HE X EF 8 M %2 5-6
(1994. 2. 4)

HRHORAE R UL
MOOREH PHASE VOCODEROH

Eric Lyon

HERBANE REWH®RE

F.Richard Moore(ELEMENTS OF COMPUTER MUSIC 1990)iC & » 7. SR ERMEFFTI L —
LTRNBEART D LOOEBNE 714 XT3 -4 PFRIBEN A, COTOTSALTIR. BER
B U THFFTAA S L— 2N T 5 EH T3,

REBITIE, MooreM 7O JS L% &S5IZHIEL. EAﬁmu%h‘éBﬂffFiB’J&*#’&é%ﬁB’JL Y-y
dHEERET S,

Time Varying Extensions to the Moore Phase Vocoder

Eric Lyo'n
Research Associate
Kelo University, SFC
5322 Endo Fujisawa Kanagawa
252
eric@cmlab.sfc.keio.ac.jp

F. Richard Moore describes a practical phase
vocoder program which analyses a sound in
successive FFT frames and resynthesises the’
analysis data using either inverse FFTs or an
oscillator bank. Extensions to Moore’s program
are introduced enabling time-varying alteration
of the conditions of resynthesis.



An Overview of Pv

We will consider the Moore phase vocoder, pv, from a functional standpoint. A detailed explana-
tion of the mathematics, and a complete implementation in C code is given in Moore(1990). Pv, a
program written for the Unix environment, takes a stream of floating point time-domain samples as
input, transforms these samples in overlapped windowed blocks into an amplitude/frequency spectral
representation, optionally multiplies all frequency components by a constant, and then transforms
the (possibly modified) spectrum back into time-domain samples which are written as output. The
efficient FFT algorithm is used for converting the time-series to an amplitude/phase spectrum.‘ The
‘phases are then "unwrapped” to produce an instantaneous frequency representation. For conversion
back to the time domain, an inverse FFT is used when possible (that is, when the frequencies have

not been modified), otherwise, a less efficient oscillator bank method is employed.
The user is presented with the following parameters:
RNMDIP synt

R - Sampling rate of the input signal

N - Length of the FFT (a power of 2)

M - Window size

D - Decimation of the input signal

I - Interpolation of the output signal

P - Multiplication factor for frequency
synt - Oscillator bank synthesis threshold

The traditional use of the phase vocoder is for independent control of pitch and time. Control of pitch
is effected through the P parameter. If P = 2.0, the resynthesized sound will be transposed up an
octave, but retain its original duration. Temporal modifications are effected by adjusting the ratio
of I/D. If I/D = 2.0, the resynthesized sound will be twice as long as the input, but will retain its
original pitch evolution. It is possible to combine both modifications in a single procedure. If P = 2.0
and I/D = 2.0, the synthesized sound will be both twice as long and up an octave from the original,

quite the opposite of what would expect from similar analog tape manipulation.

Considerations for Modifications to Pv

In addition to the traditional uses of the phase vocoder, many others may be imagined, when con-
sidering that the representation of a musical signal as a time-varying spectrum is extremely general.
Fach frequency in the spectrum could be multiplied by a different value, rather than all multiplied
by the same constant. This creates many unusual harmonic effects. ‘Similarly, each amplitude value
could be multiplied by a different value, essentially implementing a filter. Using the oscillator bank
resynthesis method, each frequency could be resynthesized using a waveform other than a sinusoid,
creating various distortion effects. Finally, dynamically altering the conditions of resynthesis creates
many interesting compositional possibilities. We now turn to a discussion of some representative

time-varying processors developed using pv as a model.



The Tofu Processor

The Tofu processor is a time-varying spectral warping program. In addition to the parameters dis-
cussed above, the user specifies two monotonic functions. The first function provides a multiplier for
each frequency component (and is therefore of size N/2 where N is the FFT size). The second function
specifies a time-varying offset for the frequency multiplication function. To give a sense of how this
works, consider a warp function which consists of a ”bump” in the middle frequency range, and is 1.0
at all other points. As the offset value varies from 0-1 (scaled internally to N/2), the spectral bump”

is moved across the entire frequency range. A few observations are pertinent. Although the phase

vocoder is designed for use with harmonic sounds, it has proved useful for inharmonic sounds and
sounds with a fair amount of broadband noise. It is important to note that for such sounds (indeed
for all sounds) , the phase vocoder will be more ”sensitive” in the higher frequency range, where
harmonics are intervallically closer together. By similar reasoning, the "bump” described above will
change in intervallic size as it moves up and down the spectrum. (Regarding intervallic size, note that
the ratios between successive harmonics become increasingly smaller. For example, 1:2 = an octave,

2:3 = a perfect fifth, a considerably smaller interval, perceptually.)
The Red Clam Processor

