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Surface Structure Curves:
Toward a Smooth Surface Sketch

Hiromi T. Tanaka, Daniel T.L. Lee, and Yukio Kobayashi

ATR Communication Systems Research Laboratories
Sanpeidai, Inuidani, Seika-cho, Soraku-gun, Kyoto, 619-02,Japan

We have been developing a framework for the visual representation of three-dimensional free-form
curved surfaces based a special class of surface curves which we call the surface structure curves. By
analyzing their properties, we attempt to construct the basis for describing the topological structures
of curved surfaces that give a global description of the surface geometry.

Surface structure curves are a set of surface curves defined by using viewpoint-invariant featires
such as surface curvatures, and their gradients and asymptotes from differential geometry. From these
surface structure curves, surface sketches of the surfaces by means of the topological structure of ridges
lines, valley lines, and enclosing boundaries of bumps, and dents can be inferred.

In this paper,; we define three types of surface structure points and five types of surface structure
curves in terms of zero-crossings, asymptotes and gradients of the Gaussian and mean curvatures.
We discuss their properties and usefullness in edge-based segmentation and description of a free-form
curved surface. Some examples of a surface sketch by the surface structure curves are shown.
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1 Introduction

Recent the development in range finding techniques
have made it possible to measure 3-D coordinate data
from object surface directly, and data aquired by tech-
niques are refered to as range data and stored in the
form (called range image or depth map ) where each
pixel contains the distance from a sensor to the surface
of objects.

Recent work in computer vision and robotics has cen-
terd on the problem of analyzing range images, i.e., de-
scribing and recognizing of various classes of 3D objects.
The surface shapes are more easily and unambiguously
computed in range image, than in conventional intensity
(gray level) images.

One of the most significant problems is what repre-
sentation should be chosen to describe and recognize ob-
jects effective. Our work address this problem of repre-
sentation of objects, especially, those taht are consisted
of smooth curved surface. Our main concern is what geo-
metrical descriptions that should be chosen as bases for
the purpose of range image segmentation, description,
recognition and reconstruction.

We can categorize various representation schemes pro-
posed [e.g.,1,2,3,5,6,7] into two classes, region-based and
edge(curve)-based representations. In general, the geo-
metrical bases for representation and recognition are ei-
ther a set of classified surface patches in the region-based
representation, or a set of surface feature lines(curves)
in the edge(curve)-based representation.

Gaussian curvature, an intrinsic property of the sur-
face, has been used primarily to classify surface points
to a set of surface patches. Such sets are, for instance,
planar patches for polyhedral surfaces; a set of spherical,
cylindrical, and conic patches for simply curved surfaces;
and a set of elliptic, saddle patches for smooth surfaces.
Several authors[Besl,Jain,Sato] worked on curved sur-
faces with additional surface curvature,mean curvature,
to obtain finer classification, up to eight types of surfaces
patches for smooth surfaces. In the process of surface
patches extraction, most methods adopt the iteration
scheme such as region-growing techniqus[1] or using con-
nectionist approach for the existence of certain types of
surface patchs[2]. The description in terms of such sur-
face patchs are sometime unstable when Occlusion are
present.

The use of surface curves to describe the global struc-
ture of the surface has been proposed by [3]. The curves
includeare lines of curvature, asymptotes, and parabolic
curves, but confined to having the simple geometrical

property of being planar. However, meaningful surface
curves are not necessarily being planar. Enomoto.[7)

proposed structure lines to capture and reconstruct a
smooth surface. Normal curvature and principal direc-
tions together with gradients and Hessians were used
to define structure lines. However such curves were not
invariant to change in viewing direction. He did not

discuss the view-dependency of structure lines.

