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A Listening Experiment on Beat Substitutions

in Short Musical Audio Excerpts
Sebastian Streich
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Abstract: We report the results of a listening experiment on beat-based substitution. First, music excerpts
that consisted of three consecutive beats were prepared. The central beats of those were then substituted by
a beat from a different music track. Subjects listened to the excerpts and rated the suitability of these
substitutions on a three point scale. Three methods for substitution selection are compared: an onset-based
method, a fixed-length frame grouping, and a random selection. While overall average ratings didn't exceed
intermediate satisfaction, we found statistically significant differences. The onset-based method clearly

received the highest ratings, while random selection received the lowest.

1. Introduction

In this article we are addressing a line of
research where the properties of very short music
excerpts are considered and compared. Different
authors have coined different terms for this
domain. Among the most used are: Concatenative
Sound Synthesis [01], Audio Mosaicing [02], or
simply Musaicing [03]. The purpose here is to
generate new music by recombining short
fragments of existing sound or music recordings
(roughly in the range of a couple of hundred ms).
This generation can be fully automatic or allow
for some type of interactivity of the user/composer
with the system, but in any case it is guided by
computed descriptions that are attached to each
fragment. Most approaches focus on artistic or
experimental aspects, which can’t be evaluated
with standard tools of science. Therefore the
different computational approaches for comparing
and selecting the fragments are normally chosen
based on subjective preference or experience.

Here, we want to consider a very specific type
of setting for Audio Mosaicing: the case where the
fragments correspond to the beats of music audio

recordings. For our experiment we narrow the
specifications down further by focusing on a fully
automatic approach where a target beat is being
substituted by a fragment selected from a database
holding a wide variety of music recordings. The
system needs to identify fragments that are similar
to the target beat and make an acceptable
substitution for a human listener. We conducted a
listening test where subjects were asked to express
their acceptance for each one of three different
substitutions on a three-point scale. In the
following sections we will first explain the chosen
methods for beat selection. Afterwards we are
going to describe the experimental setup and the
results obtained from the statistical analysis of the
collected data. Finally, we present our conclusions
and ideas for future work.

2. Beat Selection Methods

The main aspect we wanted to examine with
this experiment consisted in a comparison of
different representations of the beat properties. We
wanted to test their influence on the human
listener’s impression on the resulting substitutions.
Many of the descriptors that are commonly used



in audio mosaicing are genuinely computed on
single, overlapping STFT frames of 10-100 ms
duration. That means a beat of for example 750
ms might easily comprise more than 100 different
values of a single, scalar descriptor. Keeping all of

those, however, is not practical for several reasons.

First, it would require a lot of memory and
processing time to search for a match in the
database. Secondly, it is desirable to achieve a
more generalized representation, since we are
interested in a similar, not in an identical match.

In contrast to the case of similarities of full
songs, representations considering only plain
statistical properties on the beat level are missing
an important aspect for the chosen setup: the
timing of the musical events within the beats. We
tested two methods to overcome this problem by
considering sub-segments within each beat. Both
methods are starting exactly from the same frame-
level features. For our experiment we restricted
the selection to two elementary features in the
style of Jehan’s approach [04]. They were
computed for each STFT frame of 1024 samples
with 50% overlap.

The timbre and loudness properties were both
covered by the bark band enpergies, a 25-
dimensional vector with the accumulated energies
of the STFT bins falling into the same bark band
(see Zwicker [05] for a definition of bark bands).
As a preprocessing step we applied a filter which
mimics roughly the frequency response of the
human auditory system. The accumulated energy
values were converted to log-scale.

The pitch properties were reflected in the
harmonic pitch-class profile (HPCP) developed by
Gomez [06]. This 36-dimensional vector contains
basically the accumulated energies for each pitch
class of the well-tempered scale mapped into a
single octave at a resolution of 1/3 semitone. Each
vector has its maximum normalized to one. For
details on the computation please refer to [06].

2.1 Method A: Onset-based Grouping

For this method we first utilize an onset
detection algorithm (provided from a research
collaborator) in order to obtain the locations of
sound onsets in the music signal. State-of-the-art,
fully automatic methods achieve around 70% of
correct detections (average F-measure, see [07]).
However, for testing the approach under realistic
conditions and also for practical reasons we did
not perform manual annotation or editing of the
onset locations.

