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ABSTRACT

This paper presents a method for using objects in a scene to define the reference frame for 3-D reconstruction. We first present a simple technique to
calibrate an orthographic projection from four non-coplanar reference points. We then show how the observation of two additional known scene points can
provide the complete perspective projection. When used with a known object, this technique permits a calibration of the full projective transformation
matrix. For an arbitrary non-coplanar set of four points, this calibration provides an affine basis for the reconstruction of local scene structure. When the four
points define three orthogonal vectors, the basis is orthogonal, with a metric defined by the lengths of the three vectors.

We demonstrate this technique for the case of a cube. We present results in which five and a half points on the cube are sufficient to compute the projective
transformation for an orthogonal basis by direct o bservation (without matrix inversion). We then present experiments with three techniques for reducing the
imprecision due to errors in the positions of the reference point due to pixel quantization and noise. We provide experimental measurements of the stability
of the stereo reconstruction as a function of the error in the observed pixel position of the reference points used for calibration.

1 Introduction

Efforts to implement 3D vision systems have led numerous groups to con-
front the problem of calibrating cameras. The most widely used camera
model is the "thin-lens" or pin-hole model, modeled by a perspective trans-
formation represented in homogeneous coordinates. Reconstruction tech-
niques tend to be extremely sensitive to the coefficients of this transforma-
tion. Of particular diff iculty are are techniques which estimate distance to
scene points and then attempt to reconstruct 3D shape using the so-called
"intrinsic parameters” of the camera.

The intrinsic parameters are the parameters which are independent of cam-
era position and orientation. They are typically listed as the "center” of the
image, defined by the intersection of the optical axis with the retina, and the
ratio of pixel size to focal length in the horizontal and vertical directions
Tsai 87]. Reconstruction using dep th is extremely sensitive to the preci-
sion of these parameters. This has led a number of investigators to develop
techniques using estimation theory based on a large number of observa-
tions of a calibration pattern [Faugeras-Toscani 86] |Skordas-Puget 90].
Such techniques typically require careful set up and rather long computa-
tion times for precise location of the reference points.

It is often overlooked that the pin-hole model is only a rough approxima-
tion for the optics of a camera. For a real camera, there are typically a
continuum of values for the intrinsic parameters providing reasonable ap-
proximations to the physical system. This continuum is extremely sensitive
to the setting for focus and aperture and even to small perturbations in lense
mounting due to vibration! Reconstruction techniques based explicit intrin-
sic camera parameters are extremely sensitive to the accuracy of these pa-
rameters. It is not surprising that most current 3-D vision systems only
work for carefully set up laboratory demonstrations.

The techniques presented in this paper are the result of problems that we
have encountered in the construction of a real-time active vision system.
Qur system employs a binocular camera head mounted on a robot arm
which serves as a neck. The system uses dynamically controlied vergence
to fixate on objects. It is designed to track and servo on 2-D forms, to inter-
pret such forms as objects, and to maintain a dynamically changing model
of the 3D form of a scene. Focus and convergence of stereo camer as are
maintained by low level reflexes. Constantly changing these parameters

has posed difficult problems for 3D techniques based on classical calibra-
tion of the intrinsic camera parameters. Cumbersome and time consuming
set-up means that calibration can not be performed “on the fly” as the sys-
tem operates.

Mohr and his collaborators [Mohr et. al. 91]have shown that the cross ratio
can be used to construct a scene based reference frame, in which the objects
the scene provide the reference coordinate syste m. Such an approach aban-
dons the use of the camera intrinsic parameters, and measures the form of
objects directly in a scene based reference frame. The idea of basing the
reference frame on objects in the scene leads to an approach in which a 3D
vision system automatically adapts to changes in camera optics and view
position.

Koenderink and Van Doorn (Koenderink-Van Doorn 89] have observed
that four fiducial marks ought to be sufficient to define a scene based refer-
ence frame for structure from motion or stereo. They have attempted to
“stratify” the problem into a three stage process. They define an affine
"projection” from an image reference to the image based on two views of
four points. They then use this affine transformation to recover the position
of points in the scene. In the second phase, they apply a Euclidean metric to
the resulting structure by imposing a rigidity constraint. In the final phase,
a third view removes possible ambiguous interpretations. Koenderink and
Van Doorn argue that the most important and the most difficult part of the
problem is the first phase, and that affine transformations provide a simple
solution. They develop a mathematical model for recovering 3D form in an
affine basis.

Sparr has shown how arbitrary reference points can be used to define an
affine basis for reconstruction [Sparr 92]. In such a coordinate frame, the
shape of a collection of points is represented in terms of "affine coordi-
nates" provided by a sub-configuration of points. In the case of each of
these techniques, the objects observed in the scene provide the reference
frame in which objects are reconstructed. With such a technique, an object
provides its own reference frame. In the techniques described below, we
will first develop an affine basis and then show that an orthogonal basis is a
special case which results when the reference points form a set of orthogo-
nal vectors.

