HEBA ERLEES PIREE

IPSJ SIG Technical Report

2006—MUS—66 (19)
20067878

Genesynth: iﬁﬁﬂ@?’/l/ﬁ‘UX‘AbCJ:Z)%/E\EJZ .

Michael Chinen

/NR B

R EMAE
T 101-8457 BHACER T H X+ H SR T 2-2

mchmen@gmall com, osaka@im.dendai.ac.jp
SRR ARECOEET L E BB ALY, F—T4ARE
EREBRRTHIDICRIBHT VIV X 2E B4/ BAET L Genesynth

DNTHE~RB,

Genesynth: Sound Synthesis via Genetic Algorithm
Michael Chinen, Naotoshi Osaka
Tokyo Denki University

Sound synthesis model, Genesynth, is described which is an analy-
sis/resynthesis framework using a genetic algorithm. The model explores
audio search space by embedding self-referential sound models with a

user-specified granularity.

1. Introduction

Analysis/synthesis frameworks are im-
portant tools, appreciated for the abilities of re-
production and artistic creation of sound, and also
for the sound models they form. These frame-
works can be categorized into families, such as
Serra’s SMS[1] and the McAulay-Quatieri MQ[2]
algorithm, or as variants or derivatives within
these families, such as Pampin’s ATS[3] of SMS.
However, there is little work done on using ge-
netic algorithms for robust analysis/synthesis that
can compare to the aforementioned frameworks.
Genetic algorithms, (and search algorithms in
general,) have the property of creating a path from
one point.in the search space to a solution, gener-
ating many intermediary solutions along the way.
In audio space, a traversal of a solution path can
be viewed as sound morphing. Furthermore, the
area inthe search space surrounding a good solu-
tion contains other sounds of artistic interest.
Thus, - if a search algorithm could be used for
analysis/synthesis, it could also be used for sound
morphing and variation in a manner more directed
and- meaningful than manually or randomly ad-
justing the parameters of non-search based
frameworks.

Perhaps because of the large search space
of sound, existing genetic algorithm systems often
use restrictions, such as assuming the target sound
has a-harmoriic model.in wavetable synthesis[4],
disregarding the input sound:as a goal ‘for the
purpose of creating novel sounds[5], or wandering -
around the search space without a fixed target[6].

These techniques, while certainly valid for creat-
ing certain types of sound, limit the possibilities
of search to small areas of the search space.
Furthermore, the precision of the acceptable area
of the search space required by a good analy-
sis/synthesis framework prevents these search
algorithms as candidates in general. purpose
analysis/synthesis.

Genetic algorithms. are search algorithms
that search the problem space by combining solu-
tions in a way that is analog to the natural passing
of genes- from parents to offspring. A unique
characteristic ‘of genetic algorithms is that its
search paths produce a family tree for every solu-
tion. In the case of sound, these variations may
useful for art. However, a naive genetic algo-
rithm representing its chromosome with » genes
of 16-bit samples, where n is the number of sam-
ples in the input sound, will not be able to conduct
its search efficiently. Furthermore, if the optimal
solution is found, this type of representation will
not yield a meaningful model that says anything
more than looking at the binary samples of the
input data. In order for this problem to use a
genetic algorithm as an analysis/synthesis tool, it
must use an underlying representation with some
kind of .model takes advantage of the general
structure of sound. -

In this paper, we descnbe an implementa-
tion using genetic algorithms in analysis/synthesis
frameworks. Common design issues that would
make the genetic algorithm impractical in this
application are discussed, and their solutions fol-
low. Improvements on the genetic algorithm that

- 17 -

are advantageous for sound are shown and ex-
plained. An implementation of a genetic algo-
rithm using a sinusoidal based model is presented.
The results of this implementation are given,
demonstrating that this method is a viable option
for analysis/synthesis and sound morphing.

This paper is organized as follows: First, the
basic structure of genetic algorithm is reviewed,
along with specific issues that apply to genetic
algorithms for analysis/synthesis. We then pre-
sent our implementation of an analysis/synthesis
framework. Finally, our results and conclusions
are considered.