In a second step we then unified the beat and
onset locations. This was done by applying

heuristic criteria on the data with two objectives:
avoiding fragmentation into too short pieces, and
focusing on major changes in the music audio
signal. Onsets refer to the beginning of a new
sound event, which in general causes an increase
in acoustic energy in the audible spectrum. The
onset detection algorithm located the onsets at the
energy peaks, while we wanted to consider the
peak in energy increase. Therefore we computed
the first order difference function for each
dimension of the bark band vectors. We
accumulated only the positive values (increasing
energy) across all dimensions for each frame
transition. This accumulated energy increase was
then used to adjust the exact onset positions within
a range of four frames (~46 ms) to the front and
one (~12 ms) to the back. In case more than one
onset was located within a range of seven frames
(~81 ms) only the one with the highest energy
increase was kept. Then we performed the actual
unification of the beat locations with the onset
locations. If an adjusted onset was found within
the seven frame range (~81 ms) of a beat, we
adjusted the beat location to coincide with the
onset. Otherwise the beat location remained
unchanged.

With the beat and onset locations prepared we
could then arrange the storage of the feature data
for each beat. As for the bark band vectors we
decided to simply store the data of the first 10
frames of each onmset. The rationale behind this
approach was to preserve the afttack period as
accurately as possible, because it contains the
most important information about the timbre of
the starting sound event (see e.g. Grey [08]). A
second aspect is that in order to adjust the length
of the substitute beat to that of the target beat we
simply chop off the end of each sub-segment
accordingly.

For the pitch related feature we followed a
slightly different approach. In the first place we
wanted to be able to distinguish between sub-
segments that contained clear and stable pitches,
and sub-segments with highly varying pitch or
dominant percussive sounds. To achieve that we

introduced a “tonalness” measure 7, that is

computed for each HPCP vector Apcp, according
to the following formula:

36 2
T, = 50—(thcpk(i)J Q.1).
i=1

The measure takes advantage of the
normalization of the HPCP vectors. Two extreme
examples might illustrate this. If we consider a



frame that contains exclusively a single sinusoid,
we would find the entire spectral energy
concentrated within a single pitch class. After
normalization we would obtain a vector like (0 0 0
10000 ..). This vector has a “tonalness” value
of 49. On the other hand a frame that contains a
noise-like sound with its energy spread across the
entire spectrum would be found to have a rather
flat distribution on the different pitch classes.
After normalization it might look similar to (0.93
089 09 1 092 ..). The corresponding
“tonalness” is far below zero. For our experiment

we fixed the lower limit of 7, to zero.

For the database we computed a weighted sum
of the corresponding HPCP vectors of each sub-
segment. The weight for each vector was
determined by two components: its perceptual
energy (obtained from the bark band vectors) and

by its value 7, . The first component was

normalized to add up to one for each sub-segment,
while the second was left unchanged.

It is important to note that for the retrieval of
substitute beats with method A we searched across
beat boundaries. Since we preserved the
information about the original order of the beats
(see figure 2.1.), we could simply treat the target
beat as a sequence of sub-segments and look for a
substitute sequence without considering the beat
locations.

(Beat01) (Beat02)

/'—'/H
(Event 01) (Event 02)(Event 03) (Event 01)

Figure 2.1: Database structure for method A.

We followed a stepwise procedure to find the
ideal substitute. First, we applied a minimum
length criterion to make sure each retrieved sub-
segment was at least as long as its corresponding
target segment. Then we further reduced the
search space by comparing the “tonalness” values.
Since the “tonalness” was applied as a weight to
each HPCP vector without normalization we can
simply use the maximum value of the accumulated
HPCP vectors as an indicator for the stability and
clarity of the pitched content in each sub-segment.
The criterion we applied consisted in a tolerance
margin around the “tonalness” level of each target
sub-segment. We allowed a margin of £15. Figure
2.2 illustrates exemplary the effects of the two
pre-selection steps for method A (darker bars).
The number of candidates before pre-selection
was around 23.000 in each case.

For the remaining candidates we computed the
Euclidean distance between the bark band vectors
to the target. This distance was multiplied with the
Cosine distance between the accumulated HPCP
vectors. Finally, we multiplied the distance values
for each sub-segment in the candidate sequence to
achieve a final distance score. We then picked the
candidate sequence with the minimum distance as
the substitute. Each sub-segment of the selected
substitute was chopped in order to obtain a

sequence of the same length as the target sequence.
pre-selection examples
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Figure 2.2: Number of candidates after the two
pre-selection steps of method A and B for the first
ten items in the test set.