We have found that a robust 3D vision system may be constructed using the



objects in a scene to calibrate the cameras. With thi s technique, the cam-
eras are calibrated by fixating on any known set of 6 points. Calibration is
then updated continually by tracking the image position of points as optical
parameters are adjusted or as the camera is moved.

We begin by showing how an orthographic transformation matrix from af-
fine scene coordinates to image coordinates can be obtained from the ob-
servation of four non-coplanar points. These four points define a set of
three basis vectors whose lengths become the units of measure in the sys-
tem. If the three vectors are orthogonal, then the reference frame provides
an orthogonal basis.

We show that the orthographic projection matrix can be completed to ob-
tain the full perspective transformation by the observation of an additional
two points whose position is known refative to the first four points. This
permits us to use any known object containing six identifiable points to
define a reterence frame for 3-D reconstruction. If the size of the object is
known, then the units of reference frame can be deduced. If a manipulator
is available, it can be used to provide the reference frame, yielding a simple
and reliable hand-arm calibration scheme. For known scene points, the
calibration matrix may be computed without matrix inversion. Finally, we
show how the reference frame may be transferred to an arbitrary set of four
non-coplanar points. This permits us to calibrate to a known object and
then “hop™ the reference frame to unkown objects.

2 Calibrating to an Object Based Reference
Frame

In this section we show how a 3-D object can provide a reference coordi-
nate system for reconstruction. The first two sections present notations and
mathematics which are basic to the rest of the paper. We begin with a brief
review the use of homogeneous coordinates to model perspective projec-
tion and sterco reconstruction. We show how an orthographic projection
matrix can be deduced by observation of four non-coplanar points. We then
show how this transformation can be completed to form the perspective
transformation by the observation of two additional fiducial marks whose
position is known relative to the first four points. These techniques may be
used to provide an affine basis for scene reconstruction. When the vectors
are orthogonal, this basis is orthogonal.

2.1 The Transformation from Scene to Image
In homogeneous coordinates, a point in the scene is expressed as a vector:
=[x, ¥, 2, 1]
The index "s" raised in front of the letter indicates a "scene” based coordi-
nate system for this point. The origin and scale for such coordinates are
arbitrary. A point in an image is expressed as a vector:
P=[i,j 1
The projection of a point in the scene to a point in the image can be approxi-

matéd by a three by four homogeneous transformation matrix, 'M . This
transformation models the perspective projection with the equanon

Pw= MP
or
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1

The variable w captures the amount of "fore-shortening” which occurs for
the projection of point *P. This notation permits the pixel coordinates of 'P
to be recovered as a ratio of polynomials of * P. That is

=ﬂ=.w_" P jeti M P 2.2
W iMs. P W iMse P

where ‘M, 'M,, and ‘M, are the first, second and third rows of the matrix
M, and "*"'is a scalar product

Throughout this paper, we will use a notation for homogeneous transfor-

mations in which a preceding subscript represents the source coordinate
frame and a superscript represents a destination coordinate frame. For ex-
ample, 'M may be read as the transformation from s to i. Use of this nota-
tion makes the transformation of reference systems clear.

It is common to model cameras with a pin-hole model expressed math-
ematically as a projective transformation. It must be stressed that this is
only an approximation. Real lenses and cameras do not have a unique pro-
jection p oint, nor a unique optical axis. One way to model such etrors is by
adding an unknown random vector, U,,, which accounts for the difference
in pixel position.

Pw=MP+U,

When we evaluate the precision of an approximation ' M we employ an
estimate of the covariance of U,,. For most of the analysm that follows we
will assume that the expectation of this error vector is 0 = (0, 0, 0)"

E[U,} =0

2.2. Computing 3-D Structure From Stereo Correspon-
dences

The techniques for calibration described below were mainly developed to
support stereo reconstruction. Thus a natural method for evaluating these
techniques is to compare reconstructed scene points with their known val-
ues. In this section we recall the solution for scene reconstruction due to
Faugeras and Toscani [Faugeras et. al. 86] which uses two equations from
the left image and one equation from the right image to solve for 3D posi-
tion. We extend this technique to provide a solution from all four equa-
tions.

Let *M and *M represent the transformations for the left and right cam-
eras'in a stereo pair. Let '"M,, "M,, and - M, represent the first, second
third rows of the M, and RM "M and RM represent the first, second
third rows of the ® M. Observanon of a scene point, *P, gives the image
points P = (i , J[) and ®P = (i, j,). From equation 2.2 we can write.

