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ABSTRACT

In Marr's vision theory, object recognition begins where the object-centered
3D model representation completes. On the contrary to his claim, there is
evidence to say that in human vision object recognition is not done between
object-centered 3D models, but between 2D retinotopic patterns of the image
and the memory. More importantly, based on this representation, objects can
be learned. This paper first comments on Marr's computational approach to
vision, and then discusses the superiority of 2D viewer-centered
representation with respect to object learning and recognition. Finally we
present the blueprint of a Self-Learning Active Vision System (SLAVS), which
includes segmentation and gaze control, recognition, learning, and spatial
reasoning and feedback modules. The main feature of this system is that
each time a 2D pattern is successfully matched, it is learned and organized
into the corresponding object model. Thus the system has its history and
arrow of time.
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1. INTRODUCTION

As defined by David Marr, and many others as well, vision is a process of
knowing what is where by looking [Marr, 1982]. It seems legitimate to say
that the "where" question is relatively simpler. We have many sensing
modules to compute the distance, the depth and the surface orientation.
However, to answer the "what" question, known as the problem of object
recognition, has proven to be very difficult. More than 20 years of research
on computer vision has not but revealed the hardness of the problem. The
main reason for the difficulty attributed by many people was the lack of 3D
information lost in the process of projection. In this situation, Marr's
computational vision paradigm received overwhelming welcome in our
computer vision community. In the past ten or fifteen years, we have built a
lot of theories and machines to compute 3D information from one or two or a
sequence of images. We have shape from stereo, shape from motion, shape
from texture, shape from shading, shape from contour, shape from focus, so
on and so on [Barrow & Tenenbaum, 1981; Grimson, 1981; Horn & Schunk,
1981; Ikeuchi & Horn, 1981; Krotkov, 1987; Ullman, 1979; Witkin, 1981; Xu &
Tsuji, 1987]. Because there are so many, we call it totally as shape from X.
The unstated hope behind all these efforts is that if we can recover all lost 3D
information, then the hard things will become easier.

Another direction of efforts is to obtain object-centered representations of
objects. Viewer-centered 3D information as computed by the shape-from-X
modules is dependent on viewing direction and thus is claimed to be
unsuitable for representing 3D objects. Marr calls the 3D information
registered in the image frame as 2.5D Sketch and argues that we need an
object-centered 3D Model representation, based on which recognition can be
done regardless of viewing direction [Marr, 1982]. Marr and Nishihara has
proposed the Generalized Cylinders [Marr & Nishihara, 1978], and the others
have proposed the Perimetric Models [Pentland, 1987].

Recently, a new vision paradigm, Active Vision paradigm [Aloimonos &
Badyopadhyay, 1987; Bajcsy, 1988; Ballard, 1989] emerged, and research
within this framework has since been very active. Though different people
emphasize different aspects, I summarize its advantages as: (1) more 3D
information or more accurate 3D information; (2) changing ill-posed problems
(of shape-from-X) to well-posed problems; (3) direct acquisition of object-
centered representation; and (4) exploratory intelligent control. The first
three are extensions along the previous research directions, but the last one is
an important aspect of vision, and perception at large, which we had
previously neglected. '

All of these challenges to the problem have contributed to our knowledge of

this most knowledgeable sense of humans. Indeed, one function of our vision
is the recovery of 3D information from 2D projections. However, the "what"

2]



problem is still there. Suppose that we are given very accurate range data
from a laser ranging system, can we do recognition? We consider that to solve
the "what" problem, one must first answer the question: what is "what"? That
is, one must - first determine what representation one uses to describe 3D
objects. Secondly, one must know how to build these descriptions for each
object. We believe that the best way to do that is learning. Therefore the
representation for 3D objects must also be proper for learning object models.
By bringing learning into consideration, we not only solve the problem of
knowledge acquisition, but it also provides a strong constraint on what
representation one chooses for describing 3D objects.

2. 3D OBJECT-CENTERED REPRESENTATION
vs. 2D VIEWER-CENTERED REPRESENTATION

There are generally two classes of representation for describing 3D objects:
object-centered 3D models, and a set of viewer-centered 2D retinotopic
patterns. Most of the current object recognition systems are based on the
object-centered model representation. Variations of this class of
representation are Generalized Cylinders and Superquadric Models. Objects
are decribed as parts and their spatial relationships in the form of nodes and
arcs. Recognition takes place between a description built from the image in a
bottom-up manner and the model, or between the image and an appearance
prediction of the model. Although these systems work, the problem is that all
objects cannot be described by this class of representation [Brooks, 1981;
Pentland, 1987]. One cannot imagine the generalized cylinder representation
can be used for face recognition.

