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Using Online Model Comparison in the Variational Bayes Framework:
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Abstract We propose an unsupervised online method for Voice Activity Detection
(VAD). The online EM can be applied to any new environments with no training data,
but falls in unreliable estimations when the noise-only or speech-only segments last for
a long time. The proposed method is based on the Variational Bayes (VB) approach to
EM algorithm, and uses Free Energy, which is computed during the estimation process, to
assess the model reliability in parallel. An online variation of the VB-EM is formulated
for sequential estimation of both model parameters and model comparison measure. An
experimental evaluation using the CENSREC-1-C database demonstrates that the proposed
method significantly outperformed the conventional online EM method.



1 Introduction

Voice Activity Detection (VAD), which automati-
cally detects speech segments from audio signals, is
an important task for many speech applications. It
is used for example as a front-end for Automatic
Speech Recognition (ASR) [1]. For ASR in noisy
environments, the number of insertion errors be-
comes large [2], and the noise-robust VAD is crucial
for the overall performance of the system.

Most VAD algorithms consist of two sub-parts:
one which performs feature extraction, and the
other for classification itself. In a supervised con-
text, various methods have been studied, such as
SVM [3], linked HMM [4] and GMM [5]. The best
performance is obtained when the training data and
new data have similar distribution; if there is a mis-
match between training and unseen data, model
adaptation is needed. Another class of methods is
based on signal processing approaches, with an ex-
plicit noise-signal model. In this study, we focus on
an approach of unsupervised, online classification,
without requiring training data. Such classifiers
often rely on a state machine with one or several
thresholds adapted to the SNR, which is estimated
separately. As noted in [6], those state machines
often rely on some heuristics for the noise floor es-
timation. The goal of this study is to develop a
statistical model for online classification, with a re-
liability measure stated as a statistical model com-
parison problem.

We assume a feature relevant for VAD, such as
energy and High Order Statistics (HOS, (7], [8]),
is available. If we consider each class (speech and
non speech) to follow a normal distribution, the ob-
served feature can be modeled as binary mixture of
Gaussian distributions. The classification problem
can be reduced to the online estimation of the pa-
rameters of a mixture model; we adopt an online
derivation of the EM algorithm based on stochas-
tic approximation [9], [10]. To adapt the statistical
model to environmental changes, we incorporate as-
sessment of the model’s reliability using a Bayesian
approach.

For practical computation of the posterior in
the Bayesian context, we use the Variational Bayes
(VB) framework [11]. The VB framework provides
an explicit approximation of the log-evidence called
the free energy, which can be used for model com-
parison [12]. Online extension of the Variational
Bayes based on the stochastic approximation [13]
of the free energy [14] can be used for online model
comparison, to take into account possible changes
in the acoustical environment. This method also
provides the online parameter estimation of the
mixture model, hence both classifier parameters

and reliability are estimated from the same statis-
tical model.

The organization of the paper is as follows. Sec-
tion 2 introduces online EM for unsupervised, on-
line classification in the context of mixture mod-
els. Section 3 reviews the VB-EM framework for
explicit computation of the free energy, for model
comparison. Based on the stated equivalence be-
tween the VB-EM procedure and direct minimiza-
tion of the parametrized free energy, we review the
online extension of the VB-EM using a stochastic
approximation of the parametrized free energy, for
online model comparison. Its application to the
VAD task as well as an evaluation on CENSREC-
1-C, a framework for noise robust VAD evaluation,
is then presented in Section 4.

2 Online EM for unsupervised
classification

When we assume unsupervised classification with-
out training data, the classification often relies on
thresholding the feature [6]. The threshold is es-
timated and updated from the background noise
level, and the frame-level speech/non-speech clas-
sification is converted to speech boundaries using a
hangover scheme. This is the most straightforward
method for unsupervised classification.

If we use a statistical framework instead, pres-
ence/absence of speech can be regarded as the re-
alization of a binary random variable C, and the
feature as the realization of a random variable (or
vector for multi-dimensional features) z. If we as-
sume each class is Gaussian, the observation model
is a GMM, and estimation can be tackled using
the Expectation-Maximization (EM) [15] applied
to latent models. Unfortunately, each iteration of
the EM algorithm requires the whole dataset, and
hence cannot be used for online classification where
the observations came recursively. An online ex-
tension has been proposed to the EM algorithm re-
cently [16], [17], and we applied it to VAD in [18].
In this section, we will briefly review the principles
of this online extension, as well as its limitations
for VAD, which motivated the Bayesian extension
presented in the later sections.