2. Review of the Genetic Algorithm

A review of genetic algorithms is useful for
understanding how they might be adapted to the
problem of analysis/synthesis. The term “classi-
cal genetic algorithm,” as used in this paper, refers
to the simple genetic algorithm that is regarded as
the simplest, earliest, and most common structure
of genetic algorithms, although it is not strictly
defined. All genetic algorithms maintain a cer-
tain number of candidate solutions, known as the
population of chromosomes. Each chromosome
is represented with a sequence of abstract data,
which can be turned into a real solution, known as
the individual.

2.1 Chromosome Structure

The structure of the classical genetic algorithm’s
chromosome is simple: a string or array of bits is
used to encode a solution. As an example, in fig-
ure 1, three chromosomes represent numbers with
its binary format.

Chromosome Individual

01801081 —73

111111001 — 251
010 |0 — 74

I Gene for ‘+2'
Gene for ‘+32'
Fig. 1: Binary Chromosome Structure

This representation has the advantage of
being general, as it can be used to represent any
computational problem using the solution’s bi-
nary format.

2.2 Chromosomal Operations

Each iteration of the genetic algorithm cre-
ates a new population by a crossover process that
combines two chromosomes to make two new
chromosomes, and also by a mutation process,
which probabilistically alters a part, or gene of the
chromosome. The mutation and crossover func-
tions are easy to implement if a bit string is used,
as can be seen in figure 2.

Mutation
01001001— 01301001

Crossover

-01010—-11101010

Fig.2: Mutation and Crossover

A heuristic, called the fitness function, is used to
score a chromosome by measuring the distance a
chromosome is from a good ‘solution. Chromo-
somes with higher fitness scores are chosen for
crossover and mutation. Fitness scores are
computed by measuring the distance away from
an optimal solution as in Figure 3.

F(x) = [13-X]
F(01001001) =|13-73] =(60
e

Score

Fig3: Scoring of the chromosome ‘01001001’
in a search for the number ‘13°. In this example,
lower scores are better.

2.3 Problems Using the Classical Genetic Al-
gorithm for Sound

However, this kind of linear binary representation
poses problems for sound. If chromosomes
represent audio this way, (that is, each gene being
one of n 16-bit samples,) then the chromosome
is represented as a sequence of time. Conse-
quently, the operations of crossover and mutation
will cause non-linear changes in the time domain,
producing sharp clicks and pops in the resultant
sound that are unlikely to be desirable.

2.3.1 Size Solution
A representation that is smaller and more

meaningful is needed, because many chromo-
somes will need to be generated and analyzed in

— 118 —

the lifetime of the genetic algorithm. The search
space in an audio buffer with » 16-bit samples is
huge — on the order of O(216"). In theory, a
smaller representation does not necessarily ex-
clude sections of the search space if stochastic or
variable length representations are used. To show
an example in the sound domain, the part of
search space that white noise occupies is large, but
might be represented with just one stochastic gene.
This is an example of one chromosome solution
that can apply to many points in the search space.

In practice, the search space will be lim-
ited to a certain extent by the model that is chosen.
If a model takes advantage of the fact that sounds
have hierarchical components, such as harmonics
and fundamental frequencies using a tree-like
structure, the data required can be lessened with-
out limiting the search space.

2.3.2 Continuity Solution

The problem of surviving the continuity
of sound through mutation and crossover can be
solved using a gene that implies interpolation.
Interpolation will also supply the advantage of
modeling the way sound components in real sound,
like sinusoids, tend to bend and stretch over time.
Looking at continuity from a Helmholtzian per-
spective, sound can also be exploited for data
reduction in that there are certain relatively
steady-state sections of sound that can be repre-
sented by its start and end times, and the informa-
tion about what stays constant in this section,
which could be frequency, amplitude, or phase
acceleration. As we cannot know a priori how
many “steady” sections a sound of a certain length
will contain, this model needs to be implemented
as a variable length chromosome, whose size can
be arbitrarily restricted. The size restriction can
impose a granularity upon the search space if the
smallest optimal solution is of a larger size. If
this granularity exists, it can be reduced to the
knapsack fitting problem, which genetic algo-
rithms have been proven useful for.

