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Stereo Correspondence by Selective Search
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A stereo correspondence algorithm is described which first classifies edges in the images
using their intensities, gradient magnitudes, and gradient directions, and then establishes
correspondence between edges of the same type in the images. In this algorithm, correspondence
is achieved in two steps. In the first step, correspondence is established between contours in the
images, and in the second step, correspondence is established between points in corresponding

contours. This algorithm carries out the search selectively in order to achieve fast speed.



1. INTRODUCTION

Stereo is a method of determining the depths of objects in a scene using two images obtained from two similar cam-
eras that are displaced horizontally by a small distance. In addition to stereo, there are other methods that can determine
depth also. Generally, methods for depth perception are classified into active and passive.

Active methods use special lighting and determine depth either by time of flight or by triangulation. Methods based
on time of flight use a scanning mirror to direct a beam of light at a point in the scene and measure the phase shift of the
coaxially returned light to determine the time the light takes to travel from the scanner to an object and back. This time is
then used to determine the depth of the object in the scene [16] [30]. In methods based on triangulation, a grid of light is
projected to the scene, and by imaging geometry the depths of the grid points in the scene are computed [14] [17] [23] [29]

[31}. Although computation of depth by active methods is reliable and fast, the obtained depth values are usually coarse in
resolution, low in accuracy, short in range, and limited in scope. These methods are applicable to only indoor scenes where
controlled lighting can be utilized.

Passive methods, on the other hand, do not need any special lighting as they use natural lighting in the scene to deter-
mine depth and therefore, are applicable to both indoor and outdoor scenes. Passive methods are based on principles such
as stereo, focusing, texture gradient, perspective, and shading [18]. Among the passive methods, stereo produces the most
accurate depth measurements. Depth perception by stereo- requires determination of positions of corresponding points in
the images and the camera geometry.

The most difficult problem in stereo is determining correspondence between points in the images. Zero-crossings of
the second directional derivatives provide an abundance of points in the images that can be used in the matching. This
method, however, produces too many edges and matching is very difficult. Since zero-crossings in an image are points
where the gradient is either maximum or minimum, we should remove the minimum gradient edges (known as the phantom
edges) because they do not truly represent edges in an image [5). Small and noisy edges contribute to the matching error
also. By removing the phantom edges and noisy edge contours from the images we obtain fewer edges, but the matching
is still difficult because some edge contours appear different in the images even though they correspond to each other.
Geometric difference between the images is unavoidable since the images are from different viewpoints of a 3-D scene.
Some points may even be occluded in one image. An important problem in stereo is to identify the occluded points. For
occluded points, no correspondence exists and matching should be avoided.

Different stereo correspondence algorithms have been developed. Many algorithms use one form of constraint or
another to match the images. These algorithms produce a correspondence configuration that satisfies the constraints. In the
following, we first review the existing stereo correspondence algorithms and then describe a new algorithm which uses
information about the intensity, edge direction, edge magnitude, and shape of contours to establish correspondence between

points in the images.

II. PAST WORKS

Early algorithms in stereo correspondence use area-based correlation to determine correspondence between points in
the images [7] [10] [22] [24]). These algorithms use intensities in the images, and by template matching determine
correspondence between small areas in the images. Methods using area-based correlation have constantly been improved
18] [12], and in spite of some criticisms against them, they have been most successful in real applications. Many commer-
cial systems have been implemented using the area-base correlation method [11] [26] [34] [35].

The greatest criticism about the area-based correlation is that when an area containing parts of two objects that are at
different depths is used in the matching, that area will appear different in the images due to occlusion; therefore, a
mismatch may be obtained. Another criticism is that the intensity at a point on a non-matte surface may appear different
from two different viewpoints, and even though two areas truly correspond to each other, they may appear different, result-
ing in a mismatch. To reduce the effect of intensity difference between the images, gradients of the images, instead of the
original intensities, have been used [3].

