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ABSTRACT

This paper discusses the problems underlying the inference
of surfaces from their boundaries. Humans perceive definte 3-
dimensional shapes from 2-dimensional boundaries, though they do
not provide sufficient constraints on determining the surfaces
they bound. This fact implies that some natural regularities are
employed. One such regularity is that if there is no other evi-
dence, then boundary segments are usually perceived as lines of
curvature, which impose restrictions on the computational inter-
pretation of the surfaces they bound. A representation of surface
shape by a net of lines of curvature inside the boundary is
proposed, from which surface orientation can be computed. An
algorithm for knitting the net and demonstration examples are
presented.
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1. INTRODUCTION

As the computer vision research
deepens and broadens, the classical
problem of interpreting and constructing
line drawings is drawing new attention
[1,2,3,4,7]. Line drawing is probably
the most abstract and efficient means of

describing our three-dimensional world -

in a two-dimensional manner. Therefore,
line drawings have very often been used
in human communications and is poten-
tially very useful in human-machine
interfaces. It is so effortless for us
to interpret a line drawing that we
rarely pause to ask ourselves how we do.
As we try to answer, however, we realize
that it is a difficult question.

An intermediate goal of inter-
preting line drawings is to derive sur-
face orientation from the boundaries[2].
The initial approach to interpreting
line drawings is line labeling[5,7,10],
which makes clear how the surfaces meet,
but not the surface orientaion,.
Following it, Barrow and Tenenbaum[2]
propose a three-step model for inter-
preting line drawings: classifying lines
to extremal and discontinuity bounda-
ries, interpreting 2-D image curves as
3-D space curves, and finally interpola-
ting the surfaces. They propose the
smoothness and planarity constraints for
interpreting the image curves. They also
suggest an interpolation technique that
reconstructs surfaces from the known
surface orientation along the boun-
daries. Other related work can be found
in Brady and Yuille[3] and Barnard and
Pentland[1]. Unfortunately, all these
approaches focus on general principles,
and produce satisfactory results only in
limited special cases.

This paper proposes a new approach
to inferring surface shape from a geome-
trical point of view. The boundaries are
usually not arbitrary curves on the
surfaces, but the special ones that
carry more information than others.
Observations indicate that we tend to
perceive the 2-D image boundary segments
as lines of curvature on the surfaces
they bound. This agrees with, and is
based on, the fact that we usually use
lines of curvature as boundary curves to
describe surfaces (see Brady et al.

[41). Lines of curvature are defined
as the integrals of the directions of
the greatest curvature and the least
curvature. They form an orthogonal fami-
1y of curves covering the surface (ex-
cluding umbilic points, where the normal
curvature is equal for any direction)
simply and without gaps[9]; for example,
the meridians and parallels on a surface
of revolution, and the straight lines
and parallels on a cylindrical surface.
Their projection onto the image plane
gives a description of the surface. We
propose that a net of lines of curvature
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on the surface is useful as an inter-
mediate representation of the surface,
from which surface orientations can be
estimated up to a certain degree of
accuracy[8]. We prove that a class of
surfaces has the property of constant
ratio intersection of lines of curva-
ture, and finally propose an algorithm
for knitting the net over surface and
demonstrate it with implementation
examples.

2. THE LINE OF CURVATURE REGULARITY

A boundary is the representative of
the surface it bounds. Although it is
clearly underconstraining, we perceive a
definite 3-D shape (up to a Necker re-
versal)., This fact implies that some
natural regularities are employed in the
inference process[9,10,12]. Therefore,
only if we understand what they are and
how they carry surface information, can
we recover the surface shape from the
image boundary segments. The problem
then becomes one of discovering the
natural regularities, Various observa-
tions indicate that one such regularity
is the 1line of curvature regularity: In
absence of other evidence, the boundary
segments in image that can be inter-
preted as (3-D) lines of curvature on
the surface they bound should be inter-
preted so.

Mote that we intentionally use
"curves" to mean 3-D curves and "seg-
ments" to mean their projections onto
the image plane.

A. Interpretation as Lines of Curvature
Is Reasonable

Suppose that we try to describe a
surface by line drawing. There are two
types of boundaries; one is the extremal
boundaries and the other is the discon-
tinuity boundaries along "cut" by us. To
describe the surface effectively, we
never choose an arbitrary path of "cut".
Rather, we choose special curves that
are descriptive. These special curves
are usually lines of curvature, and
sometimes asymptotes on parabolic sur-
faces(as in the case of helicoid[4]).
The extremal boundaries are determined
by the surface itself and the viewing
direction (we assume the orthogonal
projection in this paper). Still, there
exist many surfaces whose extremal boun-
dary curves are inherently lines of
curvature, no matter where the viewpoint
is (e.g.y the surfaces of revolution).
Since the curvature variation on a sur-
face is limited by the greatest and
least curvatures, it 1is postulated that
the lines of curvature carry more infor-
mation about the surface than any other
curves on the surface. This may explain
why we tend to perceive the boundary
segments as lines of curvature; it is
because we require the boundary convey
as much information about the surface as