2.3.3 Crossover Solution

To implement the variable length and hi-
erarchical structure suggested in the previous two
sections, the chromosome can use a tree structure.
This will make crossover more complex than in
the classical genetic algorithm. This general prob-
lem of hierarchical crossover has been worked on
since long ago. Bentley[7] describes a useful
method of hierarchical crossover that can be ap-
plied for this problem.

2.3.4 Fitness Function Solution

Recalling that heuristics in effective
search algorithms such as A*[8] provide an
easy-to-compute estimate of distance from the
solution, a more efficient fitness function can be
implemented by caching a simple model, of the
input sound that can be compared to the chro-
mosome without ever synthesizing it.

This is much more efficient than taking
the chromosome’s sound model, synthesizing it,
and comparing the distance to the original audio
file by direct sample-by-sample subtraction. It
has already been mentioned that the chromosomal
representation data needs to be much smaller than
the audio data because many chromosomes will
need to be created in'the course of the genetic
algorithm. If the chromosomes are scored by the
above sample-by-sample subtraction, much of this
advantage is lost, because we must turn every
chromosome into an audio buffer.

It is important to realize that the type of
model used in the fitness function determines
what type of sound the genetic algorithm can
synthesize. Other parts of the genetic algorithm,
such as the structure of the chromosome affect the
type of sound that is synthesized, but mainly exist
to make the genetic algorithm efficient.

3. Genetic Algorithm Implementation

Taking the above general considerations,
we have implemented a framework for genetic
algorithm analysis/synthesis using a sinusoidal
model in C++. This framework is flexible in that
adding another model on top of it is straightfor-
ward, using C++ classes to minimize the amount
of code needed.

3.1 Chromosome Structure

The chromosome structure is a tree. The
hierarchical unit of the chromosome is called a
SoundCell. SoundCells contains two other data
structures, the SinRoot and PlaceGene, which
determine how sinusoids are synthesized. A
table describing the attributes of these objects
along with an illustration of a SoundCell and its
components can be seen in figures 4 and 5.

Object Name Attributes

SinRoot -Frequency
-Initial Phase
-Amplitude

- 119 —

PlaceGene -Interpolation Sample
-Frequency Coefficient

-Amplitude Coefficient

SoundCell -SinRoot
-List of PlaceGenes

-List of SoundCells

Figure 4: Table of chromosome data structures

SoundCell
Figure 5: An example of a SoundCell

At the top level of the chromosome, there is
a string of SoundCells, each which can have a
number of its own SoundCells and PlaceGenes.
An example of a what the entire chromosome may
look like is illustrated in figure 6.

~ Chromosome
Fig. 6: Example of a chromosome’s structure
3.2 Synthesis. |
Upon synthesis, each SoundCell synthesizes

the tree at its root in a preorder fashion by.con-
catenating its PlaceGenes to a list, creating the

sinusoid in a buffer from the SinRoot and this list,
then passing the list down to its child for the child
to synthesize. Next, the SoundCell removes its
PlaceGenes from the list, and the traversal con-
tinues. Because the PlaceGenes represent the
frequency deltas as coefficients, child SoundCells
will inherit the coefficients, (instead of a literal
delta frequency,) and are thus able to generate
sinusoids that bend proportionally to their fre-
quency, as is the case with natural harmonics.

3.3 Initialization of Chromosomes
The first generation is created by initializing

empty chromosomes, adding a random number of
components, initialized as specified in figure 7.

Object Name Initialaztion

SoundCell A SinRoot and a random number
of PlaceGenes are added and
initialized

PlaceGene Interpolation Sample and coeffi-
cients are randomized within a
predefined range

SinRoot Frequency, Amplitude, Initial

Phase are assigned random val-
ues in a predefined range

Fig.7: Initialization Rules
3.4 Mutation of Chromosomes

Mutation is more complicated. Upon muta-
tion, the SoundCell tree of each SoundCell is
traversed, and every component is mutated with
probability m, by changing its value randomly
within a certain range. These mutations occur as
listed in Figure 8.

