’t
belong to a finite state of symbols), which is usually modelled using Gaussian Mixture Models. HMMs
work very well for modeling time time sequences and have found applications in a huge number of fields,
particularly in signal processing.

4 Feasibility considerations

Hidden Markov Models with continuous output have been successfully used for speech recognition, so they
probably would yield good results in the task of music recognition. The big problem is, however, the
number of states. In speech recognition, this number is defined by the number of phonemes in particular
language, which, in most languages, is equal to about 30-50. In recognition of monoinstrumental music, one
state corresponds to a single combination of notes. Number of all possible note combinations is enormous
— for piano, for example, is equal to about 18 quintillions (assuming that each of the 10 fingers can either
press one of the keys, different from the keys pressed by the other fingers, or stay in the air). The Hidden
Markov Model cannot be directly applied to music recognition. However, we could reduce the complexity
of problem by:

¢ allowing only musically correct transitions,

e allowing only the most probable note combinations,

e grouping note combinations, and treating combinations inside groups equally (assign them equal

transition probabilities).
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Figure 1: Proposed four-layer state hierarchy of musical signals.

The first point means that we should use higher level knowledge of music to reduce the overall number
of possible transitions to musicologically correct minimum. A quite recently developed generalization of
the regular Hidden Markov Models, called Hierarchical Hidden Markov Models (HHMMs), seems to be
perfect for this task. It introduces state hierarchy, which happens to suit musical needs very well. All'
HHMMs can be transformed to a regular flat HMM, which is not fully connected (only some transitions
are allowed). This model is further described in section 5. The second suggestion allows us to reduce the
number of all possible note combinations to an implementable figure. This can be done by performing a
pre-scanning of the analyzed data and selecting only those combinations that are most plausible. This is
discussed in more detail in section 6. The third point aims at reducing the number of degrees of freedom
of the model — only very few transition probabilities and initial probabilities will need to be learned. In
our approach the following groups are used:

1. out-of-key combination (at least one note in the combination doesn’t belong to the key),

2. non-chord combinations (at least one note in the combination doesn’t belong to the chord),

3. chord combinations (all notes are in the key and belong to the chord),

4. a rest,

5. end state of the key.

However, non-harmonic combinations could be further split into such groups as anticipation note, neighbor
note, passing note, escape note and pedal note, causing the HMM to better model musicological rules. All
notes from within the same group are equally treated — they are equally probable, which seems like a very
reasonable assumption. Including the state self-transition probability, it comes to 26 different transition
probabilities, a number that allows model parameter learning even on a small amount of training data.

5 Hierarchical Hidden Markov Models

Hierarchical Hidden Markov Models (HHMMs) are a recently developed [12] generalization of regular
Hidden Markov Models by introducing a hierarchical state structure. HHMMs are receiving more and
more attention from researchers from various fields.

While in HMMs each state generates a single symbol, in HHMMs each state generates a whole sequence
of symbols, and is in fact an HHMM on its own. Only the bottom-most level states (called production
states) generate symbols.

We propose an HHMM with four layers (fig. 5): song layer (single master state), key layer (24 states
corresponding to all the keys of the western tonal music), chord layer (7 triads for every scale degree,
can also include higher chords), and note combination layer (one state for particular combination of notes
played under the current chord-key pair), which is the production layer. Note combination states produce
output, which can be a spectrum, or, in our case, single column of the coefficient matrix.

To learn parameters and to infere from a HHMM, the generalized Baum-Welch, and the generalized
Viterbi algorithms [12] can be used. Unfortunately they are quite complex and difficult to implement, and
the generalized Viterbi algorithm has O(T®) time complexity. A much faster (O(T)) algorithm has recently
been developed [13] that uses standard methods of Dynamic Bayesian Networks, HHMM is a special case
of which. For simple cases, an HHMM can be flattened to a regular HMM and standard Viterbi algorithm
can be used.
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H NH OOK R End

H 0.625 0.125 0 0.125 0.125

NH 0.75 0 0 0.125 0.125
OOK 0 0 0 0 1

R 0.875 0 0 0 0.125

I 0 05 05
IVv. 1 0 0
vV 1 0 0

Table 1: Group transition probabilities' used in the experiment (left) and chord transition probabilities
(right). H — in-chord combination, NH - non-chord combination, OOK — out-of-key combination, R — rest.

6 Experiment

To validate the proposed approach, we have tested the algorithm on a short, single-key, rhythmically-
simple, artificially generated piece of music that uses the very common I-IV-I-V chord progression (see the
bottom part of fig. 6).

The first processing stage involves calculating the Constant-Q Transform (CQT) of the input data in
order to obtain the X matrix (topmost part of fig. 6). This matrix is then analyzed with the HNNMA
method and the coefficient matrix S is generated (second from the top part of fig. 6). This matrix is first
analyzed in the following manner to get the list of the most possible note combinations. For each time
frame 5 peaks are located in the coefficient vector (a single column of the S matrix). This means that we
assume that no more than 5 notes can be played simultaneously. Peaks are assigned to notes in the equal
temperament scale and all possible combinations of them are created (1-, 2-, 3-, 4-, and 5-combinations)
and added to the global note combination list.” After removing duplicate items, this global list defines the
production states of the HHMM.

Each chord-level HHMM state has the same set of production states, but different transition matrix
and initial probability vector. Production states (note combination list) are analyzed in the context of the
chord-key combination, and then grouped. The transition and initial probabilities are assigned according
to the group the production state belongs to.

The output “probability” is calculated according to the following formula:

E . 82

jEcombination; “j,t —|combination;|+1

Bi; = S 82 — a7 S ()
Laj gt

It is a measure of fitness of particular note combination to a column of the coefficient matrix, penalized by
the number of notes in the combination to avoid the overfitting problem. a is a trade-off factor between
the goodness of fit and too complex note combinations.

In this experiment a simplified HHMM was used — it contained only 3 levels: song, chord (only 3
states: I, IV and V), and note combination.(production level). A key of C-major was assumed. We
used heuristically generated group and chord transition probabilities (table 6), however in future those
parameters will be trained on reference data. This simple model can easily be flattened to a regular
HMM, transition matrix of which is depicted on fig. 6. It is clearly visible that this matrix is highly
structured — three squares along the main diagonal represent transitions inside the three chords, on the
main diagonal there are the state self-transition probabilities, and outside of that are chord-to-chord
transition probabilities (much lower than in-chord transition probabilities).

The results of using such an HHMM are presented on fig. 6 (third from the top). The are no spurious
notes, but some of the notes are missing. This definitely could be improved by using better (trained)
parameter values. The very big advantage of this method is the additional information about the chord
and key throughout the piece of music. As we can see on fig. 6, the chords were identified correctly.

7 Conclusion and further work
Experimental results are promising, but answer only just the first very simple question about the proposed

method. In order to truly evaluate this technique, tests need to be run using more complicated and fully-
layered (including the key layer) HHMM with parameters learned on training data. The main problem is,
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Figure 2: Analysis stages (from the top): Constant-Q-gram (X), activity matrix (S), the results of the
HHMM algorithm, and the original score for reference.
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Figure 3: Transition probability matrix for the HHMM used in this experiment flattened to a regular
HMM.

however, obtaining groundtruth data, since there currently is no database that stores notes and, at the
same time, information about chord progression and key modulation.
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