2.2 Method B: Fixed Length Grouping

This method operates on a lower abstraction
level than method A. For a fair comparison we
used the modified beat boundaries that we
obtained from method A, but otherwise the onsets
were not considered at all. Instead we performed a
decimation of the feature data by simply grouping
together every five consecutive frames (~60 ms).
For the HPCP vectors the database was generated
in the same manner as with method A. We
followed a similar approach for the bark band
vectors this time, except that the “tonalness™ was
not considered as a weight here.

With method B we queried directly on the beat
level. Again, a stepwise procedure was applied.
First, only beats with at least the same length as
the target beat were considered potential
candidates. Other than with method A we adjusted
the length of each candidate by simply chopping
off the part exceeding the target beat. Secondly,
the same “tonalness” criterion as with method A
was applied. The “tonalness™ of all groups of the
potential substitute had to lie within the tolerance
margin of their corresponding target group. The
effects of the two steps for method B are
illustrated in figure 2.2 above (lighter bars). The
number of candidates before pre-selection was
always 9490. To compute the final distance score



we then followed the same procedure as described
for method A.

2.3 Method C: Random Selection

This selection method was included as a
baseline reference in order to get a better idea of

the absolute performance of the other two methods.

Substitute beats were chosen completely at
random with only two restrictions: their length had
to be greater or equal to the target beat, and they

had to be from a different track than the target beat.

3. Experimental Setup

3.1 Selection of the Audio Data

The music database for this experiment
comprised a total of 171 30sec-long excerpts from
distinct music tracks adding up to a total of 9490
beats. Tracks originated from a wide variety of
genres and styles containing Electronic Dance,
HipHop, Rock, Pop, J-Pop, Acid Jazz, Blues,
Funk, Dub, Punk, Metal, Classical, Oldies, Latin,
and World. The audio data is of commercial CD-
quality and had been converted to 44.1 kHz, mono
format. The beats had been manually annotated for
the excerpts by two professional musicians.

In a first stage we selected two beats from each
track in the database at random. We then used
these 342 beats as targets for the three different
methods. Since we wanted to obtain ratings by
each subject on the entire test set, we had to
significantly reduce the number of items. To do so
we first removed those items for which at least
two of the methods had found an identical
substitution. The rationale behind this step was to
focus on the differences in performance between
the three approaches. This left us still with 305
items in the data set. For further reduction we
selected the 28 best matches in terms of the
similarity measures for each of the methods A and
B. By chance this selection gave us a three third
mixture consisting of 14 tracks appearing in both
lists, 14 tracks appearing in list A but not in B, and
14 tracks appearing in list B but not in A.

3.2 GUI of the Experiment

We designed a simple GUI in Tcl/Tk using the
SNACK package to handle audio playback. The
GUI is shown in figure 3.1 below. Subjects were
enabled to listen as many times as they liked to the
original and the modified three-beat samples.
They could rate each of the modified samples
individually on a three-point scale with the levels
“Bad!”, “OK.”, and “Good!”. A neutral category

named “Can’t tell.” was additionally provided.
Once the subject clicked the submit button the
ratings were stored in a text file and could not be
modified anymore.

BeatMatch experiment

We replaced the center part of the following short music

excerpts with material from different other music tracks.

How well does it fit in?

criginal| variation 1| vaistion 2| vasiation 3
=N Good ~ Good ~ Good
oK oK oK
Bad! ~ Bad Bad
3 : ] 42 ratings left.
& Canttel “ Canttel % Canftlell s

Figure 3.1: Snapshot of the GUI for the listening
experiment.

The sequence in which the items were
presented was randomized for each subject. Also
the assignment of the methods to the buttons was
randomized for each single rating. Subjects had no
knowledge about the beat selection methods
applied in the experiment.

4. Results

A total of 20 subjects participated in the
experiment. Each of them completed the entire test
unsupervised at their own computer and sent back
the results by email. We analyzed the obtained
data with statistical methods in several ways.

4.1 Average Ratings per Method

We compared the average ratings for each of
the methods across all items and subjects. As can
be seen from figure 4.1 method A received the
best ratings, followed by method B, with method
C being the worst of the three. All differences are
statistically significant (with p>0.99). Neutral
ratings (category “Can’t tell”) were excluded from
the averaging. They accounted for less than 3.7%

of the ratings with either method.
average ratings (with 95% corfidence intervals)
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Figure 4.1: Overall average ratings (1=Bad,
2=0K, 3=Good).