In this paper, we propose three types of points, and
five types of curves, namely surface structure points and
surface structure curves as the geometrical bases for seg-
menting and describing a smooth curved surface. We
define them in terms of intrinsic properties such as zero-
crossings, asymptotes, osculating paraboloid, and the con-
sept of taking gradients of Gaussian and mean curva-
tures. This descriptions will turn out to be viewpoint
independent. :

The three types of structure points are:

1) peak, 2) pit, and 3) saddle structure points which
are the flattest/steepest (a point of highest curvature)
point in convex/concave elliptic and saddle regions;

The five types of structure curves are:

1),2) a peak/pit-bounding contour which is a parabolic
curve that enclose the boundary of a convex/concave
elliptic region;

3) a saddle-segmenting contour which is an asymp-
totic line that divide a saddle region into convex and
concave saddle regions;

4),5) a ridge/valley contour which is a line of mazi-
mum/minimum curvature which draws the ridge/valley
lines. Ridge/valley contours pass thorough all of the
structure points.

Fig.1 shows an example of surface sketch of an ellip-
soid drawn by surface strucure point/curves (over lines
of curvature of an ellipsoid). Three of the lines of cur-
vature are chosen as ridge contours, which are aligned
with the locally flattest/steepest direction and intersect
at peak points, globally the flattest/steepest points. The
surface of ellipsoid is effectively described by geometri-
cally meaningful points and curves. This example show
how surface structure point/curve can provide a natural
parameterization of a smooth curved surface.

® Peak point

Fig.1 A sutface structure sketch drawn by surface
structure points and curves,
,called peak structure point and ridge contours, over
the line of curvature of an ellipsoid.

2 Surface Curvatures

2.1 surface curvature([3,7]

We recall some basic definitions from differential ge-
ometry. In the case, where a surface S is given in the

formof z = f(z,y), we have X(u, v) = (z(u, v), y(v,v), 2(v, v)) =

(u,v,f(u,v)) as the parametrization of a surface S.

(2)
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Two vectors, X,,X,, where the subscripts denote
partial differentiation, form a basis {X,,X,} for the
tangent plane T(u,v) at the point X(u,v).

The intersection of S with a plane I' containing a
tangent vector t(u,v) € T(u,v) and a surface normal
n is called as a normal section of S at a point X(u,v)
along t(u, v). The curvature of a normal section is called
the normal curvature.The normal curvature is known
as the ratio of the first and second fundamental forms,
II/I and varies as a function of the direction (du,dv)
of tangent vector t(u,v) = duX.(u,v) + dvX,(u,v).
We refer the following as the normal curvature function
Adu,dv).

II  Ldudu + 2Mdudv + Ndvdv
Mdu,dv) = 5 = G dut 9Fdudo + Gdodo 1)
where E =X, - X, F =X,-X, =X,-X,,d=X,-X,
are the coefficients of I, and L = X, -n, M =X,,'n =
X, -0, N =X, - n are the coefficient of I1].

Two extrema of the normal curvature function, namely
the ) uub/ ing m normal cur wtures, are called
the principal curvatures k1,%2, (K1 = K2), and the cor-
responding directions, (£1,71), (&2, 72) given by the two

unit tangent vectors, W, Wz, where w;(u, v) = &;X, (4, v)+

7:X4(u, v) and i = 1,2, are called principal directions at
X(u,v). They are known to be orthogonal.

Let k1 = A(€1,m), k2 = A(€2,72) be extrema of the
normal curvature A(du, dv). Then we have,

- _ L& +2Mbm + Nn?

k1= Mé,m) = E&: +2F&m + G 2
_ L& +2Mém, + N2

K2 = Mé2,m2) = E¢Z 4+ 2Fém, + Gn3 ®

The Gaussian curvature K and mean curvature Hatre
defined in terms of these principal curvatures:

LN — M?

EG_F? )

EN+GL-2FM )
AEG - F?)

k1,2=H +VH? — K, where &1 2 K, (6)

Gradient of Surface Curvature

K=K,1K12=

-1
H=§(K1+Eg)=

2.2

We introduce the concept of a gradient over the space
of surface curvatures which is used to deal of surface
structure curves in later sections.

A gradient on a surface gives the direction to which
height is increased most.

The gradient on a surface S given by z = f(z,y),
where S : X(u,v) = (u,v,f(u, v)), is given in the fol-
lowing(3,pp.102]:

uG— vF yE_ uF
grad f = fEG—J;'z X +);5'G—fF‘ X, )]

where {X,,X,} is a basis for a tangent plane T(u, v).