The difference between an area-based method and an edge-based method is that in an area-based method, information
in a small neighborhood of a point is used in the matching, and although there may be dissimilarities between correspond-
ing areas, there also are similarities that can be used in the matching. In an edge-based method, information in the neigh-
borhood of a point is discarded and matching is carried out solely based on the information at the point. To compensate for
the discarded information, various geometric constraints are used to assist the matching process [1].

Most edge-based methods use zero-crossings in the images as points for matching. Some algorithms carry out the
matching in multiple scales. In these algorithms, matching is first carried out at a low resolution where matching is easy,
and then the result is propagated to higher resolutions where matching is more difficult [6] [9] [20] [25] [28] [32].
Although the idea of multiple scales--which uses edges at different spatial frequencies for matching--is a good one, there is
no method known that can determine true edges at certain frequencies in an image. Usually, to obtain edges at a given spa-
tial frequency, the image is artificially blurred with an appropriate Gaussian filter. Gaussian filtering, however, blurs sharp
edges as well as the blurred ones, and the obtained edges no longer represent edges of a certain spatial frequency in the ori-
ginal image. They are edges of a certain frequency in the blurred image.

Another problem with the multi-scale matching scheme is that edges from low frequency filters move from their true
positions and propagation of that information to subsequent levels could mislead the matching process. In general, match-
ing of edges obtained from a rather large filter should be avoided because many edges are displaced. Propagation of such
inaccuracies to subsequent levels could mislead the system, unless a continuum of filter sizes is used in the process. A con-
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tinuum of filter sizes, however, requires a tremendous amount of computation, which will make the stereo correspondence
process slow and impractical.

In contrast to the area-based correlation methods which have used intensities in small areas for matching, so far the
edge-based methods have used only the positions of the edges for matching. The objective of this study is to use different
sources of information at the edge points such as the intensities, edge magnitudes, edge direction, and shape of connected
edges to determine correspondence between points in the images. Before we describe our algorithm, we list below some of
the desired properties that a stereo correspondence algorithm should have. Then we evaluate our algorithm against these
criteria.

1. The algorithm should be able to identify occluded points in the images and avoid them in the matching.

2. It should produce global correspondence as well as local correspondence.

3. It should be applicable to any type of imagery.

4. It should match as many points in the images as possible.

5. It should avoid matching of noisy edges.

6. It should match points from the original images rather than the blurred images.

7. It should be fast.

The first item, occlusion, is very difficult to handle and many stereo correspondence algorithms simply ignore it. Hoff
and Ahuja [13] describe a method that integrates feature matching and scene reconstruction in order to predict occlusion.
Goshtasby [8] describes an algorithm that avoids matching of occluded points by carrying out a two-way search.

The second item assumes figural continuity and that assures correspondence between objects in the images in addition
to correspondence between points in the images. Item number three makes the algorithm practical, so that it might be com-
mercialized for general use. Algorithms that tend to work on only specific images, such as on random dot stereograms, will
have very little practical value, because in real life it is not always possible to artificially add random texture to a scene.

Item number four makes it possible for the output of a stereo matcher to be usable in reconstruction and further
analysis of the scene. The denser the depth map, the more accurate the reconstructed scene. Items number four and five are
contradictory in nature because many edges could be due to noise and should be avoided in the matching. Noisy edges are
usually weak and although some good edges are weak also, it is very difficult to distinguish between good edges and noisy
ones. Therefore, a safe strategy is simply to discard the weak edges. It is better to have fewer matches than to have some
possibly incorrect matches.

Item number six is required in order to obtain accurate depth measurements from the computed disparities. Methods
that smooth the images first before carrying out the matching allow some edges to move from their true positions, and
although correct matching may be obtained, the computed depth at the points will be incorrect. If image smoothing has to
be performed before the matching, the smoothing filter size should be as smait as possivlc in order (o minimize movement
of the edges.