possible. A strict proof of the postula-
tion remains an open question.
B. Boundary Segments as Lines of
Curvature
It is easily understood from the
definition of lines of curvature that we
can bound a surface (excluding umbilics)
with four curves, if they are all lines
of curvature, except for the case of a
conical surface where one of them de-
generates to a point. Some examples are
illustrated in Fig. 1. A11 the segments
can be interpreted as lines of curva-
ture, and the surfaces are perceived as
a cylindrical, an elliptic and a parabo-
lic surfaces, respectively. The four
segments are grouped into two pairs, A
to B, and C to D; one pair is of lines
of greatest curvature and the other of
Tines of least curvature,
It-is generally not hard to divide
a closed boundary into segments in
image, if the boundary is truly composed
of lines of curvature. It is impossible
for two lines of curvature to bound a

surface, because there exists at most
one line of curvature through two points
(not umbilics) on a surface. If a sur-
face is bounded by more than four lines
of curvature, the problem can be simpli-
fied by dividing the surface along
line(s) of curvature into smaller ones.
If a surface bounded by three segments
is given, we interpret it as a conical
surface bounded by three lines of curva-
ture; one pair consists of a segment and
a point., If we do not know which of the
four segments degenerates to a point,
then amboguities will appear in the
surface interpretation. The boundary
shown in Fig. 2(a) has three interpreta-
tions as a conical surface.

Of cource, not all boundary curves
are lines of curvature. To know that a
segment is not a line of curvature, we
need some evidence suggested by the
neighboring surfaces. In fact, the sur-
face depicted in Fig. 2 is more likely
perceived as a part of a cylindrical
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Fig. 1 A cylindrical, an elliptic

and a parabolic surfaces
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surface. Adding another segment makes it
explicit (Fig. 2(b)). The surface
bounded by the segments D and A is per-
ceived as a circle or an ellipse. The
interpretation as an ellipse is more
likely because the adjacent two surfaces
suggest a circular cylinder which is
more likely than an elliptic cylinder.
Thus, in summary, we need information
interflows across surface intersections
and higher level cooperation among the
surfaces to determine which boundary
segments are lines of curvature and
which are not.

3. A NET REPRESENTATION

Lines of curvature form an orthogo-
nal family of curves that covers the
surface simply and without gaps like a
piece of cloth, If sparsely sampled, it
is Tike a net (in the sense of both two-
dimensionality and three-dimensionali-
ty). Such a net is originally used by
Stevens[8], who studys the interpreta-
tion of contours across surfaces. He
suggests that the "parallel" contours be
interpreted as lines of curvature on a
cylindrical surface. They and the re-
covered straight 1lines, the rulings
(also lines of curvature), form a net
over the surface.

For an arbitrary smooth surface,
lines of curvature are generally not

"parallel”, but smoothly deformed. A
boundary curve can be thought of as
obtained by moving the curve on its

opposite side along the way guided by
the other pair of curves. This is essen-
tially a problem of interpolation. The
general principle one should follow is
"No news is good news"[6]. Thus the
deformation should be kept as smooth and
planar as possible; we call smoothness
and planarity together "least variation"
in both position and orientation., Recall
that the only source of information is
the boundary; the shape information that
can be recovered must be reflected by
the boundary.

The net representation is a bridge

) I47))

Fig., 2

Possible ambiguous interpretations



between 2-D boundary and 3-D surface
orientation. Once the net is knit in
image, the surface orientation can be
estimated. The lines of greatest curva-
ture and the lines of least curvature
intersect each other at a right angle in
space, but they are foreshortened to
obtuse angles in image, Stevens[8] pro-
poses the bisector method to estimate
the surface orientation at each inter-
section which is expressed by tilt and
slant, The more obtuse the angle, the
more accurate the estimation. If the
obtuse angle reaches two rigth angles,
the surface orientaion is uniquely de-
termined. The slant is a right angle,
and the tilt is the normal angle of the
image segment.

Stevens[8] also proposes a method
of propagating the surface orientation
along the parallels on a cylindrical
surface, from places where it is deter-
mined accurately to places where it is
not. In image, a parallel intersects the
straight rulings, which have a constant
orientation, at different angles. As
shown in Fig. 3, when the angle B1
changes to B2, we have the equation

- tanzi tanpt =tant2 tanpz,
where mand 2 are the tilts., If 71, B1
and B2 are known, 72 can be calculated.