L . .
in_u fn= M P

M3 S BM;. P
]L=iM2.sP ]R-aMZ.SP

IM;. P M3« Sp

With a minimum of algebra, these can be rewritten as
("M #P) i, ("M,P) =0 (*M +P) - i, (*"M,*P) =0 2.3)
(*M,P) -, (*M,P) = 0 (*"M#P) —j, (*M*P) =0 (2.4)

This provides us with a set of four equations for recovering the three un-
knowns of *P. Each equation des cribes a plane in scene coordinates that
passes through a column or row of the image, as illustrated in figure 2.1.
The two equations from the left image describe a two planes which form a
line pro;ecung from the pixel (IL, j, ) to the scene points. The equatlon
containing i, from the right image describes a vertical plane passing
through i, The intersection of this plane with the line from the left image is
the scene pmm which we wish to recover.

We can solve for a 3D point with two equations from the left camera and
one from the right, or equally, using one equation from the left and two

Figure 2.1 Computation of a Scene Point by Stereo Projection



from the right. When the projection matrices are exact, these points are
identical. Unfortunately, because of errors in pixel position due to sam-
pling and image noise, the projection of the rays from the left and right
camera do not necessarily meet at a point.

Let us define point *P, as the point obtained using two equations from the
left camera and one equatlon from the right camera. Let us define, ‘P, , as
the scene pom[ obtained from two equations in the right and one in the lef\
A more precise scene point can be obtained from the mid-point of the 3-D
segment which joins these two points:

Sp = S}ﬁ_—yu
2

This is the technique which we will use to reconstruct 3-D points in the
experiments described in sections 3 and 4 below.

Stereo reconstruction produces errors which are proportional to the dis-
tance from the origin. By placing the origin on the object to be observed,
such error may be minimized. Computing the matrix ' M for a pair of cam-
eras permm a very simply method to compute the po:mon of points in the
scene in a reference frame defined by the scene. Dynamically developing
the transformations for the left and right i images permit objects in the scene
to be reconstructed independent of errors in the relative or absolute posi-
tions of the cameras.

2.3 Calibrating an Orthographic Projection from Scene
Object to Image

Any four points in the scene which are not in the same plane can be used to
define an affine basis. Such a basis can be used as a scene based coordinate
system (or reference frame). One of the four points in this reference frame
will be taken as the origin. Each of the other three points defines an axis, as
shown in figure 2.2. On an arbitrary object, these axes are not necessarily
orthogonal.

A simple way to exploit this idea is to use any four non-coplanar points to
define an orthographic projection from an affine reference frame in the
scene to the image. Let us designate a point in the scene as the origin for a
reference frame. By definition,

R,=10,0,0,1]

Three axes for an affine object-based reference frame may be defined by
designating three additional scene points as:

‘R 1,0,0,1
,=10,1,0,1]"
=10,0,1,1]

=

The vector from the origin to each of these points defines an axis for mea
suring distance. The length of each vector defines the unit distance along
that vector. These three vectors are not required to be orthogonal. The four
points may be used to define an affine basis by the addition of a constraint
that the sum of the coefficients be constant {Sparr 92]. We note that when
the points are the corners on a right parallelpiped (a box), then they can be
used to define an orthogonal basis and the additional constraint is unneces-
sary.

Let the symbol » represent the composition of vectors as columns in a ma-
trix. We can then represent our affine coordinate system by the matrix ‘R.

1o
R=[RiURURsURg=| O]
00 10
11 11
s
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s
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Figure 2.2 Any four points in the scene define a scene based coordinate
system

The projection on these four points to the image can be written as four
image points P, 'P,, 'P,, and ‘P, . These image points form an observation
of the reference ' system represemed by the matrix 'P, where the term w_has
been set to 1.0.

PW =[ iPrwi U iPawz U Paws U iPq]

wiip waz  wals o
= wiji Waj2 was  Jjo
wiwz  wsl

W is a matrix whose diagonal elements are the vector fw,, w,, w,, 1].
That is :

w1 0 00
W = Ow2 00
00 w0
00 01

This allows us to write a matrix expression.
PW= MR

The reference matrix *R has a simple inverse, which can be solved by hand.

10 00
R 01 00
00 10
1t -1 1

Inverting this matrix allows us to write the expression:

o 1000

wiip Wz waiz o 0100
M =CPW)R =1 wiii wip wiis o @5

0010

wi w2 wy 1
-1-1-11
or
wii1 - o waiz - i waiz-io o

M ={ wiji - jo waiz- jo wiiz-jo o @6

wi-1 we-1 ws-1 1

Having performed the inversion of ‘R by hand, there is no need to compute
an inverse when the system is calibrated.

The problem with equations 2.5 and 2.6 is the vector W = W, w,, w,, 1T It
is useful to consider the meaning of this vector. Each term “w” is a scale
factor that describes the amount of “foreshortening” induced by perspecive
along on of the reference vectors. The units of this forshortening are (1/
meters). Thus, if the scale facto r is defined to be 1.0 at the reference point
R, then vectors emanating from reference point R; will be “scaled” by a
factor of w,.

A simple solution is to employ the approximation w = |1 1 1 1}, yielding an
orthographic approximation to t he projective transformation. The magni-
tude of the error for such an approximation is proportional to the distance
from the chosen origin, and inversely proportional to the focal length of the
camera.