Item number seven considers the practical aspect of an algorithm and requires that the algorithm be fast. A matching
algorithm that requires a few hours on a supercomputer has no practical value and would be contradictory to the true spirit
of computer vision which tries to automate visual tasks that are tiring or time consuming for humans.

In the following, an algorithm is described which first classifies edges in the images into various categories and then
matches edges of the same category in the images. In this algorithm, search is carried selectively rather than exhaustively,
to achieve high speed.

I1I. EDGE CLASSIFICATION

Given a point in one of the images, we know that the corresponding point exists on the same epipolar line (row) in the
other image. Often there are many candidate edges for a match. The difficulty in stereo correspondence is to find the correct
match among the candidate ones. In this study, before carrying out the matching, we classify the edges using their intensi-
ties, edge magnitudes, and edge directions. Then, given an edge point in one of the images, we carry out the search among
the edges that have about the same properties in the other image.

Stereo images are images of a scene obtained at the same instant from two similar cameras at slightly different
viewpoints. Therefore, corresponding points should have close intensity values. Otherwise, either signal to noise ratio is
small because of the low quality of the imaging system, or the point under study belongs to a specular and sharply curved
surface which produces different brightness levels when viewed from different viewpoints. If a high quality imaging system
is used and the scene does not contain sharply curved specular surfaces, we should expect that corresponding points pro-
duce about the same intensities. Similarly, corresponding points have close edge magnitudes and edge directions.

Classification of edges makes it possible to search for an edge only among a select set of edges that have about the
same properties. Classification of the edges should take place with proper threshold values. For example, edge directions in

the range T t0=E andiin the range Ix to -Tn define two thresholding intervals. Edges falling in the ranges iz oL

6 6 6
and 26£ to 7?" correspond to almost horizontal contours and should be avoided in the matching.

The gradient magnitude threshold values for classification of the edges may be obtained as follows. When we deter-
mine a histogram of the edges using their gradient magnitudes, if values at the 75, 70, 45, 40, and 10 percentiles are
my, my, ma, my, and ms, respectively, then a set of intervals for classification of the edges could be: 1) values greater than
my, 2) values in the range between m; and my, and 3) values between m; and ms. Edges with magnitudes less than m;
may correspond to noise and should be avoided in the matching. Overlapping intervals are used because the two images
may not have exactly the same edge properties. Some edges may fall on one end of an interval in one image and fall on the
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other end of the adjacent interval in the other image. Therefore, overlapping values should be used between adjacent inter-
vals in order to allow classification of edges with properties falling on the thresholding boundaries. Intensities may be used
to classify edges also. For example, those edges with intensities above the 45 percentile and those below the 55 percentile
make two categories of edges.

If we classify the edges using two edge direction intervals, three edge magnitude intervals, and two intensity intervals,
we obtain twelve categories of edges. If it happens that a category still contains a large number of edges, a finer set of
thresholding intervals may be used. Note, however, that when a small thresholding interval is used, since the edge property
along a contour may not be constant, the contour may break into two or more pieces, and because short contours are not
used in the matching, a sparser disparity map will be obtained.

Once edges are classified into different categories, first correspondence is established between contours of the same
category in the images, and then points in corresponding contours are matched. In the following, we describe the matching
algorithm in more detail.

IV. THE ALGORITHM

In this section we describe an algorithm that determines correspondence between contours in the images. Two con-
tours in the images cannot correspond to each other if they do not share at least one epipolar line (row). Among contours in
the images that have common rows, the ones having the most similar properties are assumed to correspond to each other.
Similarity between two contours is determined using their intensities, edge magnitudes, edge directions, and shapes.