Using same analogy, in surface of Gaussinan cuava-
ture, K(z,y) = £1(z,y),52(z,y), a gradient on a sur-
face Sy given by z = K(z,y) = x1(z,y, )k2(z, y), where
Sk X(u,v) = (u,v,K(u,)), can be similarly ob-
tained.

The gradient of K gives the direction of mazimum
variation of K at each point. Thus a gradK gives the
direction closer to a point of extremal curvature, a flat-
test/steepest point.

Since from the differential geometry; that is, a gradi-
ent of a surface is always orthogonal to the contour lines
of a surface, it suggest that grad K can be obtained at
each point along contour lines of equi-curvature, if a set
of equi-curvature contour lines are well defined over the
space of surface curvature.

Since the continuity of surface curvature is not guar-
anteed on a smooth surface which is differentiable up to
order 2, points of particular curvature level, say zero,
may not exist on the surface.

To accomodatethe use of gradient, which is defined
over a smooth function, into our surface curvature space,
where z may notcontinuous, we treat a surface of surface
curvature K (z,y) = k1(z,y)k2(z, y) as stepwise contin-
uous rather than discontinuous.

Suppose that the surface curvature is discontinuous
at a point where a level of ‘curvature has a jump from K,
to Kj in its neighborhood. At such point in our stepwise
continuous surface, we prefer to assign surface curvature
a real-range-value K where K, < K < Kj, rather than
leaving curvature undefined at the point. - For instance,
when we refer to zero-crossings of curvature, we mean
points at which a curvature is either zero or a sign change
in curvature has occured. ‘

Then over a stepwise continuous surface, we can asso-
ciate contour lines, each of which is continuous surface
curve and along which surface curvature is in a equal
level. Note that several equi-curvature contours of cur-
vature level K7, where K, < K’ < K, pass through a
point if a level of curvature has a jump from K, to Kj

in the neighborhood of the point. par In this manner,
we can obtain a gradient of surface curvature as a vector

normal to equi-curvature contour lines.

3 Geometric Interpretation of Gaus-
sian and Mean Curvatures

Both Gaussian-and mean curvatures are intrinsic sur-
face propertis which posses invariance against to rota-
tional and translational change. They describe surface
shape at each individual point on a surface.

3.1 Surface Classification

Any point on a sui'fa,ce can be classified into one of
eight distinct possiblities of surface types form the sign
of the Gaussian and mean curvatures[l]. They are:

(3)



.K>0,H<O0:
K=0,H<0:
K<0,H<O:
. K<0,H=0:
K<0,H>0:
K=0,H>0:
K>0,H>0:
K=0,H=0:

Peak Surface:
Convex-Flat Surface:
Saddle-Ridge Surface:
Minimal Surface:
Saddle-Valley Surface:
Concave-Flat Surface:
Pit Surface:

Flat Surface:

Bl I ol

We use this surface classification for the porpose of
range image segmentation. We will take each of surface
types as a region type, that is, a peak region consists of
a set points of peak type, a saddle-ridge region consists
of points of saddle-ridge type, and so on.

‘From this classification, we observe that the zero-
crossings(=parabolic points) of Gaussian and mean cur-
vatures play important roles in segmenting a surface into
distinct types of regions. For instance, a curve con-

sists of zero-crossings of Gaussian curvature(= parabolic
points) separate the surface into two distinct types, el-
liptic region and saddle region. Thus this class of curves
(of zero-crossings of Gaussian and mean curvaturecan)
can be used effectively to segment the surface accord-
ing to the above classification. We will use parabolic
points and minimal surface points to define our surface
structure curves, in Sec.4.

The adjacency among regions is preserved between a
peak and a convex-flat, a convex-flat and a saddle-ridge,
a saddle-ridge and a saddle-valley, and so on. The above
discussion is summarized in Fig. 2.

3.2 Surface Shape

For very point p of a surface S, these is a well-defined
quadratic surface which approximate S up to second or-
der at p. This quadratic surface is called a osculating
paraboloid[8]. We will use it to derive an analytic equa-
tion for each of surface structure curves in Sec. 3.