The orthographic approximation can provide a usable approximation for
points near the reference object. For example, such an approximation was
employed by artists before the effects of projection were discovered. In a
case where the reference object is unknown, an approximate 3D recon-
struction using orthogra phic projection can be constructed in terms of four
non-coplanar reference points. As noted by Koenderink, such a reconstruc-
tion is qualitatively correct and may be sufficient for some applications.
Koenderink (and others) presents a method to deduce the foreshorting by
assuming rigidity and reconstructing from a second view point,



Alternatively, we may seek to determine the full perspective transforma-

tion by solving a set of linear equations to determine w. Solving for this
vector requires th ree additional constraints, or the observation of one and a
half additional points whose position is known with respect to the first four
points.

2.4 Obtaining the Perspective Projection by Observing a
Known Object.

To obtain the perspective transformation from equation 2.6 we must solve

for w=(w 1» W, W, 1). Solving for these three variables requires 3 indepen-
dent equations, or the observation of the image coordinates for one and a
half scene points. Let us define two known scene points as ‘R, and ‘R..

R, =[x, ¥, 2 ll_lr_
Ry = (X5 ¥ 2o 1]

I

If we consider the method developped by Sparr [Sparr 92]' , we can ob-
serve a relation which holds for four points within a plane. Let point ‘R, be
defined as the sum of two non-identical vectors ‘R ‘'R, and ‘R ‘'R,, as shown
in figure 3.1. In this case, If we observe the image position of these four
points, we can write:

Wi
i1 13 14 do
w3
ji iz de Jo =0
E
1111
-1

This relation provides three equations for the three unkown values w,, w,
and w,. The fact that w, depends on w, and w, and that the scale factors can
be superimposed is eastly demonstrated by considering the equation repre-
senting the third equation from this relation.

w,=w +w,~1

Equivalently, we can write a general relation using the positions of any
reference points ‘R, and ‘R provided that their position is known with re-
spect to the four reference points. Using equation 2.6, we can write four
equations with three unknowns.

M- SRy _ (il - io)xs + (walo - iolya + (wais- iz +io (5 4

iy =
M3 - Rq W1-Dxa+ (Wa- Dya+ (W3- Dza+ 1
ja= Mz - Ra _ (wijt - jolxe + (Wajz - jolya + (Wajs - jodzs +jo (5 gy
M-SRy Wi- Dxa+ (wa- Dya+ (W3- Daa+ 1
is= M- SRs _ (wiky - ig)xs + (waia - io)ys + (waiz - i0)zs + o 2.9
"~ M3 Rs (W1 - Dxs+ (wz- Dys+ (w3- Dzs+ 1
is = Mz Rs _ (wiji - jo)xs + (Wajz - jolys + wajs - jolzs + o (5 1

Ms-Rs  (Wi-Dxs+ (w2~ Dys+ (wa-Dzs+ 1
Provided that no five of our six points are coplanar, these four equations

can be solved to obtain the values of W = (w,, w,, w,, 1). The full projection
matrix, 'M, can then be obtained from equation 2.6.

*Rs <« R3 3 R4

SR2 $R1

y Image

J
Figure 3.1 The full projective transform can be computed directly from the
observation of 6 known scene points. Point ‘R defines the origin. Points

‘R,, 'R, and ‘R, define the unit vectors of the three scene dimensions. Points
‘R, and *R, permit the full projective transformation to be recovered.

When the positions of the points ‘R, and ‘R, are known in advance, the
solution can be structured to yield the full perspective transformation by
direct observation, without matrix inversion. To illustrate this, let us con-
sider the problem of calibrating 'M by observation of 6 vertices of cube.

3 Calibration by Direct Observation of a Cube

A direct solution for calibrating the projective form of the matrix ‘M is
possible when the reference points are known in advance. This solution can
be had without matrix inversion. Let us illustrate the technique by deriving
the equations for calibrating the matrix ' M from the observation of 6
points on a cube. ‘

3.1 Derivation of Solution

Consider a reference frame defined by six points on a cube, as shown in
figure 3.1. Point 'R defines the origin. Points *R, *R, and ‘R, define the
unit vectors for the X, Y and Z axes. Points ‘R, and *R; permit the full
projective transformation to be recovered. Points ‘R, 'R, *R, and ‘R, are
defined above as:

R, =[0,0,0, 17"
R =(1,0,0, 1]"
R,=[0,1,0,1]"
R, =[0,0,1, 1]"

Points ‘R, and °R; are given by:

Substituting *R, and °R, into equations 2.7 through 2.9 gives:

(i) W, i) w,- () =0 (3.1
ijl) v, +ijl) Wi— ijo) =0 (3.2)
(i) W, +( i) w,— (i) =0 (3.3)

=i, W, +(sly) Wy () =0 (3.4)