2.1 EM Algorithm

The Maximum Likelihood Estimation (MLE) is
hard to compute explicitly for latent models, and
EM algorithm is a popular method for optimizing
the likelihood directly. Given N IID observations



., ZN, the likelihood L of € is defined as:

A
r=2T1,..

N
L(6) £Inp(z;6) = > Inp(z,.;0) (1)
n=1

The key principle of EM applied to the MLE frame-
work is to build a function Q(#) which is easier to
maximize than the observed likelihood L(6), while
its maximization will give a reasonable estimate of
the MLE applied directly to L. The standard EM
algorithm defines the function @ as the expected
log-likelihood of the complete data (z, h) condition-
ally on the observation z only:

Qe;,(0) £ Ellnp(z,h;0)|x;6; (2)
iy1 = arg;naXQei(a) 3)

where 0; is the parameter estimated at the it? iter-
ation. Iteratively running Eq. (2) and (3) gives a
sequence {6;} which converge to a local maximum
of complete data likelihood L in general settings.
In particular, if the complete data (z,h) follow a
density in the (Natural) Exponential Family! (EF,

(19]):

p(z:0) 2 /@@mth (4)
p(z,hi8) 2 (s(z,h),6) + so(z,h) —(6) (5)

where s is a function of z of the same dimension as
0 and is a sufficient statistics for 6, (.,.) the scalar
product, ¢ a function of # and sy another function
of x, the computation of @ is reduced to the compu-
tation of s(x, h) under the density p(h|z). Noting
f the function:

f(s) 2 arg;ﬂiﬂ[(& 0) —(9)]

The EM algorithm (Eq. (2) and (3)) can then be
written as follows:

5(3'511;92‘) £ E[S(wnvhnNmmGi] (6)
L X

N;g(wvﬂei) (M)
Oiv1 = f(3(x;6:)) (8)

5(z;0;) =

2.2 Online EM

When the observation come one after another, and
the classification needs to be done for each obser-
vation, the EM algorithm cannot be used as it is:
each iteration of the E step (2) needs all the data at

1 £ is also said to follow a density in the Exponential Hid-
den Family (EHF)

once. Online extensions of the EM algorithm have
been suggested, first to alleviate the relatively in-
tensive computational and memory cost at the time
EM algorithm was getting popular, and later for
online estimation problems. A recent approach is
based on recursively approximating Q itself, while
keeping the M step essentially the same [16], [17].
The online approximation Q of @ is based on the
following recursion:

Qn(e) = Qn—1(0)+
U [ Bl p(n, b3 )l 0n-1] = @a(6)] (9)

where 7, is a learning parameter. The M step is
kept the same as for the offline EM, that is én is
set as the maximum of Q; each iteration of this
procedure is repeated once for each new observation
Zp (the iteration index and the sample index are
now the same). When the complete data are in the
EF, the online update equation (9) can be written
as:
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8n + Ynt1 (3(n; én) ~4,) (10)
f(3n41) (11)

1>

‘The properties of this algorithm, including theoret-

ical considerations on convergence can be found in
[10]. In particular, it is proved that the online up-
date in Eq. (9) converges to a stationary point of
the Kullback Leibler between the observation den-
sity and the model density. We can also note that
Eq. (10) does not rely on any matrix inversion, nor
does it consider the complete data likelihood and
that at each step, 6, automatically satisfies the pa-
rameter constraints, which is not always the case of
methods based on updating the parameters them-
selves (See section 2.4 of [10] for an example with
a Poisson Mixture). Since 3(z,) only depends on
the observation at time m, this procedure defines a
practical online estimation for every model where
the offline EM is applicable (where both 5 and f
can be computed explicitly and efficiently).