This program uses the possibility of resynthesis with arbitrary waveforms. The user provides two
waveforms (which must be of the same length) and an interpolation function. The interpolation func-
tion determines relative weighting of each resynthesis waveform in a composite waveform which is
calculated for oscillator resynthesis of each spectral frame. As a simple example, if the first waveform
is a single period sinusoid, and the second waveform is a double period sinusoid, and the interpolation
function is a line from 0 - 1, the resynthesized sound will gradually transform from its normal transpo-
sition to an octave higher, but without time modification or pitch glissando. Many more complicated
uses of this processor are possible. For example, the resynthesizing waveforms could be considerably
more complex. With such a paradigm, frequency aliasing is a considerable risk, and the user has
the option of specifying the- highest frequency to resynthesize. This has the side effect of increasing
the speed of the processor as fewer waveforms are synthesized. Another option is to provide a sieve
function which turns off specific frequency bins. This can considerably increase the speed of the pro-
cessor, achieving performance comparable to the inverse FFT in some cases. For the purpose of saving
computation time, pv provides a synthesis threshold below which oscillator resynthesis is silppressed.
The threshold is a constant, and Moore leaves it as an exercize to make the threshold vary with the
maximum reported amplitude (Conservatively, as 60dB below the maximum). This feature has been
found to be necessary for any signals with considerable dynamic variation, and is implemented in all
processors discussed here which use oscillator resynthesis.

The Resident Processor

One limitation of the above processors is that only one frame of spectral information is available at
a time. The resident processor was inspired by a feature of the UPIC system designed by Iannis
Xenakis. The UPIC system provides a graphic spectral representation of a synthetic texture. It is

possible to improvise on this texture by moving a mouse to various locations. Resident mimics this



paradigm by storing an entire phase vocoder analysis in memory, and then traversing this spectral

database according to a user specified function.
The Resent Processor

Resent, like resident, operates on a spectral database. However, whereas resent resynthesizes particu-
lar spectral frames at specific times, without modification to the framies themselves, resent synthesizes
spectral frames based on the idea of different harmonics being resynthesized at different speeds (in-
cluding negative speeds, i.e. time reversal). The user provides a function specifying the resynthesis
speed for each harmonic. The user may optionally provide a second function specifying the initial
position in the database for each harmonic. Many different results are possible with this processor,
most obviously interesting looping effects as blocks of harmonics move in and out of phase. Different
phasing effects are produk:ed when each harmonic begins at the same position and moves at a speed
close to that of its neighbor.

The Jones Synthesizer

One other interesting possibility is to omit the analysis portion of pv entirely and algorithmically
specify a target spectrum for resynthesis. Jones is an example of this approach. The jo‘nes model
is of independent linear motion for each harmonic. The user specifies the minimum and maximum
durations for segments. The algbrithm creates a beginning and end amplitude for each segment (for
each harmonic). At each segment, the harmonic is given either a weak amplitude or a strong one,
where the weak amplitude is scaled by a user specified parameter. The user also specifies the odds
against a harmonic receiving a strong amplitude. Finally, the user may optionally specify a filter
function which rescales the amplitudes of the harmonics. The frequencies are set close to the center
of each frequency bin, with a small percentage of deviation from frame to frame. As the frequency
deviation is not large enough to require oscillator bank resynthesis, jones benefits from FFT synthesis
as well as omission of the analysis procedure.

CONCLUSIONS

The Moore implementation of the phase vocoder offers a useful starting point for exploring a wide
range of sound processing possibilities. Some representative processors have been presented. However
there is much room for research and experimentation, both in the use of the processors described
above, and the development of new processors. Many possibilities exist for designing more intelligent

and interesting spectral synthesis algorithms using the jones model alone.



References:
Mark Dolson, ”The Phase Vocoder: A Tutorial.” Computer Music Journal, 10(4) (1986)

John W. Gordon and John Strawn, ” An Introduction to the Phase Vocoder” in ”Digital Audio
Signal Processing - An Anthology”, (Ed.,John Strawn). William Kaufman, pp. 221-265 (1985)

F. Richard Moore, ”Elements of Computer Music.” Prentice-Hall, pp. 29-263 (1990)

James A. Moorer, "The Use of the Phase Vocoder in Computer Music Applications,” Journal of the
Audio Engineering Society 24(9), pp.717-727 (1978)

Christopher T. Penrose, ”Practical Signal Processing: Filtering,Interpolating and Enriching Digital
Signals with the Handy Phase Vocoder Algorithm.” Proceedings of the 1992 CCMR(Center for
Computer Music Research) Computer Music Conference,Delphi, Greece (1992)

L.R. Rabiner, R.W. Schafer, ” Digital Processing of Speech Signals.” Prentice Hall, pp. 250-310 (1978)