The coefficients w, and w, can be had fromequations 3.1 and 3.2, that is
from observation of ‘R . The coefficients w, and w, can be had from equa-
tions 3.3 and 3.4, that is from observation of ‘RSA

From the point °R, we obtain:

wy = 042 10)Ga - jo) - Ga - 13)Ga - Jo) (3.5)
(ia - 11)(a - ja) - Ga - i3)Ga - 1)

(4 - i0)(j4 - j1) - (4 - i)(4 - jo) (3.6)
(4 - i3)(a - j1) - (4 - 11)Ga - J3)

While, from the point ‘Rs we obtain:

w3 =

wa = 4521005 - j9) - s - 1)(s - jo) GD
(s - i2)(s - j3) - (is - i3)(s - j2)

(s - i0)(js - jo) - (is5 - i2)(js - jo) (3.8)

(s - i3)(s - j2) - (is - 2)(s - j3)

w3 =

The fact that the equations are over-constrained poses a small problem. If
the image position of points *R, and *R, are not perfectly measured, the
resulting solution for W, W, and w, will not be consistent. However, it is
inevitable that the position of the reference points will be corrupted by
small random variations in position, if for no other reason, because of im-
age sampling. If we simply compute w, and w, from ‘R, and then compute
w, from *R, this inconsistency can yield an imprecise solution for the posi-
tion of 3-D points. We can turn this problem to our advantage by exploiting
the redundancy of the last half of a point to correct for random errors in the
image position of the reference points.

3.2 Correcting for Pixel Errors in the Observed Reference
Points

The classic method for minimizing the inconsistency in reference point

1 This techniques has been pointed out by Kalle Aatrom of Lund Institute

of Technology



position is to compute a mean-squared solution. Faugeras and Toscani
{Toscani-Faugeras 87| present a direct method to minimize the sum of the
error between the projection of calibration points and and their observation.
From equation 2.3, for each calibration point *R, and its image projection
'P,, we can write:
(si Ml ¢ st) - ik (si M; ¢ ng) =0 (<IM2 ¢ (Rk) - jk (sK M3 ° :Rx) =0

For N non-coplanar calibration points we can write a linear system of 2N
equations of the form:

A ‘M=0.
where the rank of A is 11. The problem is to find a matrix *M which best
minimizes 4 criterion equation

C=1AMI

We use Lagrange multipliers to obtain a least squares value for M which
minimizes C. We will refer to this below as the "mean square technique”,
denoted "msq" in the tables of experimental results below.

As an alternative, it is possible to obtain a direct solution by constraining
one of the points ‘R, or ‘R, to be consistent with the other five points. For
example, we can use the value of w, computed from ‘R, to compute a cor-
rection for ‘R, We can then use the corrected value to compute Wy

To illustrate, let us compute a correct i, for the value of i. From equation
3.8, we can write:
Wi (5 - i0)(js - Jo) - 5 - i) - jo)
(i5- in)(s - j2) - G5 - s - j»)

Solving for i." gives:

io(js - j2) - 12s - jo) - i3(s - jo)ws + ia(s - ja)ws 39
-2+ jo+ jows - jawa

o
15=

we then use this value in equation 3.7.

In the following two sections we will compare the precision obtained from
direct solution using 5 and 1/2 points to precision obtained from each of
these two techniques for exploiting the redundancy in the sixth point. We
will first use artificial data to explore the sensitivity of these three tech-
niques to the standard deviation of the error in pixel position as well as the
sensitivity to the size of the reference object in the image. We will show
resuits with real data measured on a cube and on sugar box.

3.3 An Example of a Calculation

In this section we present an example of the calibration using a aluminium
cube with a side of 20cm. This example illustrates the method used in the
experiments in the following sections.

In our experiments, images of the cube are projected on the work-station
screen and the pixel coordinates of the vertices P, P, iPZ, iPJ, P,, and 'Ps
were selected with the mouse. The image size is 512 by 512 pixels. A st
andard left handed image coordinate system is used in which the origin is
the upper left hand corner, positive i (columns) is to the left, and positive j
(rows) is down. Reference points were indicated by pointing with a mouse,
a technique which can sometimes result in an error of one or two pixels.

The images used for this example are shown in figure 3.2.
For the left image, the vertices of the cube were detected at:

Lp = (228, 481)

: P = (347,351)
'P)= (229, 223)

'P,= (354, 107)

P, = (77, 374)
P, = (69, 125)

Equations 3.5 through 3.7 give a solution for wDBA8()® of:

W= (0.917610, 0.858158, 1.052614, 1)
By the direct method we then obtain
147.589396 -146.422112

$M =| 101081043 -84.764543
0.082390  0.059453

-11.048572  228.000000
-269.732889  481.000000
-0.052614 1.000000

Correcting by computing i, with equation 3.9 gives a corrected solution for
the matrix as:

147.589396 -146.622393
™M = -101.081043  -85.737338
0.0823%90 0.056852

-11.048572  228.000000
-269.732889  481.000000
-0.052614 1.000000

Using the least squares technique, the matrix for the left image "M is com-
puted as:

148.016122 -146.716244

§M={ 100417731 -85.150763
0.084301  0.058403

-12.239302  228.149911
-270.607106  481.003325
-0.056504 1.000000

For the right image, the vertices of the cube were detected at:

5P, = (212, 464)
kP = (197. 208)

*p = (343,332)

%P = (74, 360)
%P, = (337, 88)

®P, =.(52, 116)

With the direct method, from equation 3.5 through 3.7 we obtain

158.141055 -132.711116 -26.996216  212.000000
fm = -105.729358  -78.270296 -268.666055 464.000000
0.079128 0.071471 -0.060894 1.000000

Correcting by computing i, with equation 3.9 gives a corrected solution for
the matrix as:
158.141055 -132.661599
$M=| 105720358 78029403
0.079128 0.072141

-26.996216  212.000000
-268.666055  464.000000
-0.060894 1.000000

Using the least squares technique, the matrix for the right image FM s
computed as:

158.066763 -132.620333  -26.745194  211.958839
M = -105.863649  -78.136621 -268.493161 464.002612
0.078734 0.071856 -0.060038 1.000000

‘;f = ¥ s,
o
s

Figure 3.2 Stereo Images of a 20 cm Calibration Cube at a distance of 1.2 meters.



As a check, we indicated the image positions of the point 'R ={1,1,1, 1]

and construct the 3D position o f this point by a stereo solution. Clicking on

the corner corresponding to point 6 in the left and right images gives:
P, = (200, 23) *P,= (193, 11)

Solving for the 3-D position with the stereo technique using all four equa-

tions as described above gives

method X Y Z Dist

direct 1.004628| 1.005564| 0.997816] 0.007559
corrected| 1.014828] 1.016062| 0.987449 0.025206
msq 0.992905]0.993915| 1.004042(0.010183

These reconstructed points are expressed in units defined by the side of the
cube. One multi plies by 20 to obtain centimeters. We can observe that for
this example, the direct calculation gives an error of about 0.7%, while the
matrices which use a correction based on i, , has about 2.5% error. The
mean square technique gives about 1% error. The error is due to both the
sampling interval of the pixels and imprecision of our mouse clicks. Al-
though the direct solution happened to perform best in this example, we
will see in the experiments presented in the next section that the error is a
random fu nction. The mean square technique tends to give an error with
the lowest average value. Such a tendency is made evident by a systematic
exploration of the precision of the three techniques.

3.4 Experiments with Sensitivity to Pixel Noise

In order to measure the precision of the recovered projection matrix 'M,
we define an ideal projection matrix, 'M” . We compute a corrupted obser-
vation of the calibration points by projecting the calibration points with the
ideal matrix "M’ and adding a random Gaussian variable, U, , with a
known standard deviation.

Pw=M"R +U,

We then use the corrupted points ‘P, to solve for 'M. To measure the sensi-
tivity of the solution to the pixel position of the calibration points, we
choose a scene point and compute

E =l M P, - /M *P,I.

In our first experiment, we compute the average value for this measure as a
function of the standard deviation of the pixel noise, U,,, for the six points
used for calibration. The row labeled "direct” is a direct solution ‘M using
5 and 1/2 points. The line labeled "corrected” uses the correction of the
point i, as described above. The line "msq" is computed using the least
squares method. These average of the error for the six calibration points is
presented in table 3.1.

M*P - MP|0.012510.250 [0.500 § 1.0 2.0 4.0

direct 0.042410.0847] 0.1695] 0.3388 [ 0.6769 | 1.3522
corrected |0.0406] 0.0813] 0.1627] 0.3253 [ 0.6503 | 1.2998
msq 0.02090.04187 0.0837[ 0.1675] 0.3355[ 0.677T

Table 3.1 Average error E (in pixels)for calibration points as a function of
standard deviation of pixel error.

As a second test, we computed the same measure for the scene point (1, 1,
1) as a function of the standard deviation of pixel noise as shown in table
3.2. In both experiments we can observe that the magnitude of the error in
the projection is proportional to the standard deviation of the Gaussian
noise added to the pixels from which the matrix ‘M is derived. We can also
observe that the direct solution and the correction technique give similar
values, while a mean square solution give a systematically better solution.
For the average error of the calibration points, mean-square is nearly twice
as precise. For the cube vertex point (1,1,1) the mean square gives about 2/
3 of the error of the other two techniques.

M#*P - MP{0.0125] 0.250 | 0.500 .0 2.0 4.0

direct 0.2133]0.4267] 0.8535] 1.7069 | 3.4141 | 6.8323
corrected [0.2270]0.4541]0.9082] 1.8163 | 3.6328 | 7.2675
msq 0.1715[0.3429 0.6833| 1.3682| 2.72725.4302

Table 3.2 Average error E (in pixels)for the point (1,1,1) as a function of
standard deviation of pixel error of calibration points.