Assuming two contours in the images share rows from r; to r,, we determine the dissimilarity between the contours

by:
L o Yoty 3 ledmL i, )-edmR i k)
E= 3 intL (i ,j)—imtR (i k) +0u Y |e i,j)-e ik
(ro—r+1)(oy+og+astoy) ’.-5, 551
ra ry
03 3 |eddL (i ,j)-eddR (i kl+oy 3 |L (i ,j—jmean)—R (i k—kmean)||. ()]
i=r, i=ry

In this formula, intL (i ,j), edmL (i ,j), eddL (i ,j ) show the intensity, edge magnitude, and edge direction at point (i,j) on a
contour in the left image. Similarly, intR (i ,k ), edmR (i k), eddR (i ,k ) show the intensity, edge magnitude, and edge direc-
tion of the corresponding point on the same row in the right image. jmean and kmean show the column averages of the
common segments of the contours under consideration in the left and right images, respectively. L (i,j —jmean) shows the
difference of column number of the contour in the left image at row i and jmean, and R (i ,k—kmean ) shows the difference
of column number of the corresponding contour in the right image at row i and kmean. o, oy, 03, and o4 show the rela-
tive importance of the intensity, edge magnitude, edge direction, and shape of contours in computation of the dissimilarity
measure. In relation (1), by changing the value of index i from r, to r,, we follow two corresponding contours and deter-
mine their weighted differences with respect to intensity, edge magnitude, and edge direction point by point. Note that the
dissimilarity measure is normalized with respect to the length of the common segment between the contours. Otherwise,
shorter contours will produce smaller dissimilarity measures. The fourth term in relation (1) shows the shape dissimilarity
between two contours. In this measurement, the two contours are aligned and then the cumulative distance between
corresponding points in the two contours is determined.

Since small and noisy contours could cause a mismatch, we consider two contours as candidates for a match if they
share more than a certain number of rows, i.e. r,=r>d. A very large threshold value avoids matching of many good seg-
ments, while a very small threshold value may mistakenly match a short and noisy contour with a long and authentic con-
tour. We will find the proper value for d in Section V.

Given a contour in the left image, we match that contour with contours in the right image that have at least d rows in
common. For each candidate match, we determine the dissimilarity between the contours, and the match that produces the
smallest dissimilarity measure is taken to be the correct one.

If the camera axes are parallel and aligned so that points in infinity have zero disparity, then when two points L(i J)
and R (i ,k) correspond to each other we should have j2k. This shows that a point corresponding to point L (i,j) lies on a
contour with column numbers smaller than or equal to j. If the maximum disparity of two images is known to be, say D,
obtained for example from the focusing information of the cameras [15], we should look for contours with column numbers
in the range from j—D to j for a match. This reduces the number of candidate matches and therefore, increases the
matching reliability. Of course, if the maximum disparity between the images is not known, the entire set of contours in the
right image should be searched for a match.

If for a given contour in the left image, we do not find a contour in the right image in the specified range of columns,
we conclude that the edge is occluded. Along with correctly identifying occluded contours, this algorithm could identify a
non-occluded contour as an occluded one if the contour corresponding to the given contour in one image was not extracted
in the other image. This could happen when in the classification process, a contour is segmented into little pieces and the
pieces are removed before matching is carried out. On the other hand, if the contour is really occluded from one image, but
there are some contours present in that image in the range where the search is being carried out, a mismatch will be
obtained. As we will see, however, the number of such mismatches may be arbitrarily reduced by classifying the edges into
arbitrarily finer categories of contours. :
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Once correspondence is established between contours in the images, correspondence between points on the contours is
easy because points on corresponding contours that fall on the same row correspond to each other.

Overall, the algorithm can be summarized ino the following six steps:

1. Determine the zero-crossings of the images with a small Gaussian operator, such as o=1.
2. Remove the phantom edges from the images.
3. Remove noisy contours of length less than { (say 10) pixels from the images.
4. Determine the intensity, edge magnitude, and edge direction of the remaining zero-crossings.
5. Classify the edges using their intensities, edge magnitudes, and edge directions.
6. For each category of edges,

a) Find the correspondence between contours using the dissimilarity measure of (1).

b) Find the correspondence between points in corresponding contours.

Next, we investigate the sensitivity of the parameters of the algorithm to the computed disparities.