To investigate how the osculating paraboloids are de-
scribed in terms of principal curvatures ky, k2, and prin-
cipal directions;wy, Wz, we choose a particular local co-
ordinate system (wy,wz,n), where the origin is at p
and X, y, % axes are along the direction of maximam,
minimum curvatures and a surface normal, respectively.

We will refer coordinates in wq,wsz,n axes by ¢,7,
and 8 respectively. In our local coordinate system, the
coefficients of the first fundamental are defined as £ =
G=1,F =0[4].

Let us assume that a paraboloid is described in this
local coordinate system (w1, wz,n). Then the osculat-
ing paraboloid § = k(£,n) which approximate the neigh-
borhood of p up to second order is given as;

. EZ' + 172‘ ‘
V@/r)  (2/x2)

®)

h(Em) = 2(m6 + rar?) =

The shape of this paraboloid depends on the signs
of Gaussian curvature, K = k1, and its convexity is
determined from the signs of mean curvature,i(x; + 2).
The osculating paraboloid has the following four types.

1. Elliptic Paraboloid (K = w163 > 0): When K >
0,x162 > 0 have same sign, the surfaces is an elliptic
paraboloid;(Fig.3)

h(¢,n) = ,%(16152 + £21%)(9)

Fig.3 An elliptic paraboloid
An elliptic paraboloid intersects with planes paral-
lel to the (wy,wg)-plane in ellipses, while it inter-
sects with.the other coordinate planes in parabolas

2. Hyperbolic Paraboloid (K = &%, < 0): When
K1,k have opposite signs(i.e.x; > 0 > k; > 0,
then the surfaces is a hyperbolic paraboloid;(Fig.4)

2

Mem) = —o— — 1
T em) ek
(10)

Fig.4 A hyperbolic paraboloid

An hyperbolic paraboloid intersects with planes par-
allel to the (w1, wz)-plane in similar hyperbolas,
while it intersects with the other coordinate planes
in parabolas.

3. Parabolic Cylinder (K = kyk2 = 0,but not £;
&y = 0): When K = 0,x1%; = 0, then the surfaces
is a parabolic cylinder;(Fig.5)

If k; =0 and &5 < 0, we have

h(¢, n) = %Nzﬂz 1D

If £, > 0 and k2 = 0, we have

L
h(€:m) = 568" (12)  Fig.5 A parabolic Cylinder

A parabolic cylinder intersects with planes parallel
to the (w1, ws)-plane in parallel lines, while it in-
tersects with the other coordinate planes in parabo-
las.

4. Plane: k1 = k3 =0

When k142 = 0 , then the surfaces is a plane.

(4)
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4 Surface Structure Curves

‘For the analysis of smooth surfaces, particular geo-
metrical features such as the zero-crossings, and gradi-
ent of surface curvature play important roles both in
segmenting and describing the topological structure of
a smooth curved surface.

A curve consisting of zero-crossings of Gaussian cur-
vature(= parabolic points) separates the surface into
two distinct types, elliptic region and saddle region, since
the parabolic points are located intermediately between
a elliptic region and a saddle region. Thus this class
of surface curves can be used to uniquely describe the
global structure of the surface geometry. We call such
curves surface structure curves. »

Since surface structure curves are defined by such in-
trinsic features, the definitions are viewpoint-independent.
In other words, the definitions of surface structure curves
are invariant to rotational and translational change of
the coordinate system.

In the following section, we will define first three
types of structure points, and then five types of struc-
ture curves. : '

4.1 Structure Points

We are interested in the special class of surface points,

where the curvatures of both lines of (maximum/minimum)

curvature reach their extrema(maxima/minima), or where
more than two lines of curvature intersect. We call this
class of points structure points, and define as follows.

Definition 1
A structure point of a smooth surface .S is a point where
the gradient of Gaussian curvature is zero.

We have three types of structure points according to
the signs of Gaussian and mean curvature:

K>0H<0

At a maximum/minimum peak structure point where
both the maximum and minimum lines of curvature

1. Peak structure points :

reach a negative (maxima/minima) extremal level
of curvature, a peak surface (a convex elliptic re-
gion) becomes the steepest /flattest.