2.3 Application to Voice Activity
Detection

When applied to the estimation of a binary mixture
of Gaussian distributions, online EM can be used
for concurrent noise/speech level estimation, where
each class (speech and noise) is assumed to be nor-
mally distributed. It was shown to give reasonable
results in [18], but this scheme suffers from some
deficiencies. First, at the beginning of the signal,
because there is only noise or speech, the train-
ing of the Bayesian classifier is highly unreliable;



this problem can be somewhat alleviated by using
some heuristics (as used in many works, assuming
that the first second of the signal is noise only),
but we present a more theoretically sound solution.
Also, when there is no speech for a long time, the
means of the mixture components will become close
to each other, and as such, again, the classifier will
be unreliable. Both problems are related to the fact
that, when the Gaussian distributions of the mix-
ture are mostly overlapping, the mixture does not
properly represent two-class model as designed.

3 Variational Bayes approach

The statistical model used in Sec. 2 can be seen
as a a binary mixture, whose state changes in time.
To alleviate problems mentioned above, we propose
to use the Bayesian framework for inference, in par-
ticular for model comparison; that is it is used to
compare whether the data are better explained by
a model with one or two components.

3.1 Using Free Energy for Model
Comparison

For a latent model p(z, k|6, m) of parameter § and
structure m 2 , Bayesian estimators are built from
the posterior over hidden and parameter variables:

p(:l:, h19» m)p0(0|m)

PO M) = = )

(12)
where po(0) is the prior, and p(z|m) does only de-
pend on the model and the observations:

p(zjm) = / p(e, |6, m)po(0)dhdd  (13)

which is called the evidence. Although The evi-
dence is of no interest when computing posterior
(since it depend neither on 6 or h), it is useful when
considering model comparison:

p(m|z) := p(z|m)po(m)/p(z) (14)

To make computation tractable, we use the Varia-
tional Bayes framework (VB [11]) which restricts
the posterior ¢(8,h) := p(0,h|lz,m) to a sim-
pler functional form, making integrals involved in
Bayesian computation tractable for a large class of
models, of which Gaussian mixtures are a particular
case. The essence of Variational Bayes is to provide
a tractable lower bound of the marginalized likeli-
hood. For any function §(h, #) over the hidden data
h and parameter 6, the Kullback-Leibler divergence

2 For mixture of Gaussian, m may represents the number
of Gaussian in the task addressed in this work.

between ¢ and the true posterior q := p(h, 8|z, m)
can be computed as follows:

_ (6, h)
/ 40, W) s dodh

= Inp(z|m) — Frn(ge,qn) >0 (15)

KL(dllg)

where the Free energy F,, is defined as:

[ o p(z, h,8|m)
F,, ._/q(e,h)l N

and the inequality (15) is by definition of the
Kullback-Leibler divergence, and a consequence of
the Jensen inequality applied to the concave func-
tion log. Inequality (15) shows that F,, is a lower
bound of the marginalized likelihood for any g.
Thus, maximizing the negative free energy —F),
with respect to the approximate distributions §
will give an approximation of the marginalized log-
likelihood; as Bayesian model comparison is based
on evaluating p(z|m) for different models, if F,
is tight enough, it may be used in place of the
marginalized likelihood. One can show in partic-
ular that in the limit of a large number of samples,
F,, and the Bayesian Information Criterion (BIC)
are the same [20]: F), can be considered as a gen-
eralization of the BIC in that regard.

dodh  (16)

3.2 Variational Bayes EM (VB-EM)

The maximization of —F,, is done using the tools of
calculus of variations, which is a branch of mathe-
matics concerned with functionals, that is functions
of functions. For practical computation, we will re-
strict ourselves to densities within the EHF, as in
Section 2, that is p(z, h|f, m) will be given by Eq.
(5). In a Bayesian context, the EHF also has the
advantage to always have at least one prior conju-
gate to the likelihood, that is the resulting posterior
has the same functional form as the prior [19]:

Inpo (8|70, 0) o (0,c0) — To(0)  (17)

where 79,0 are the hyper-parameters: 7 is a
scalar, and can be interpreted as the pseudo count
of the prior, that is for N observations, the ratio
70/(7o + IN) represents the weight of the prior rela-
tively to the total number of observation 79 + IV in
the posterior p(f|z1,...,zN); the vector a has the
same dimensions as 0. The key idea of the Varia-
tional Bayes framework is to optimize the negative
free energy with respect to ¢, but by limiting the
possible forms for §(6, h) ~ §g(6)gn(h). In this con-
text, maximization of —F,, is reduced to a set of
two coupled equations, similar to the EM algorithm
[11]; at iteration 4, the updated hyper-parameters



