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Unsupervised Optimization of Dereverberation Parameters using
Likelihood of Speech Recognizer
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Abstract Speech recognition under reverberant condition is a difficult task. Most
dereverberation techniques used to address this problem enhance the reverberant waveform
independent to that of the speech recognizer. In this paper, we expanded and improved the
conventional Spectral Subtraction-based (SS) dereverberation technique. In our proposed
approach, the multi-band SS parameters are optimized to improve the recognition perfor-
mance. Moreover, the system is capable of adaptively fine-tuning these parameters in the
acoustic modeling phase. Experimental results show that the proposed method significantly
improves the recognition performance over the conventional approach.
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1 Introduction

Reverberation is a phenomenon caused by over-
lapping of signals due to reflection attributed by
room environment. This degrades the performance
of distant-talking speech recognition applications.
Thus, it is imperative to minimize its effect. We
have proposed a dereverberation approach based on
multi-band Spectral Subtraction (SS) [1][2]. This
method employs SS similar to that of [3] by re-
moving only the late components of the reverberant
speech signal. The multi-band coefficients are opti-
mized using Minimum Mean Square Error (MMSE)
criterion. Although this scheme works well, this
criterion is inclined in optimizing the effect of dere-
verberation in the waveform level. Typically, this
is a speech enhancement approach which improves
the quality of the signal prior to acoustic model-
ing and recognition. This set-up treats the speech
enhancement and recognition independently.

In this paper, we propose to treat these two in-
terdependently by optimizing the dereverberation
parameters based on the speech recognizer. The
criterion is modified to directly optimize the likeli-
hood of the recognizer. In addition, we embed the
optimization process in the acoustic model training.
As a result, the dereverberation parameters are up-
dated together with the acoustic model. This kind
of approach, where front-end speech processing is
optimized for recognition is shown to be effective
with promising results in microphone array appli-
cations [4][5] and in Vocal Tract Length Normaliza-
tion (VTLN) [6][7][8]-

The organization of the paper is as follows;
in section 2, we show the overview of the multi-
band SS as a dereverberation scheme. In section 3,
we present the optimization in the acoustic model
training phase. This involves optimization of the
multi-band SS parameters based on the likelihood.
In section 4, the optimization during decoding is
presented. Experimental results are given in sec-
tion 5, and we will conclude this paper in section

6.

2 Spectral Subtraction-based
Dereverberation

In this section we outline the conventional derever-
beration technique based on multi-band SS [1][2].
The reverberant speech signal is modeled as

z(n) = zp(n) + z1(n), 1)

where zg(n), z(n) are the uncorrelated early and
late reflection components of the reverberant signal

z(n). If we denote s(n) as clean speech, and the
measured room impulse as h(n) = [hg(n), hr(n)]
where early components hg(n) and late compo-
nents hr,(n) of the whole sample h(n) are identified
in advance, Eq (1) can be written as,

z(n) = hg * s(n) + hy, * s(n). (2)

In the SS-based dereverberation, we are only
interested in recovering zg(n) from z(n). Thus,
we use spectral subtraction to remove the effect
of zr(n). Theoretically, it is possible to remove
entirely the effect of the whole impulse response
h(n), but robustness to the microphone-speaker lo-
cation cannot be achieved since the early compo-
nents hg(n) have high energy and is dependent on
the distance between the microphone and speaker
as explained in [1] [2]. In the multi-band SS ap-
proach, the effect of zg(n) is addressed through
Cepstral Mean Normalization (CMN), which can
be handled by the recognizer as it falls within the
frame. Thus, only zr(n) is removed through the
multi-band SS as its effect falls outside the frame in
which the recognizer operates. The power spectra
of zg(n) can be obtained through the multi-band
SS,

|X(f7 T)|2 - 5k|XL(f7 T)|2
|Xe(f,7)| = if‘X(faT)|2_5k|XL(fvT)|2>0
BI1XL(f,7)|? otherwise
3)
for f € By where By is the corresponding band,
with 3 the flooring coefficient. |X(f,7)* and
| X1(f,7)|? are the power spectra of the reverberant
signal and its late reflection, respectively. The val-
ues of 8 coefficients are derived through an offline
training which minimizes the error of the estimate
|XL(f,7)| under the MMSE criterion. Details in
the choice of the number of bands, the values of
& coefficients (through offline training), and the ef-
fective identification of the late components of the
impulse response hr(n) are discussed in [1] [2].