K>0,H>0

At a maximurn/minimum pit structure point where
both the maximum and minimum lines of curvature
reach a positive (maxima/minima) extremal level
of curvature, a pit surface(a concave elliptic region)
becomes the steepest/flattest.

3. Saddle structure point: K < 0,H = 0

2. Pit structure points :

At a saddle structure point where the curvature of
both maximum and minimum lines of curvature become
zero, a saddle surface becomes the flattest.

Note that we will not define structure points on the
surface of constant curvature. Such surfaces are, e.g.,
spheres, cylinders, cones, toruses, each of which has its
own analytic form parameterized with a small set of pa-
rameters. Thus, we think that it is not useful to find ex-
tremal curvature points inside such (analytic) surfaces.

4.2 Peak/Pit Bounding Contour

Parabolic curves have not been considered to carry
rich geometrical information, because they do not man-
ifest in any particular simple forms. Since they are tran-
sitions from an elliptic region to a saddle region, they
should be useful for region segmentation. So we investi-
gate them more closely.

Individual analysis of each of principal curvature give
two distinct types of parabolic curves. One draws the
transition from a convex elliptic region to a saddle region
and the other from a concave elliptic reglon to a saddle
region.

When a smooth surface is crossed from inside a peak//pit
region to a saddle-ridge/valley region, a point is passed
where either the Gaussin curvature is zero, or the sign of
k1/k, curvature changes from negative/positive to poso-

tive/negative, while k;/k; curvature stays negative/positive

in its neighborhood.

Traversing such zero-crossings,(call convez/concave parabolic

points), along a boundary of a peak/pit region, we ob-
tain a surface curve which encloses a peak/pit region
and separate it from a saddle-ridge/valley region.

For convex parabolic points, we have the principal
curvatures as «; = 0,k; < 0, since G = k153 = 0, H =
(k1 +8) < 0, and 5, < &; < 0. From Eq.2,3,
the normal curvature at a convex parabolic point has
a maximum extrema, &3 = A(é;,71) = 0, and a min-
imum extrema Kk, = A(£z,73) < 0 in the direction of
w1 = (€1,m),w2 = (£2, 72) respectively.

For a concave parabolic point, we have the princi-
pal curvatures as x; > 0,k = 0, since G = gk, =
0,H = (%, + £3) > 0, and #; > £, > 0. The normal
curvature at a concave parabolic point has a maximum

(5)



extrema, #; = AMé1,m) > 0, and a minimum extrema
k2 = A(&3,72) = 0.

Hence we define a peak/pit-bounding contour as fol-
lows:

Definition 2 ‘
A peak-bounding contour is a set of convex parabolic
points whose. principal curvatures are ky = 0,k < 0,
given by the following conditions:

L& +2M&m + Ngi =0 (13)
LE +2MEms + Nn?

=Ky <0 14

BE +2Fbm, +Gnd (1)

where &, &3 are principal curvatures and wy = (£1,m),
wg = (£2,72) are principal directions.

Definition 3
A pit-bounding contouris a set of concave parabolic points
whose curvature property are k; > 0,k; = 0, given by
the following conditions:

E& +2Ftm + G}

=Kk>0

- L& +2Mégna + Ny =0 (16)

where &1, &2 are principal curvatures and w1 = (€1,71);
wg = (£2,72) are principal directions.

To get a geometrical interpretation of above condi-
tions, we describe them in our local coordinate sys-
tem (W1, wz2,n). As we mentioned in Sec 3.2, we have
known that the shape of the osculating paraboloid at
a parabolic point is a parabolic cylinder. Further, we
also know that convex/concave parabolic points are con-
nected in the direction of non-zero curvature.

For a peak-bounding contour we obtain the following
analytic.equation, i.e. (convez) parabola, from Eq.12.

1
0=h(0,n) = 5"’"2 n

,This concave parabola passes through the origin and
lie on the (wz,n) coordinate plane. A tangent line of
this parabola agrees with the minimal principal direc-
tion wa = (£2,72), and its curvature is £; < 0.