Object Name Possible Mutations

SoundCell -SoundCells are added with a
harmonic SinRoot
-PlaceGenes are added by ran-
dom initialization
-PlaceGenes are added by clon-
ing
-PlaceGenes are copied to a child
SoundCell -
-PlaceGenes and SoundCell
children are deleted
-SoundCell children are removed
from the tree .and added to the
root level

PlaceGene -Interpolation sample

-Frequency coefficient

— 120 —

Object Name Possible Mutations

(PlaceGene) -Amplitude coefficient

SinRoot -Frequency
-Amplitude

-Initial phase

Fig. 8 Mutation Rules

Creating SoundCells and PlaceGenes is com-
plex for specific reasons. For example, copying
a PlaceGene to one of the child SoundCells, gives
the child a chance to ‘override’ the parent’s in-
heritance through subsequent mutations. The
cloning technique is useful because existing
coefficients that are likely to be useful at some
other time due to the highly continuous nature of
sound. It should be noted that the structure of a
SoundCell is initialized as absolutely harmonic,
but can easily contain inharmonic parts through
mutation. Furthermore, once the child Soun-
dRoot’s have their own PlaceGenes that interpo-
late frequency, the resultant sound will not have a
absolutely harmonic structure, but a realistic
near-harmonic structure, with the instantaneous
frequency of the harmonics being slightly more or
less than an integer multiple of the fundamental.

3.5 Crossover of Chromosomes

Crossover is implemented using the hier-
archical method described by Bentley[7]. Two
chromosomes are randomly selected with a prob-
ability proportional to their fitness score.
Crossover happens recursively, starting at the top
level of the chromosome. A random top level
SoundCell is first chosen as the splitting point.
As each SoundCell in one chromosome is trav-
ersed, an equivalent SoundCell in the other chro-
mosome is searched for. If it is found, they trade
PlaceGenes by splicing the PlaceGenes at a ran-
dom sample. The children SoundCells then do
crossover in the same fashion. If there is not
equivalent SoundCell, it is simply copied over to
the other one if it is past the splitting point.

3.6 Fitness Function

The scoring of a chromosome is done by
comparison of its peaks against the input sound’s
peaks. The peaks in the input file are computed
only once and cached, by taking FFTs at a regular
interval. The peaks from the chromosome are
computed for every chromosome, simply by
reading off them off the SinRoots and their inter-
polated points. The fitness function that com-

pares these peaks is very important, because it
determines the topology of the search space.
Each peak from the input sound is matched
against the chromosome’s peaks, and the closest
add to the chromosome’s score a value based on
how close in frequency, and how long the peaks
overlap. Subtracted from this value are the am-
plitudes of all peaks that do not match. This is a
rough description of the implementation, but the
important part can be grasped from it: adding the
present peaks and subtracting the missing peaks
effectively maps the search space to a thick vector
with the middle area being silence, and one end
being the target sound. This topology allows the
genetic algorithm to ‘retreat’ back to silence and
towards the goal at the same time, if it generates
sound that are dissimilar to the target.

4. Synthesis Results

The genetic algorithm was used to attempt
to resynthesize a bowed bass note lasting about
three seconds. A population size of 25 chromo-
somes was used, and 17,500 generations were
computed. The running time for this trial was
slightly less than five hours.

At the end of the trial, the resultant wave-
form had established the fundamental frequency,
its harmonics, and points of interpolation. The
synthesized sound is close, but not the same as the
original. The following figure compares the two
waveforms at one point in time during the attack,
where some of these differences can be seen.

P Vi Vo Vi i 'vw o "‘.vf f

hi b
Y

Fig. 9: Original waveform (above,) and
Synthesized waveform, (below.)

g"'

) W
]'ﬁm/ﬂ.u/\,q/ W\Mu\flv,ﬂf JJ'W((\

The spectrum of the synthesnzed sound
matches up fairly well, as can be seen in figure 10.
The sllght inharmonic deviations from harmonic
structure in the real bass sound were also captured.
However, the amplitudes of the partials are not
precise.