The other class of representation is a set of retinotopic 2D patterns. The
reasoning is that if we know all its possible 2D appearances, then recognition
can be done by matching the image against all the 2D appearances stored in
the memory. Compared with the object-centered model representation, this
class is more general. The difficulty with it is that the number of possible
appearances is very large. One effort is to describe the objects by only
representative views, for example, "Aspects”, defined as topologically
equivalent classes of appearances with which ranges of view points are
associated [Koenderink & van Doorn, 1979; Rosenfeld, 1987; Weschler, 1990].
Recognition is then reduced to 2D matching between topological equivalents
in the image and memory. Application of this representation to artificial
machine parts is successful [Ikeuchi & Kanade, 1989]. However, again the
problem with the aspect representation is that it is hard to define aspects for
natural objects. Noise and occlusion make "aspects” of a complex object subtle
and unstable. :

There seems to be enough psycological evidence to say that in human vision

the matching is 2-dimensional. To cite one example, recall the famous
experiment by Shepard and Metzler (1971), which discovered that the time
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taken to identify two unfamiliar objects that differ from each other by a
rotation is proportional to the physical angle of rotation. One can thus
conclude that a "mental rotation” is actually being performed to bring the
first image into correspondence with the second, requiring longer time if the -
angle is larger. What is implicit in this conclusion is that we are doing 2D
matching, not 3D matching. The reason is straightforward: if the objects were
described in a 3D model as a series of oriented blocks, then the time taken to
identify the two codes would be invariant with the angle of rotation. This
strongly suggests that objects be described in the 2D viewer-centered
representation, not in the 3D object-centered representation. However, this
does not mean that 3D information is useless. Without it mental rotation is
impossible. 3D information does not necessarily mean object-centered.
Viewer-centered 3D information, called 2.5D sketch, is also a representation
based on which mental rotation can be directly performed. On the other hand,
if we are familiar with the object, i.e., if we have learned the object's
appearances, then recognition can be done without mental rotation. This is
the reason why in Shepard and Metzler's experiment they must use the
objects with which the subjects are unfamiliar in order to investigate mental
rotation.

With respect to learning, it is evident that the 2D viewer-centered
representation is more convenient than the 3D object-centered
representation. Actually, the canonical object-centered representation
approach advocated by Marr and Nishihara (1978) tries to compute
everything in one step. There is no room for learning. On the other hand, 2D
viewer-centered representation approach tries to do things little by little, and
need virtually no pre-computation to build the model. To take it in an
extremely naive way, what one needs to do is just to record every pattern
he/she sees, and compare every new view with the stored old patterns, if
there is enough memory to tolerate such an uneconomic usage. The problem,
then, is how our memory can "organize" the patterns, to reduce the abundant
information involved.

We have so far used the term "pattern" for the 2D viewer-centered
representation. What we mean here is only shape pattern, not including
patterns of color, texture, or motion, etc., although incorporating all of them
would definitely improve the overall performance. We believe, however, that
the shape information is the most fundamental. To make it more specific, we
consider that an edge image is equivalent to a shape pattern, because major
shape information is all included in the edge image. Marr called it "Primal
Sketch". However, we will call it "2D Sketch" in correspondence with 2.5D
Sketch and 2.1D Sketch (see 3. 1, [Nitzberg and Mumford, 1990]), which all
emphasize the viewer-centered 2-dimensionality.
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3. BLUEPRINT OF THE SELF-LEARNING ACTIVE VISION SYSTEM

We have drawn a blueprint for a self-learning active vision system (SLAVS)

based on the 2D Sketch representation, which is shown as a block diagram in
Fig. 1.

—
Learning Spatial
Reasoning

Object — Feedback
Models Recognition
L——> (2D Matching

+ Mental Rotation)

2D Sketch
& Depth of Fixation
Segmentation —————

+ Gaze Control

Image
Fig. 1 Block Diagram of our Self-Learning Active Vision System (SLAVS)

There are 4 subsystems in SLAVS: segmentation and gaze control, recognition,
spatial reasoning and learning. The system has two characteristics. The first is
that each time an object is recognized, the object model is updated. Thus the
whole system has its history and evolves as it experiences. The more the
model learns, the less the recognition makes effort. The second is that the
process is a cyclic loop of bottom-up and top-down. There is virtually no
boundary between perception and cognition. There are three basic operations
that the system can perform: matching an image part against models;
searching for an object's instances in the visual field; judging whether two
image parts are the same object. Complex tasks can be programmed as
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combinations of these three basic operations. The system receives commands
from a human operator.

3.1 Segmentation and Gaze Control

For similicity of explanation, we first introduce the lowest level of processing,
the segmentation and gaze control subsystem. This stage first filters the
image to a 2D Sketch, the edge image, which contains major shape
information. The 2.1D Sketch is an image segmented into regions of different
depths [Nitzberg & Mumford, 1990], which likely correspond to different
objects. Gaze control chooses one from among the regions based on the
saliency measures or feedback control from the spatial reasoning subsystem.
It is universally accepted that perfect edge detection and segmentation of
image into objects with only low-level constraints is generally impossible. In
this system we try to solve the problem. together with recognition. If the
chosen region corresponds, entirely or partially, to an object, then the
segmentation is affirmed. If not, then gaze control chooses another
segmentation for recognition.