We can also observe that overall only an
intermediate level of satisfaction was achieved
despite the selected items were already taken from
the best 10% of matches in the database according
to the applied distance measures.

4.2 Rater Agreement

We computed raw rater agreement indices for
the different satisfaction levels for each method.
The purpose of this analysis was to see how
subjective the ratings are. Raw rater agreement
indices reflect the proportion of actual agreements
among raters compared to the maximum possible
number of agreements.

In figure 4.2 we provide the total agreement
indices as well as the specific ones for each rating
category as the broad colored bars. The white
rectangle within each bar corresponds to the 95%
confidence intervals for a randomized distribution
with the same base rates. The emerging pattern is
that subjects tend to agree significantly beyond
chance level on the two extreme categories. In
contrast, the agreement for the neutral and the
intermediate categories hardly reaches statistical
significance and could be attributed mostly to
chance.

05

rater agreement
(C_ICan't tel. Il Bad! [__] OK. [l Good! Il total|

agreement proportion

Figure 4.2: Raw rater agreement indices with
95% confidence intervals (white rectangles).

4.3 Pearson Correlations

As a third type of analysis we computed
several correlation coefficients with other
variables. At first we tested whether the rating
levels were correlated with the rating order, which
was not the case.

The next correlations were based on the
average ratings for each item and method across
all subjects. Here we first tested for correlations
between the ratings for the different methods. All
pairs turned out to be highly correlated with 32-
55% of the variance being explainable by the
rating for the other method (see table 4.1).

method \ method | B C
A 57 1 .62
B - .74
Table 4.1: Correlation coefficients for average
ratings between the different methods.

This could be caused by two things. It could be
that for certain types of music the beat
replacement in general works better or worse than
for other types. So no matter which selection
method is used, the results will always be rather
good or rather bad. On the other hand, since we
always presented the substitutions for all three
methods in parallel, it could simply be the case
that subjects had the tendency to adjust their
ratings close to each other avoiding big
discrepancies.

Another interesting observation was that for
each of the three methods the ratings showed
negative correlations with the target beat duration.
So it was in general perceived more disturbing
when a beat in a slow musical piece was replaced
than in the case of a fast piece. This correlation
was the strongest in the case of random selection
(r=-.43). However, there was no significant
correlation with the number of detected onsets in
the target beat, neither with the distance score of
the selected substitutions. The latter is particularly
noteworthy, because it shows a deficit in the
distance computation methods to reflect human
judgments on the finer scale.

As a final test we tried to investigate the
effect of the pre-selection steps during the
retrieval procedure. To do so we correlated the
average ratings per item with the number of
potential substitutes left after each pre-selection
step. The results are shown in table 4.2,
statistically significant values are slanted.

Pre-selection \ method A B C
1. duration 21 .34 .19
2. “tonalness” .05 09 42

Table 4.2: Correlation coefficients for average
ratings with number of candidates after pre-
selection steps.

Basically all results show no significant
correlation with two exceptions. The duration pre-
selection seems to have a bigger effect for method
B than in the case of method A, despite it is much
less restrictive (see figure 2.2). It is notable that
with the further reduction by applying the
“tonalness” criterion the number of candidates
becomes completely uncorrelated again for
method B, although this step means a massive
reduction in most cases. For method C the
“tonalness” criterion was not applied. The clear




positive correlation can be explained by
considering that it is more probable to pick up an
acceptable replacement by chance when there are
many suitable candidates in the set.

5. Conclusions

We reported the results of a listening test
comparing three different methods for automatic
beat substitution in short musical audio excerpts.
Our results revealed that an approach considering
onset locations — even though error prone — might
reach better acceptable results in automatic beat
substitution. Our observations from the correlation
tests indicate that a criterion to pre-select
substitution candidates based on their “tonalness”
helps in making the search much more efficient.
Overall the feature representation and retrieval
methods still need to be improved as they
currently only achieve intermediate acceptance.

6. Future Work

For audio mosaicing applications like the one
reported here the size of the database is critical.
Even short musical excerpts contain a big variety
of distinct properties that are impossible to match
if there simply is no adequate item in the database.
Future work might consider allowing certain
modifications of particular properties in order to
provide better coverage of the parameter space
with a smaller database. Prominent examples
would be adjustments of loudness or pitch. This
requires of course a distance metric which takes
these adjustments into account during the search.
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