— 121 -

10ds
0dB
-10¢B
-20dl
T] P
-40dB
-50d8
-60d8
-70dB
-80d8
SHz |11Hz |22Hz {43Hz |87Hz |1 75H2 691H

[Cursor: 75Tz (D2) ' 1548 Peak: 73 Hz (D2)
048 7 TR

08|

3KHz |6KH2

-10d8
~2098|
-3648|"
-404dB
-5008
~60d8
~7048
-80dB
SHz |11Hz |22Hz |43Hz |87Hz [175Hz 6912

Cursor: 73Hz (02) = 9dB Pesk: 73 Hz (D2}

3KHz |6KHz

Fig. 10: Original spcectrum (above,) and synthe-
sized spectrum, (below,) from a 8192 sample
frame FFT during the attack of the sounds.

The synthesis flavor sounds similar in tim-
bre to other sinusoid models, because the genetic
algorithm uses one to conduct its search. The
sounds created along the search path show off the
model’s interpolation and provide an interestingly
‘clean’ decomposition of the synthesis towards a
single sinusoid with the amplitude envelope of the
input bass sound. Experiments using an already
computed chromosome solutions for one sound as
its starting point to morph towards a different
sound using the same algorithm were also con-
ducted. The results show that the algorithm does
get from one sound to the other, but wanders
around the search space instead of taking a per-
ceptually homogeneous and direct path to get to
the goal.

5. Conclusions

We have shown the genetic algorithm can be
used for analysis/synthesis, and provided a
framework and some guidelines for creating a
different genetic algorithm analysis synthesis
implementation. The model implemented indi-
rectly uses a sinusoidal model. This type of
model is very popular amongst analysis/synthesis
tools for its reliability, which is why it was chosen
as a safe choice to demonstrate the genetic algo-
rithm.

The major achievement of this experiment is
that its meaningful model allows good variant

sounds to be constructed as a side effect of the
genetic algorithm’s search. The model created
by the genetic algorithm finds relationships be-
hind peaks, and is capable of reaching an area
around the target sound.

Future work needs to explore deviations
from the sinusoidal model that might better take
advantage of the genetic algorithm. Hopefully,
this work will open up new paths for future im-
plementations.

6. References

[1] Serra, X. “Musical Sound Modeling with Sinusoids
plus Noise”. G. D.- Poli and others (eds.), Musical Signal
Processing, Swets & Zeitlinger Publishers, 1997.

[2] McAulay, R.], and T. F. Quatieri, “Speech Analy-
sis/Synthesis Based on a Sinusoidal Representation,” IEEE
Trans. Acoustics, Speech, and Signal Processing, Vol. 34,
No. 4, pp. 744-754, 1986.

[3] Pampin, J. “ATS: a Lisp environment for Spectral
Modeling,” in Proc. of the Int. Computer Music Confer-
ence, Beijing, 1999.

[4] Homer, A., "Wavetable Matching Synthesis of Dy-
namic Instruments with Genetic Algorithms," Journal of
the Audio Engineering Society, 43(11), 916-931, 1995.

[5] Magnus, C., “Evolving Waveforms with Genetic Algo-

rithms”<http://cmagnus.com/cmagnus/ga_overview.shtml
>, 2003.

[6] Johnson, C. G., “Exploring the sound-space of synthe-
sis algorithms using interactive genetic algorithms.” Wig-
gins, editor, Proceedings of the AISB Workshop on Artifi-
cial Intelligence and Musical Creativity, Edinburgh, 1999.

[7] Bentley, P. J. & Wakefield, J. P., “Hierarchical Cross-
over in Genetic Algorithms.” In Proceedings of the 1st
On-line Workshop on Soft Computing (WSC1) ,1996.

[8] Hart, P. E., Nilsson, N. J.; Raphael, B., "Correction to
"A Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths"". SIGART Newsletter 37: pp. 28-29,
1972.

[9] Smith, JO, and X. Serra, “PARSHL: A Program for the
Analysis/Synthesis of Inharmonic Sounds Based on a
Sinusoidal Representation" (ICMC-87).

— 122 —