Another measure of precision is to model a stereo pair of cameras and then
compute a stereo solution using the corrupted projection matrices to re-
cover the 3-D position of known scene points. To perform such an experi-
ment. we simulated our nominal experimental set up composed a pair of
cameras with a base line of 20cm, a focal length of 25mm and images with

512 x 512 pixels. The cameras are simulated to be looking at a cube 20 cm
on each side at a distance of 1.2 meters. Three dimensional points were
computed using all four stereo equations, as presented in the second tech-
nique in section 2.2.

Table 3.3 shows the average error of reconstruction for the six calibration
points as a function of the pixel noise. The units are measured in units of the
side of a cube. To obtain distance in cm one multiplies by 20. To obtain pe
reentage, one multiplies by 100.

3-D Dist |0.0125]0.250 } 0.500 | 1.0 2.0 4.0

direct 0.0027] 0.0055} 0.0111] 0.0224 [ 0.0450 | 0.0918
corrected {0.0029 | 0.0058 0.0116( 0.0233] 0.0469 | 0.0955
msq 0.0019] 0.0038 | 0.0076] 0.0152} 0.0303 | 0.0609

Table 3.3 Average 3-D distancefor calibration points as a function of stan-
dard deviation of pixel error.

As a second test, we compute the same measure for the scene point (1, 1, 1),
as shown in table 3.4. We can notice that once again the direct and cor-
rected method give very similar results, and that the mean-square technique
is more than twice as precise.

distance 1 0.0125]0.250 | 0.500 | 1.0 2.0 4.0

direct 0.0193 [0.0388 [ 0.0786 0.1613 | 0.3397 [ 0.8395
corrected [0.0192 [ 0.0386  0.0780} 0.1596 | 0.3350 | 0.8264
msq 0.0092 { 0.0183 | 0.0364 | 0.0718 | 0.1395 | 0.3031

Table 3.4 3-D error for scene point (1,1,1) as a function of standard devia-
tion of pixel error of calibration points.

Another question which one might ask is, what is the influence of the size
of the cube in the image on the error of reconstruction. Equation 2.6 shows
that the coefficients are calculated from the lengths of the vectors in the
image. Thus, the larger the distance between the image of the calibration
points, the less sensitive the coefficients are to an error in image position.
None-the-less, one should ask: how sensitive is the 3-D reconstruction to
the length of this vector?

Using a simulated cube, and the mean square correction method, we com-
puted calibration matrices for a 20cm cube at distances of 100 cm to 200 ¢
m in steps of 20 cm. At 100 cm, the cube fills the image. At 200 cm the cube
is the size of a quarter of the image. For each pair of calibration matrices,
we computed the stereo solutions for image projects at scene points (1,1,1).
We used calibration matrices computed from pixel positions corrupted by
Gaussian noise of standard deviation 0.125, 0.25, 0.5, 1, 2, 4 and 8. For
each point we performed a stereo reconstruction 100 times and computed
the average error (table 3.5) and the maximum error (table 3.6). The stereo
solutions are computed, as above, using all four equations.

At a distance of 100 cm, the sides of the cube project to vectors of nearly
the entire image. Interesting, in table 3.5, we see that in this case, the per-
centage of error in reconstruction is almost exactly proportional to the stan-
dard deviation of the pixel noise. That is, for a pixel error of 0.5 pixels the
reconstruction error is 0.53%, for a pixel error of 1.0 the reconstruction
error is 1.07%. The error percentages doubles when the cube occupies half
the image at 140 cm, and double again when the cube reaches a quarter. of
the image at 200 cm.

dist | 0.125 [0.25 ]0.50 1.00 1200 [4.00 [8.00

100 | 0.0013 | 0.0026| 0.0053] 0.0107} 0.0214 | 0.0428 | 0.0864
120 | 0.0019 | 0.0038] 0.0076 | 0.0152] 0.0303 | 0.0609 | 0.1244
140 | 0.0025 ] 0.0051 0.0102 | 0.0204  0.0410 | 0.0826 | 0.1727
160 | 0.0033 ] 0.0066 | 0.0132 0.0265( 0.0532 | 0.1082 | 0.2476
180 | 0.0041 ) 0.0083 0.0167 0.0335( 0.0675 | 0.1440 [ 0.4539
200 | 0.0051)0.0103] 0.0206] 0.0412 0.0832] 0.1745 | 0.6485

Table 3.5 The average 3-D error as a function of distance of the calibr
ation cube from the camera (rows) and as a function of pixel noise (col-
umns). Errors are expressed in units of the length of the side of the calibra-
tion cube (20cm). Projection was computed using the mean square tech-
nique. Scene points were computed using all four stereo equations.

The maximum errors for the same 100 runs are shown in table 3.6.