Tit+1, %41 are computed according to the following
equations:

N
G(h; 8i41) = [ d(hn;Birn) (18a)
Ingg(0) := (9, ) — 74(6)
Ti=T19+N (18b)

a = ag + 5(z;0i11)

where we note:

Bipr = Egl0):= / 0is(0)d0  (19)
Q(hn3§i+1) = p(hnfxmgi-#l) (20)
5(xn;0i41) = Eg, [s(zn,hn)|zn] (21)

= /S(Znyhn)[iHn(hn§§i+l)

_ 1 & _
5(2;0i41) = N D 5(@n; Oit1) (22)

As mentioned in [21], and as explicitly carried on
in [14], those equations can be retrieved from the
direct optimization of a parametrized free energy
FP, where § has been replaced by its parametric
form as defined in the equation (18). Thus, the
VB-EM equation (18) can be written as:

bivr = B(owm) (23)
<;’:—11) = g(§(z;§i+1)): (24)

where g is a function which can be explicited from
direct optimization of F?, (See [14] for more de-
tails).

3.3 Online VB-EM

The online extension of the VB method is thus in
principle similar to the online extension in the EM
applied to the MLE; F is recursively approximated
by F® in a similar fashion as Q@ was by Qn, and
the hyper-parameters are updated as in the tradi-
tional VB-EM procedure, replacing 5 by § in Eq.
(24). This gives a recursive update of the hyper-
parameters. At sample n + 1, this is solved as:

81 = n A Ynt1 [5(Tns150n41) — $n](25)
ant1 = dpy1t o (26)

Those online updates of hyper-parameters can be
used to compute F? itself, giving an online model
comparison measure.
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Figure 1: Online-VB-EM procedure applied on sim-
ulation data: the weights, means, variances, sam-
ples are displayed. The bottom axis is the relative
order between Fy and Fj: if positive, Fy > Fy, and
F, > F, otherwise. The sampled model state is
changed at sample 50 and 100.

3.4 Example

An example of this procedure is showed on Figure
1, where we sample data from an artificial binary
mixture (sample displayed on the second bottom
plot). The first 50 samples are sampled from a well
separated mixture, then almost overlapping from
sample 50 to 100, and then back to the first state
starting at sample 100. The weights, means and
variances are updated online as well. We run VB-
EM for both models with one and two components,
and evaluate the online free energy in each case;
the bottom axis shows value 1 when F? > EP and
-1 when I:"lp > 13‘2” . It is observed that online free
energy can track model changes, at least on this
simple example.

4 Application to Voice Activ-
ity Detection and Evalua-
tion

The online VB-EM is applied to VAD in a straight-
forward manner; using a one dimension feature (en-
hanced High Order Statistics, as in [22]), we run
the estimation for models with one and two com-
ponents at the same time as well as F; and F; we
always update the classifier assuming a model with
two components, but when F; > F,, we assume
the signal contains only noise for those sections, al-
though the model keeps being updated.

We evaluate this method on the CENSREC-1-
C dataset [23] This database consists of noisy con-



Table 1: Results of the proposed VAD, compared
to online-EM based, without model selection

Proposed method FAR | ERR
High SNR, Average 46% | 44 %
Low SNR, Average 41% | 5.0 %

Without model selection | FAR | FRR

High SNR, average 87% | 8.0%

Low SNR, average 95% | 9.6 %

tinuous digit utterances in Japanese. The record-
ings were done in two kinds of noisy environments
(street and restaurant), and high (SNR > 10 dB)
and low (-5 < SNR < 10 dB) SNRs. For each
of these conditions, close and remote recordings
were available [23]; in this study, we used the close
recordings as the HOS feature is more suited to
the close talking speech. The results are given by
frame error rates: False Alarm Rate (FAR: ratio
of noise frames detected as speech divided by the
number of noise frames) and False Rejection Rate
(FRR: ratio of speech frames detected as noise di-
vided by the number of speech frames). The results
by using online EM without model/data selection
based on Free Energy are also given in Table 1. An
overall improvement is observed with the proposed
method: both FAR and FRR are reduced.

5 Conclusions

A new scheme to improve the reliability of online
classification based on online VB-EM has been pro-
posed. It uses online free energy, an online approx-
imation of log-evidence in the Variational Bayes
framework, to assess the classifier online. The
method is intended to replace the state machines,
and thus can be applied to problems other than
VAD, providing a simple statistical solution with-
out relying on heuristics.