V. RESULTS AND DISCUSSION

In this section we investigate the sensitivity of the algorithm to its parameters. We vary these parameters and deter-
mine how the behavior of the algorithm changes. Let’s denote the intensity, edge magnitude, and edge direction threshold
values by /, M, and D, respectively; the minimum number of common rows required for two contours to be a candidate
match by d; and the degree of importance of the intensity, edge magnitude, edge direction, and shape of edge contours in
determination of the dissimilarity measure by a,, 0, 013, and 04, respectively. Next, we investigate the influence of these
parameters on the reliability of the obtained correspondences.

d shows the minimum number of rows that two contours should share in order to be candidates for a match. Due to
the classification error, a contour in one image may be segmented into two or more pieces in the other image, and it is still
necessary to find a correspondence between the segments. When d is too small, a very small segment from one image may
be matched to many larger segments in the other image, and since a small segment contains very little information, a

mismatch may be obtained. On the other hand, when d is too large, many good contour segments will not be selected for
matching.

Since we allow edge directions as small as E, a contour of length ten and direction I wil occupy 10sin X or 5 rows.

Therefore, when the preprocessor removes all contours of length less than or equal to ten, the smallest value that we can
allow for d is five. As d increases, contours with a higher number of common rows in the images are used in the matching
and therefore, the matching will become more reliable. Increasing d, however, reduces the number of contours that are

matched and therefore a sparser disparity map will be obtained. A value from five to ten seems to be a reasonable
compromise.

Parameters o, o, 03, and o4 show the influences of the intensity, edge magnitude, edge direction, and shape of con-
tours in determining the dissimilarity between two contours. When a scene contains specular and curved surfaces, the
influence of intensity should be reduced, because specular surfaces look different when viewed from different viewpoints.
Also, if two dissimilar cameras or digitization processes are used to obtain the images, since intensities in the images may
appear different, oa; should be given a smaller weight compared to the other parameters.

The difference between edge directions in corresponding contours is mostly due to the geometric difference between
the images. In scenes with sharp depth variations o,; should be given a smaller value than when the scene contains smoothly
varying surfaces since dissimilar contours may be obtained. Note that edge direction should be measured with degrees
rather than radians in order to maintain comparable weights for dissimilarities computed from edge directions compared to
edge magnitudes. Edge magnitude varies with both intensity and geometric difference between the images.

Shape of contours is another measure which can be used to determine the correspondence between contours. If the
geometric difference between the images is not large (distance between the cameras is small and depth in the scene varies
smoothly), o, should be given a higher weight compared to o, 0, and a3. Again, note that the term corresponding to o

in (1) produces small values corresponding to the other terms. This is because the cumulative distance between two dissimi-
lar contours, when the contours are aligned at their centers of gravity, is much smaller than the differences of the contours
using their intensities, edge magnitudes, or edge directions. To make the four terms in (1) to contribute equally to the dis-
similarity measure, we should allow o, to be an order of at least ten greater than o, o, and 0. -

Although the behavior of the algorithm changes by varying the parameters of the algorithm, the algorithm stays stable
over a long range of the parameters. In an experiment, we even allowed three of the four parameters to be zero and the
algorithm still was successful in finding the correct matches. Only 2% error was obtained when only edge magnitude was

used. Once the edges are classified into different categories, very little information is needed to establish correspondence
between the contours.

Parameters /, M, and D classify the contours into various categories. If edges are finely classified, a more accurate
matching will be obtained. However, since fine classification of contours may cause a contour to be segmented into two or
more fragments, each belonging to a different class, and since small fragments are not used in matching, fewer matches are
generated, resulting in a sparser depth map. Coarsely classifying the edges results in more matched edges but also in a

greater number of mismatches.
In Figures 1 and 2 we show the results of applying this algorithm on two sets of images. The parameters used in both

cases were: 1,S55%,1,245%, 10%<M 1S60%, S0%<M 5, £-<D <, Zgﬂ)zsl—é’—t—, 0y =0,=05=1, 04=10, and d=5.
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Figure 1. (a) and (b) are the left and right images of a stereo pair, and (c) shows the computed disparities. Darker lines show
larger disparities.
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Figure 2. (a) and (b) show stereo images of an outdoor scene, and (c) shows their disparities.