3.2 Recognition

The recognition subsystem is a 2D matcher plus a "mental rotater”. Matching
should be of a certain degree of flexibility and fault-tolerance, and should
also be able to report partial correspondence resulting from occlusion. We
consider that the connectionist, or neural approach is the most promising one
to meet these standards. As claimed by many connectionists, the
connectionist model is effective at avoiding the search problems that
accompany serial computational architectures, and can assess the goodness of
correspondence between the image part and all the patterns stored in the
memory, finding the best match at the same time.

Mental rotation takes place when there is no direct matching between the
current image pattern and the patterns stored in the model. The mental
rotator synthesizes patterns virtually viewed from new angles based on the
local 3D shape information of the current image part, and tries to match them
against the model. But the system cannot always activate mental rotation,
because this takes much greater time, and is not guaranteed to succeed. It
should be activated only when the system is commanded to check whether or
not an image part is the same as another image part or a particular object
model. ' '

To do 2D matching, one needs to know two more things: scale and position.
We consider that the scale can be determined from the depth of fixation if an
active camera system with the automatic focusing and gaze control
mechanism is used. The scale is inversely proportional to the depth of
fixation, with the pattern unchanging by assuming othorgraphic projection. If
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the visual input is a static picture, then what is available is relative scale. If a
building is samller than a man, then it is a toy, not a real building, no matter
how real it looks. Position can be determined as the centroid of the region.
But if there is occlusion, then search is likely required to bring the two
patterns superimposed.

One important thing not to forget is that there are not only many viewing
angles relative to the object, but still for each viewing angle there is also a
freedom of rotation. It is known in psycology that humans cannot recognize a
pattern if it is rotated by a certain angle from its usual appearances. This
implies that only when the relative "posture” between the eyes and the
objects is constant, can we recognize the objects. Fortunately, both ourselves
and the objects have restricted relations with the gravitational direction. Thus
the possible ways that objects appear are also limited. What we need to do is
to keep the camera's vertical axis to be always within the vertical planes
respect to the gravitational frame.

3.3 Learning

The learning ability is the main progress of this system. One worry about the
2D representation of 3D objects is that the number of views can be explosive
if one tries to model all objects in this way. We think that the views should be
"organized" rather than only being stacked. The connectionist model shows
convincingly the capability to deal with this problem. Many patterns can be
stored in one unit. The matrix of synapses provides a space in which
information can be compactly represented. What interests us more is that it
has the ability of "interpolation", relieving us from the burden of learning the
2D sketches viewed from every direction. To cite one example from [Kohenon,
Oja & Lehtio, 1989], their model can identify faces viewed from angles
different from those used before for learning.

3.4 Spatial Reasoning and Feedback

SLAVS is an active system. The segmentation and gaze control subsystem
receives control commands from the spatial reasoning subsystem. Its main
task is to decide whether or not to continue the visual search, and if yes,
where to focus next image part. The memory should not only include 2D
sketches associated with the objects, but also spatial relationships among
them, which provide the basis for the Spatial Reasoning subsystem to produce
feedback commands. If the visual task of recognizing some image part or of
locating the object in the image is finished, then the system should stop and
wait for another new command. If to finish the task needs more recognition,
then the problem is which image part should be checked next. It is rare that
the whole object can be recognized in one glance. Usually a part of the object
is first recognized, which then generates a prediction of what should appear
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where. This prediction is fed back to the low-level processing subsystem,
starting a new cycle.

4. SOME UNKNOWNS

What we have described above is the current blueprint of the SLAVS system.
Many of the issues involved have to be further detailed and revised in the
process of implementation. Still, there are some issues we are not sure of at
this stage.

(1) Size constancy Human vision exhibits surprisingly perfect size constancy.
We have indicated the necessity of compensating for the scale change by the
depth of fixation. But at which scale or depth of fixation should we learn the
patterns?

(2) Oth level analysis The computational complexity issues of a vision system
should be seriously examined if it is to display human-like, real-time
performance [Tsotsos, 1987]. We have not yet checked whether a visual task
can be done within the 100 step limit in our proposed system.

(3) Learning spatial relations  Spatial relationships among the objects in the
memory should also be learned, but we are yet to single out the way. Again,
the problem is representation, 2D or 3D, viewer-centered or world-centered?

5. CONCLUDING REMARKS

In this paper we have made criticism and comments on Marr's computational
vision paradigm. It was then argued that representation of objects is crucial
to recognition and learning, and that sets of 2D viewer-centered sketches are
a better representation than object-centered 3D models. We then proposed a
self-learning active vision system (SLAVS), which incorporates the
segmentation and gaze control, recognition, learning and spatial reasoning
modules. We have also indicated the unknowns and ambiguities in the
proposal for future investigation and improvement. Implementation of this
system is to be started soon.
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