References

I

Lawrence R. Rabiner and Biing-Hwang Juang, Fundamen-
tals of speech recognition, Prentice Hall, 1993.

2

Brian Kingsbury, George Saon, Lidia Mangu, Mukund Pad-
manabhan, and Ruhi Sarikaya, “Robust speech recognition
in noisy environments: The 2001-IBM Spine evaluation sys-
tem,” in ICASSP, 2002.

Dong Enqing, Liu Guizhong, Zhou Yatong, and Zhang Xi-
aodi, “Applying Support Vector Machine to Voice Activ-
ity Detection,” in 6th International Conference on Signal
Processing Procedings (ICSP’02), 2002.

[3

4

Sumit Basu, “A linked-HMM model for robust voicing and
speech detection,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’03),
2003.

5]

=

7

[8]

[9

[10

[11

[12]

[13]

(14]

(18]

[16]

[17]

(18]

(19]

[20]

[21

[22]

[23]

Jashmin K. Shah, Ananth N. Iyer, Brett Y. Smolenski, and
Robert E. Yantorno, “Robust voiced - unvoiced classifica-
tion usgin novel features and gaussian mixture model,” in
IEEE ICASSP’04, 2004.

Izhak Shafran and Richard Rose, “Robust speech detection
and segmentation for real-time ASR applications,” in IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP ’03), 2003, vol. 1, pp. 432-435.

Elias Nemer, Rafik Goubran, and Samy Mahmoud, “Ro-
bust voice activity detection using higher-order statistics in
the LPC residual domain,” IEEE Transactions On Speech
And Audio Processing, vol. 9, no. 3, pp. 217-231, 2001.

Ke Li, M. S. S. Swamy, and M. Omair Ahmad, “An im-
proved voice activity detection using high order statistics,”
IEEE Transactions on Speech and Audio Processing, vol.
13, no. 5, pp. 965-974, September 2005.

Masa-aki Sato, “Convergence of on-line EM algorithm,”
in 7th International Conference on Neural Information
Processing, 2000, vol. 1.

Olivier Cappé and Eric Moulines,
for latent data models,” 2008.

“Online em algorithm

Matthew J. Beal and Zoubin Ghahramani, “The variational
Bayesian EM algorithm for incomplete data: with appli-
cation to scoring graphical model structures,” Bayesian
Statistics, vol. 7, 2002.

David J.C. MacKay, Information Theory, Inference, and
Learning Algorithms, Cambridge University Press, 2003.

Harold J Kushner and G. George Yin, Stochastic approz-
imation algorithms and applications, Springer-Verlag,
1997.

Masa-aki Sato, “Online Model Selection Based on the Vari-
ational Bayes,” Neural Computation, vol. 13, pp. 1649—
1681, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Max-
imum likelihood from incomplete data via the EM algo-
rithm,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 39, pp. 1-38, 1977.

Masa-aki Sato and Shin Ishii, “On-line EM algorithm for
the normalized Gaussian network,” Neural Computation,
vol. 12, pp. 407-432, 2000.

O Cappé, M. Charbit, and E. Moulines, “Recursive EM al-
gorithm with applications to DOA estimation,” in Proceed-
ings of 2006 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, ICASSP 2006, 2006.

David Cournapeau and Tatsuya Kawahara, “Voice activ-
ity detection based on high order statistics and online em
algorithm,” IEICE Transactions on Information and Sys-
tems, vol. 12, December 2008.

David Cox, Principles of Statistical Inference, Cambridge
University Press, 2006.

M.J. Beal, Variational Algorithms for Approzimate
Bayesian Inference, Ph.D. thesis, Gatsby Computational
Neuroscience Unit, University College London., 2003.

Christopher M. Bishop, Pattern Recognition and Machine
Learning, Springer-Verlag, 2006.

D. Cournapeau and T. Kawahara, “Evaluation of real-time
voice activity detection based on high order statistics,” in
Proceedings of Interspeech07, 2007.

Norihide Kitaoka, Takeshi Yamada, et al., “CENSREC-1-
C: Development of evaluation framework for voice activity
detection under noisy environment (in Japanese),” Tech.
Rep., IPSJ SIG technical report, 2006.