We next evaluate the performance of the algorithm against the criteria given in Section IL

This algorithm establishes global correspondence as well as local correspondence between images. Once correspon-
dence is determined between points in the images, we know that correspondence between contours has already been esta-
blished. This higher level information which is obtained for free, may be used in analysis of the scene, for example for
object recognition.

There is no restriction on the type of images that this algorithm can handle. In general, though, the algorithm performs
better on man-made scenes where the images contain mostly long contours. In images of highly textured outdoor scenes
(such as the one in Figure 2), since a larger number of short contours are obtained, and since short contours are not used in
the matching, a sparse depth map will be obtained. If short contours are used in the matching a dense depth map will be
obtained, but at the same time the probability of mismatch increases.

Matching of edges due to noise may be avoided by removing the weak edges because edges obtained from noise are
usually weak. In the above experiments, 10% of the smallest gradient edges were removed from the images. The lower
bound of parameter M | is used to remove edges in the images obtained from noise. If noise is known to be strong, a larger
percentage of the edges should be removed from the images.

Item number four works in the reverse of items number one and five. In other words, if we allow our algorithm to
match as many points in the images as possible, we increase the probability of finding matches for noisy and occluded
edges. On the other hand, if we try to avoid matching of occluded and noisy contours, we have to sacrifice matching of
many good but weak edges also. This algorithm allows the user to select the degree of compromise between items one,
four, and five by choosing a proper set of input parameters. For example, if the lower bound of parameter M is increased,
a sparser depth map will be obtained but matching of edges due to noise will be avoided.

The proposed algorithm uses zero-crossing edges that are obtained from a small Gaussian operator. A small operator
is used in order to minimize artificial blurring of the images, and in tum provide highly accurate edge positional values. A
small operator will produce a large number of edges, but that is no problem for our algorithm because it can divide the
edges into different categories and match one category of edges at a time.

The proposed algorithm is very fast compared to many well known algorithms [2] [4] [6] [19] [20] [26] [27]. Once
zero-crossings of the images are determined, determination of intensity, edge magnitude, and edge direction at the zero-
crossings takes about one minute, classification of the edges into different categories takes about another minute, and
matching of the edges takes about two more minutes, for images of size 240x256 on a MicroVax computer. Although this
response time is not still real-time, a real-time response may be achieved if portions of this algorithm are implemented in

]
D
I



hardware, or a more high-speed computer is used.
VI. CONCLUSION

A stereo correspondence algorithm was described which is based on the observation that when a small number of
edges exist in two images, a reliable and fast matching will be obtained. Therefore, this algorithm first divides edges in the
images into various categories and then matches edges in the same category. Since an arbitrarily large number of categories
may be chosen, the number of edges that are to be matched at one time can be arbitrarily reduced. This mechanism provides
a highly reliable and fast matching.

The algorithm has a number of parameters that can be changed to control its behavior. The user has the ability to
choose the number of edge categories, the minimum length of a contour, and the weakest edge that should be used in the
matching. Although these parameters somewhat change the behavior of the algorithm, the behavior of the algorithm stays
the same over a broad range of the parameters. Therefore, the parameters may be fixed at appropriate values (such as the
ones used in Figures 1 and 2) and the algorithm be applied to a broad range of images without having to change the param-
eter values.

In this algorithm, high computational speed is achieved by selectively carrying out the search. When an edge is taken
from one image, a search is carried out in the other image only among a selected set of edges that have about the same pro-
perties. This algorithm can determine the correspondence between stereo images of size 240256 in only a few minutes on
a MicroVax computer.
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