However, for an arbitrary smooth
surface, both the 1lines of greatest
curvature and the lines of least curva-
ture change their orientations. As shown
in Fig. 4, suppose that” when we move

along a line of curvature from an inter-
section to the next one, V turns to v'
and U turns to U'. Provided that the
changes are not too great, we can modify
the method proposed by Stevens into a
two-step approximation method. Assume
AB2>4B1 (without loss of generality). We
first fix U (let 4AB1=0) and calculate a
new tilt due to only AB2. Then we fix V'
and calculate a new tilt due to AB1. The
obtained tilt is the required one. Once
the tilt is determined, the slant can
also be calculated., Therefore, after the
surface orientation at the most obtuse
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Fige 3 Tilt variation from inter-
section anglevariation on

a cylindrical surface
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angle is determined, we can propagate it
along the Tines of curvature to all the
other intersections by the method just
described.

4. AN ALGORITHM FOR KNITTING THE NET

Since how to knit the net depends
on how the lines of curvature "flow"
over the surface, we first present a
theorem that states the property of
constant ratio intersection of lines of
curvature over a class of surfaces, then
propose an algorithm for knitting the
net of lines of curvature in image, and
finally give examples and discussions,
A. TheoremofConstantRatio

Intersection

Before we present the theorem, we

first fix notations and give preparatory
explanations.

A surface can be expressed by using
the lines of curvature as the parametric

lines. Suppose that the intersections
are P, x(ul,v1t), Q, x(u2,v1), R,
x(u2,v2), and s, x(ul,v2) (Fig. 5). The
four boundary segments are then
x=x(u,v1), ulsusgu?2,
x=x(u2,v), vlisvgve,
x=x(u,v2), ul<usu?2,
x=x(ul,v), vigvgva.
By constant ration intersection of
the lines of curvature u=const., we mean

d [ [ul+k(u2-ul) [dX d—&du/ u2/dX —dldl):o. O0<k<1
dv\ Jul du du ul*du du :
j.e., a line of curvature u=ul+k(u2-ul)
divides the arc length of any line of
curvature v=const. that it intersects at
the same ratio. Similarly, we can define
constant ratio intersection of the lines
of curvature v=const..

THEOREM:

(1) If the surface patch (that is
bounded by lines of curvature and wi-
thout umbilics on it) is taken from a
surface of revolution, then a meridian

at a constant
intersects any

intersects any parallel
and a parallel

ratio,

4 Tilt variation from intersection
angle variation on a doubly-
curved surface

Fig.



meridian at a constant ratio inside the
boundary;

(2) If the surface patch is taken
from a generalized cone whose axis is
straight and normal to the planar cross
section, then a fluting intersects any
skeleton at a constant ration inside the
boundary; and

(3) If the surface patch is taken
from a developable surface whose
Gaussian curvature is positive, then a
line of curvature other than a ruling
intersects any ruling at a constant
ratioinside theboundary. [end]

A proof of the theorem is given in
the appendix.

B. Algorithm

The algorithm reconstructs the
lines of greatest curvature and the
lines of ‘least curvature inside the
boundary. We first describe it and then
give explanations.

As shown in Fig. 6, the segments
a0-al, b0-b1, c0-¢1 and d0-d1 bound a
surface. The points a2, b2, c2 and d2
are the center points that divide the
segments into equal chord lengths. The
points a3, a4, b3, b4, c3, c4, d3 and d4
are the center points of the new seg-
ments. We can go further until the unit

TV oswvy)  Rw)
Put,v) Q(uz,v1)
w

Fig. 5 Parameterized coordinate system

Fig. 6

A net-knitting algorithm

segment is sufficiently small. We first
find a point having both an equal dis-
tance to the points a2 and b2, and an
equal distance to the points c2 and d2,
which we regard as the intersection of
the segments a2-b2 and c2-d2.
Simitarly, we can then find the
intersection of the segments a2-ab2cd2
and c3-d3. Repeating this process, we
have two point sets that are dense
enough to approximate the segments a2-b2
and c2-d2, two lines of curvature.
Interestingly, they divide the surface
into four subsurfaces, to which we can
apply the algorithm described above

until the net is fine enough to approxi-
mate the surface. Note that the algo-
rithm needs only a small modification,
when one of the four boundary curves
degenerate to a point.

The algorithm is based on three
assumptions: (1) both the lines of
greatest curvature and the Tlines of
least curvature have the property of
constant ratio intersection; (2) the arc
center of each segment in image is the
projection of the arc center of the
corresponding curve; and (3) the arc
center of each segment has the same
chord length to the two end points.

If the assumption (1) holds, then
we can draw a line of curvature ‘through
the arc centers of the boundary curves
of each pair. As stated in the theorem,
a broad class of surfaces possesses the
property of constant ratio intersection
of lines of curvature. Empirically, if
the boundary curves of each pair are
similar, the lines of curvature on sur-
faces which do not strictly satisfy the
assumption (1) can still be treated as
they do.