3 Optimization of Derever-

beration Parameters for Acous-

tic Modeling

The conventiohal approach adopts MMSE in de-
riving the coefficients used in dereverberation. The
derived coefficients are used to process the reverber-
ant signal, and then the acoustic model is trained
using the enhanced data. We present two meth-
ods that optimize the dereverberation parameters
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Figure 1: Block diagram of the proposed optimization technique in the acoustic training phase which is composed

of batch and incremental methods.

jointly with acoustic modeling. This principle is
also applied during actual recognition which will
be discussed in Section 4. The two methods are
explained as follows:

3.1 Batch Optimization Method

The proposed optimization of the multi-band SS is
shown in Fig. 1. We opt to optimize each band
sequentially starting from the first band m = 1
to m = M. The band coefficient to be opti-
mized is allowed to change within a close neigh-
borhood nA where n = 1..N and A = 0.02.
The reverberant observation data z is dereverber-
ated using the multi-band SS. The rest of the
bands are fixed to the MMSE-based estimates ex-
cept for the band to be optimized. Thus, if the
band to be optimized is band m = 1, we gener-
ate a set of coefficients §(1,n) = [§(1)mmsE +
n A, §Q2)mmse, (m)mmse -, 6(M)mumse)], and
execute SS using the generated coefficients. The
resulting data zg(6(1,n)) are evaluated using the
HMM-based acoustic model which is trained with
data processed with MMSE-based SS parameters,
denoted as A = Ayumse. A Likelihood score is
computed for each of the data processed with dif-
ferent SS conditions. Based on this result, §(m)opt
that has the corresponding highest likelihood score
is selected. The whole process from SS to likelihood
evaluation is applied to all M bands independently.

After all of the bands are optimized, the set of op-
timal SS coefficients [6(1)opt, ..., (M )opt) is used to
process the reverberant data and proceed to acous-
tic model training. The resulting acoustic model
will be used in the actual recognition.

3.2 Incremental Optimization Method

We extend the above batch optimization method.
The additional process introduced is shown in
dashed lines in Fig 1. Right after the optimal
coefficient of band 1 is found, the acoustic model
is re-estimated using the updated SS parameters.
The newly re-estimated model A; is then used in
the likelihood evaluation block for band 2, and
this process is iterated until §(M)op; is found for
the Mth band. This approach, referred to as
incremental optimization method, has the same
principle with the batch method, except for the
incremental updates of the HMM parameter \ in
every band. In the batch method, we fixed A\ =
AMmmse all throughout the bands. The incremen-
tal re-estimation allows us to treat each band inter-
dependently in a sequential manner as opposed to
the batch optimization method where each band is
treated independently.



Table 1: System specification used in evaluating the system

Sampling frequency

16 kHz

Frame length

25 ms

Frame period

10 ms

Pre-emphasis

1-0.97z71

Feature vectors

12-order MFCC,
12-order AMFCCs
l-order AE

HMM

8000 Gaussian pdfs

Training data

Adult by JNAS

Test data

Adult by JNAS

Table 2: Basic Recognition Results

Methods 200msec | 600msec
(A) No processing 686 % | 44.0%
(B) Conventional: MMSE 80.1 % | 62.3%
(C) Batch (training only) 813% | 64.3%
(D) Incremental (training only) 824 % | 65.4%
(E) Batch (training/decoding) 83.1% | 66.1%
(F) Incremental (training/decoding) | 84.5 % | 67.5%

4 Optimal Parameter Selec-
tion During Decoding

Further optimization is implemented during actual
recognition. Using the acoustic model processed
with the optimal multi-band SS parameters in sec-
tion 3, we evaluate a likelihood given a dereverber-
ated test utterance. The reverberant test data are
processed in the same manner as the optimization
of the bands in the acoustic training phase, produc-
ing a set of processed utterances. These utterances
are then evaluated with the acoustic model. The
corresponding multi-band coefficient that gives the
highest likelihood is selected for each band which
is similar to that shown in Fig 1, and used for the
final recognition.

5 Experimental Evaluation

For evaluation of the proposed method, we used the
training database from Japanese Newspaper Arti-
cle Sentence (JNAS) corpus. The test set is com-
posed of 200 utterances taken outside of the train-
ing database. System specification is summarized
in Table 1. Recognition experiments are carried out
on the Japanese dictation task with 20K-word vo-
cabulary. The language model is a standard word
trigram model. We experimented using two rever-

berant conditions: 200 msec and 600 msec. Re-
verberant data were made by convolving the clean
database with the measured room impulse response
[9]. The measured room impulse response con-
tained flutter echo which is inherent of the actual
room acoustics. In this experiment we use total
number of bands M = 5 which is consistent to that
of the former work [1][2].

5.1 Recognition Performance

Table 2 shows the basic recognition performance
(word accuracy) of the proposed method in 200
msec and 600 msec reverberant conditions. (A) is
the performance for reverberant test data (with-
out dereverberation) using a clean acoustic model.
(B) is for the conventional MMSE-based approach
when both the test and training data are dere-
verberated with the conventional MMSE-based SS.
(C) and (D) are the results of the proposed op-
timization for the batch and incremental meth-
ods, respectively. It is confirmed that the pro-
posed front-end dereverberation optimization con-
sidering acoustic likelihood is more effective than
the conventional MMSE-based method. And the
incremental model update performs better than the
batch training. In (E) and (F), we show that
the performance of the system is further improved
when optimization is also applied in the decoding
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Figure 3: Performance when used in adaptation

process. Thus, optimizing dereverberation in both
the acoustic modeling phase and decoding phase
result in a synergetic effect in improving recogni-
tion accuracy. As a whole, we have achieved a
relative 5% improvement over the baseline MMSE-
based method.