For a pit-bounding contour’ we obtain the following
analytic equation, i.e.,(concave) parabola, from Eq.11. .

0= hEn) = gmd (18)

“This convex parabola pass through the origin and lie
on the (wy,n) coordinate plane. A tangent line of the
parabola is with the maximum principal direction w,
and its curvature is k; > 0.

A peak/pit-bounding contour does not pass through
any of peak/pit structure points.

4.3 Saddle-Segmenting Contour

In a saddle region, the total convexity of a surface is
exchanged along a curve of the zero-crossings of mean
curvature(=minimal surface points). The amount of
convexity and concavity at a minimal surface point are
equal, i.e., Ky = —k; > 0. We may perceive that a
saddle surface of one side of the curve is more convex
and the other side is more concave. We call this surface
curve a saddle-segmenting contour and adopt it to be
the third surface structure curve.

For a minimal surface point, we have the principal
curvatures as k1 = —k2 > 0, since G = k162 < 0,H =
(k1 + K2) = 0. From this curvature property we have
the special geometry of minimal surface point such that[4],

Gaussian curvature is zero along the direction of asymp-
totic lines.

At a minimal surface point, from Eq.2,3, the nor-
mal curvature has extrema, £, = A(é1,m) = —k2 =
“X(Em) > 0, and A((6  &)/V2, (m £ m)/V3) =
0 in the direction of wi = (f1,m1), w2 = (é2,72),
(W1+W2)/VZ = (¢ ££&)/V2, (11 £12)/V2) respec-
tively. We define the saddle-segmenting contour as fol-
lows: ‘

Definition 4
A saddle-segmenting contour is a set of minimal surface
points whose curvature properties are k; = —k; > 0 and
k1 ka2 = 0 along the direction of the asymptotic lines((¢é1+
€)/V2, (. £ 12)/v/2) given by the following conditions:

L(er &) +2M (€1 25) (11 £m) + N(ma £m)? = 0 (19)

where K3, &9 are principal curvatures and wy = (€1,71),
wa = (3,72) are principal directions.

The osculating paraboloid constrained by the above
conditions is a hyperbolic paraboloidirom Eq.10. We also
know that minimal surface points are connected in the
direction of asymptotic lines((£1+£:)/ V2, (11 +72)/v2),
i.e., in the direction of zero curvature. Thus we ob-
tain an analytic form, two straght lines, for a saddle-
segmenting contour.

O=h(&n)=(£n=0

The two straight lines intersect at the origin at right
angle and lie on the (w1, w2) coordinate plane.

(20)

Two saddle-segmenting contour intersect at saddle
structure point along asymptotic lines.

4.4 Ridge/Valley contour

Ridge/valley contours are surface curves of ridge/valley
points which describe the global shape of regions. They
pass through peak/pit structure points, points of extremal
curvature. Thus ridge/valley contours are characterized
as bases for the description of surface shape, while the

(6)




last three structure curves are useful for surface segmen-
tation.

Ridge/valley lines are a set of points of whose princi-
pal direction are coincident with the gradient of Gaus-

sian curvature K. We call such points ridge/valley points.

where k;,1 = 1; 2 are principal curvatures. If G > 0 then
i=1ori=2, otherwise i = 2. wg = ({g,7g) is the
direcion of gradK.

In our local coordinate system (w1, w2, n), the shape

The gradient of K gives the direction pointing to a peak/pit- of the osculating paraboloid constrained by the above

structure point. :

In a peak/pit region, the ridge/valley contour is a
surface curve along which a direction of a gradient of
Gaussian curvature K is equivalent to one of principal
directions, w; = (£;,7y) or wg = (£2,72).

In a saddle-ridge/valley region, a point is on a the
ridge/vallye contour if a direction of a grad K is equiva-
lent to maximum principal directions, w; /ws = (£ /€2,
n1/72), not towe/w, = (€2/€1,72/n;). Note that there
is no ridge/valley. contour either in the pit/peak region
nor in the saddle-valley/ridge region.