If the assumption (2) holds, then
the segments drawn through the arc cen-
ters of the boundary segments of each
pair are the projections of the lines of
curvature through the arc centers of
corresponding boundary curves. Because
of the foreshortening, this assumption
does not always hold. However, if the
curves of each pair are foreshortened to
the corresponding segments in nearly the
same way, then we can still draw Tines
of curvature through the arc centers of
the boundary segments of each pair,
though they are no longer the projec-
tions of the lines of curvature through
the arc centers of the corresponding
curves.

If the assumption (3) holds, then
we can find the arc centers of the lines
of curvature inside the boundary before
the complete segments are reconstructed.
Provided that the segments are curved in
a similar way, being based on this
assumption does not introduce error,
even if it does not hold strictly.

In summary, if these assumptions
do not hold, the obtained net only
approximates the surface. However, if



the curvature of'the boundary segments
is not too great, the error is within
tolerance.

C. Experimental examples and Discussions

. The algorithm has been implemented
on a Lisp machine. Two examples are
shown in Fig. 7 and Fig. 8. The output
nets are intuitively satisfactory. The
work to do yet is to search for the
largest (or the smallest) intersection
angle and to compute the surface orien-
tations at the intersections.

The algorithm can work well for
cylindrical surfaces; a generalized
example is that shown in Fig. 9, very

similar to that used by Stevens{[8].
Given two parallel straight line seg-
ments and two parallel curved segments
as the bounadry, the algorithm will knit
an accurate net of lines of curvature
inside the boundary, which can be iden-
tical with the net constructed by
Stevens., For cylindrical surfaces, the
assumption (1) holds strictly, while the
other two do not. The obtained nets are
accurate because the boundary segments
of each pair are very similar. Note that
the input boundary segments can be
either extremal or discontinuity edges.
Note that we can also apply the assump-
tion that boundary segments intersect at
a right angle in space to planar sur-
faces. A parallelogram as shown in Fig.
10 is always interpreted as a rectangle.
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Fig. 7 An example (a) boundary

(b) constructed net

(b)

An example (a) boundary

)

Fig. 8

(b) constructed net

Fig. 9 Boundary of a cylindrical surface

Fig. 10 A parallelogram interpreted as a
rectangle in space
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CONCLUSIONS

We have introduced a natural regu-
larity employed in human inference of
surfaces from boundaries; namely, in
absence of other evidence, the boundary
segments that can be interpreted as
lines of curvature should be interpreted
so. We have also proposed a representa-
tion for surface shape by a net of lines
of curvature inside the boundary, from
which surface orientations at the inter-
sections can be estimated. Finally we
presented an algorithm for knitting the
net and demonstrated some examples. It
is considered that if the world is cons~-
trained to objects of regular shapes,
such as the man-made objects, the des~
cribed algorithm will work satisfactori-
ly, on both line drawings and edge
images. However, it is also evident that
humans utilize more knowledge, not only
what has just been unveiled, in the
perception of line drawings of natural
scenes. Therefore, there is still a long
way ahead towards the complete under-
standing of line drawings. We hope that
this paper successfully makes it one
step closer.

5.

APPENDIX

[Proof] (1)When the z-axis is taken as
the axis of revolution of the curve
z=f(v), the resulting surface (Fig. 11)
can be given by

x= ( vcosu, vsinu, f(v) ).

The lines of curvature are the meridians
and the parallels, given by u=const. and
v=const., respectively. For the meri-

dians, the intearal
1*k(u2-u1) dX dXdu/ FX dX
ul du du ulNdu du

_is independent of v. For the parallels,

i2

C
Fig. 11 Surface of revolution
cfw,gaw)
Fig. 12 Cross section of

generalized cylinder
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the intearal
vlek (v2-vl) dX dX vk (v2-vD f1.1¢7 ()12
“ X e j. \/1 I (V) 1%dv
independent ot u.
(2)If the planar cross section
curve (Fig. 12) is given by
x= t(u), y= g(u),
the z-axis is taken as the v-axis of the
generalized cone, and the expansion
function is h(v), then the resulting
surface can be expressed by
x= ( h(v)f(u), h(v)g(u), v).
The lines of curvature are the flutings
and the skeletons, given by u=const. and
v=const.. respectively. The inteaqral

J‘ lek(u2-u1) 45 ax,_ Utk 2t} ,[, W2 lg" ())%6u

is

ul
1ndependent of v.
(3)When a developable surface has
positive Gaussian curvature, one set of
the lTines of curvature is the straight
lines. The surface can be rewritten as
x(u,v)=A(v)u+B(v).
The straight lines are then given by
v=const. and the other set by u=const..
The integral o
ul-k(..z'anx Xy, /(42 /A(v) A (v)dusk
ul
is independent of v.
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