5.2 Robustness of the Proposed Method

We also performed experiments regarding the ro-
bustness of the proposed approach. By creating a
mismatch of the reverberant condition between the
training and testing data, we investigate the ro-
bustness of the proposed method as shown in Fig.
2. It is apparent that the change in the recogni-
tion performance from (matched) to (mismatched)
is much smaller under the proposed method than in
the conventional approach using MMSE criterion.

5.3 Evaluation with MAP and MLLR

Then, we extend the proposed optimization tech-
nique to the adaptation scheme like MAP and
MLLR. In this case, we execute an iterative MAP
and MLLR, and in each iteration we optimize the
dereverberation parameters together with the 50
adaptation utterances. Recognition results shown
in Figure 3 demonstrates that the proposed ap-
proach is effective in conjunction with adaptation,
especially with MLLR, and the advantage over the
conventional method is maintained after the adap-
tation.

5.4 Faster Implementation of the
Proposed Optimization Technique

The proposed optimization process outlined in Fig
1 that uses HMM in evaluating the likelihood is
confirmed to be effective in optimizing the derever-
beration parameters. However, this process takes
a lot of time and it is desirable to replicate the
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Figure 4: Performance comparison between GMM and
HMM in optimizing the multi-band coefficients

same performance in a shorter period of time. We
try to use Gaussian Mixture Model (GMM) with
64 mixture components instead of HMM in find-
ing the optimal parameters. A separate HMM is
trained/updated only after the optimal parameters
are found through GMM. This means that GMM
is used for the optimization process and HMM is
used for the actual speech recognition. This ap-
proach has been shown to be effective in VTLN ([8].

In Fig. 4, we show the result for using both
GMM and HMM in finding the optimal multi-band
SS parameters. We can observe a negligible differ-
ence in word accuracy between GMM and HMM.
With the GMM implementation, we reduced op-
timization time up to 10%. This implementation
makes decoding in section 4 practical.

6 Conclusion

We have presented the front-end dereverberation
technique which is optimized based on the likeli-
hood of the speech recognizer. The method is ap-
plied both in the acoustic model training phase and
the actual decoding phase. In the acoustic train-
ing pahse, the dereverberation parameters are op-
timized using the training data. In the decoding
phase, the system is able to update the derever-

beration parameters based on the actual test data..

This is very important since it enables the sys-
tem to adjust to the changes of the reverberant
condition during the actual recognition. Both ef-
fects are confirmed, realizing significantly better
performance than the conventional MMSE-based
method which optimizes the parameters indepen-
dent of speech recognition. We have also presented
a method of speeding up the optimization process
through the use of GMM. In our future works, we

will expand the current approach to an unknown
room impulse response, where we can replace the
room acoustics dependency with recognizer-based
optimization in enhancing the reverberant speech
signal for robust speech recognition. We will also
attempt to remove the dependency of the current
approach to room impulse response measurements.

References

[1] R. Gomez, J. Even, H. Saruwatari, and
K. Shikano , “Distant-talking Robust Speech
Recognition Using Late Reflection Components
of Room Impulse Response” ICASSP, 2008

[2] R. Gomez, J. Even, H. Saruwatari, and K.
Shikano, “Fast Dereverberation for Hands-Free
Speech Recognition” IEEE Workshop HSCMA,
2008

[3] K. Kinoshita , T. Nakatani and M. Miyoshi,
“Spectral Subtraction Steered By Multi-step
Forward Linear Prediction For Single Channel
Speech Dereverberation” ICASSP, 2006

[4] M. Seltzer, “Speech-Recognizer-Based Opti-
mization for Microphone Array Processing”
IEEE Signal Processing Letters, Vol. 10, No. 3,
2003

[5] M. Seltzer and R. Stern, “Subband Likelihood-
Maximizing Beamforming for Speech Recog-
nition in Reverberant Environments” IEEFE
Transactions on Audio, Speech, and Language
Processing, Vol. 14, No. 6, 2006

[6] L. Lee and R. Rose, “Speaker Normalization
using Efficient Frequency Warping Procedures”
ICASSP, pp 353-356, 1996

[7] D.Pye and P.C.Woodland “Exper-
iments in Speaker Normalisation and Adapta-
tion for Large Vocabulary Speech Recognition”
ICASSP, pp 1047-1050, 1997

[8] L. Welling, H. Ney, and S. Kanthak, “Speaker
Adaptive Modeling by Vocal Tract Normaliza-
tion” IEEE Transactions on Audio, Speech, and
Language Processing, Vol. 10, No. 6, 2002

[9] Y. Suzuki, F. Asano, H.-Y. Kim, and T. Sone,
” An optimum computer-generated pulse signal
suitable for the measurement of very long im-
pulse responses” Journal of Acoustical Society
of America. Vol.97(2), pp.-1119-1123, 1995