Let wg = (£g,7g) be the direction of a grad K that
is obtained as the unit vector orthogonal to the equi-
curvature contour lines. For ridge/valley points, the nor-
mal curvature in the direction wg = (g, 7g) of gradK is

equivalent to maximum/minimum extrema, £, = A(§;,m9),

or k3 = A&, 7,)-
If w, = w;, the normal curvature in the direction

Wwg) is equivalent to the maximum extrema y, from

Eq.2,
L& +2M&n, + Nnj
= K3 (21)
E& +2F¢m, + Gn?
If w, = wy, the normal curvature in the direction

Wg) is equivalent to the minimum extrema k,, from
Eq.3,

LE + 2M¢,n, + N2
E& +2F&n, + G}

Hence we define a ridge/valley contour as follows:

(22)

= Ky

Definition 5
A ridge contour is a set of ridge points of which one
principal directions is coincident with the direction ofa
gradient of Gaussian curvature K and H < 0, given by
the following conditions:

L'f:"l' 2MEn, + N’l; = x:
Eg +2Ftm, +Gn2

where k;,1 = 1,2 are principal curvatures. If G > 0 then
i=1ori=2, otherwise i = 1. wg = ({g,7g) is the
direcion of gradK (= K1k2).
Definition 6

A walley contour is a set of valley points of which one
principal directions is coincident with the direction ofa
gradient of Gaussian curvature K and H > 0, given by
the following conditions:

sz +2M¢&n, + Nﬂgz
E£2+2F¢n, + Gn?

(23)

(24)

= K;

conditions is the elliptic paraboloid(from Eq.9) in a peak/pit
region and the hyperbolic paraboloid(from Eq.10) in a
saddle-ridge/valley region. In either case an analytic
form of ridge/valley curve become a parabola.
If VV‘1‘ = Wg,
1 4

0 =h(¢,0) = 5k (25)

The parabola lie on the (w1, n) coordinate plane. A

tangent line agrees with the maximal principal direction
w1 = (£1,m1), and its curvature is &;.

K wp = wyg,

1
0= h(0,n) = Sran’ (26)
The parabola lie on the (wz,n) coordinate plane. A
tangent line agrees with the maximal principal direction
w2 = (£2,72), and its curvature is «,.

At a peak/pit structure point, two ridge/valley cou-
tour are intersect along maximum/minimum line of cur-
vature. A ridge contour and a valley contour meet at a
saddle structure point.

An example of the surface structure curves is illus-
trated in Fig.6 . We illustrate second example of a sur-
face sketch o ver the surface of a double sinusoid given
by z = sin2rz *x sinmy;0 <2< 1,0 <y < 1.

5 conclusion

The surfce structure points and curves are defined on
a three-dimensional smooth surface which possesses up
to second order.

A set of structure points which are critical points on
smooth surfaces and locate a globally flattest/steepest
points, points of maximum/minimum curvature are then

- defined.

Five types of surface structure curves have been pro-
posed. The structure curves are the collection of parabolic
lines, a line of minimal surface points, and lines of maz-
imum/minimum curvatures . The five surface structure
curves are: peak and pit-bounding contours, a saddle-
segmenting contour, ridge and valley contours. They are
all geometrically meaningful curves and possess global
properties that enclose dents and bumps, and pass thor-
ough globally the flattest/steepest(i.e.,highest curvature)
points.

€7)



At each point on the surface structure curves, an an-
alytic equation, either a line or a parabola are defined.
We have derived the formulation by analyzing their be-
haviors of mazimun and minimum curvatures l€1,K,2 n-
dividually.

Surface structure points and curves can provide the
natural parameterization of a smooth surface. Examples
of a surface sketch shows that surface structure curves
can capture the global topological structure of surfaces
and are potentially very powerful and stringent discrip-
tors for three-dimensional free-form curved surfaces.

(0.0,0)

Fig.6(c)

<&
evesese Peak-bounding contour
- - - Pit-bounding contour
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Fig.6(a) Line drawing of the surface of a double si-
nusoid; Surface Sketch over four contours of Gaussian
curvature K (Fig.6(b) and over six contours of mean
curvature H
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