An interesting effect was observed during the experiment with the maxi-
mum error. A sort of singularity was detected for noise of standard devia-
tion 6 pixels when the cube was 200 cm from the camera. For such noise,
the maximum reconstruction error reached as high as 318.839 times the
side of the cube, or 6.367 meters! As can be seen from the table, the error
dropped as we passed beyond this (supposed) singularity. We have no ex-
planation for this effect.



dist | 0.125 10.25 [ 0.50 1.00 1200 |4.00 ]8.00
100 | 0.0065] 0.0130] 0.0260] 0.0515] 0.1008]0.2042 | 0.4745
120 | 0.009210.0183 [ 0.0364 [ 0.0718 | 0.1395] 0.3031 | 0.7649
40 [ 0.0123 1 0.0245( 0.0485{ 0.0953 | 0.1893 [ 0.4345 | 1.9043
160 | 0.015810.0315] 0.0623 | 0.1216} 0.2529] 0.6112 | 6.3583
180 | 0.0198 ] 0.0394 | 0.0776 | 0.1505] 0.3306 | 3.5540 | 20.8398
200 | 0.0243]0.0481| 0.0945] 0.1860| 0.4257 | 1.8469 | 42.2503

Table 3.6 The maximum reconstruction error, due to pixel noise, for the
corners of the cube. Calibration was computed using the mean square cor-
rection (msq). Rows indicate distance of the cube from the camera (rows).
Columns give standard deviation of pixel po sition noise. Errors are ex-
pressed as a fraction of the length of the side of the calibration cube (20cm).

3.5 Experimental Precision with Real Images

In our active vision system we dynamically calibrate our stereo cameras by
observation of an aluminium cube with a size of 20cm. In order to perform
an evaluation of our technique, we set up an interactive program in which
points in images are indicated by pointing with a mouse. This experiment
was performed with live images produced by a Pulnix TM 560 camera
equipped with a Cosmicar 25 mm F1.8 lens fed CCI R video signals to an
Imaging Technologies FG100 Digitizer. Images were acquired with a reso-
lution of 512 by 512.

Our 20 cm aluminium cube was painted such that two of its faces are white,
two are gray and two are black. The cube was placed on a white table-cloth
with a black face to the left, gray face to the right and the white face up.
Stereo images of this cube from a distance of 1.2 meters were shown in
figure 3.2. These images are the first pair from a sequence which are used
in chapter 5 below.

Using the image in figure 3.2, we computed calibration matrices for the left
and right cameras. We then computed a stereo reconstruction for the point
(1, 1. 1) after having corrected using the three techniques described above
(direct, corrected and msq). The results are presented in table 3.5. Natu-
rally, the direct method reconstructs each corner at its exact position. The
corrected method involved correcting point P5 to obtain a coherent matrix.
Thus, reconstruction with the real P, yields a small error. The msq error
distributes this error over all of the points.

Point | Real Position | direct corrected | msq
PO (0,0,0) [0:0000 | 0.0000 0.020:
P1 (1,0,0) | 0.0000 [ 0.0000 0.0187
P2 (1,0,0) {0.00001 0.0000 0.0034
P3 (1,06,0) | 0.0000 | 0.0000 0.0198
P4 (1,0,0) | 0.0000 | 0.0000 0.0180
P35 (1,0,0) | 0.0000 | 0.2422 0.0033

Table 3.7 Distance between the real and reconstructed 3-D positions for
the six calibration points using the three techniques. All units are in terms
of the side of the cube.

We then placed a box of sugar next to the calibration cube, as shown in
figure 2.6 and reconstructed the corners of the box using the matrices deter-
mined by the three techniques. The six visible corners of the sugar box are
listed as points S through S_. The 3-D error, measured as a percentage of
the side of the cube, are shown for each of the 6 points.

Point, Real Position direct | corrected| msg
S, (0,-0325,0) | 0.0175 ] 0.0320 | 0.0185
S, | _(&75,-0325,0) | 0.1065 | 0.1327 | 0.0948 |
S, 0.0,0) 0.013T| 0.0130 | 0.0523
S, | (0,-0335,0.935) | 0.0Z 0.0310 | 0.0549
S, |(0475,-0.325,093)[ 0.1082 | 0.0762 | 0.0372
S, (0,0,095) 0.0750 | 0.0762 | 0.0549 |

Table 3.6 Errors for reconstructed corners of sugar box using three tech-
niques. All distances are in units defined by the side of the calibration cube
(20cm). The most precise values are indicated in bold.

The first thing that we can observe is that no one technique produces the
best result for all six corner s. The mean square solution produces the
smallest error for three of the corners, the direct method for two of the
corners, and correcting the 5th point in one of the corners. The largest error
was on the order of 13% for the the corrected method, while the smallest
was on the order of 1% for the direct method. None-the-less, our conclu-
sion from these and many other experiments is that computing the calibra-
tion matrix using the mean-square technique gives a slight improvement in
precision at a slight increase in computational cost. The direct method pro-
vides a 3D solution which is less precise but easier to program.

4 Transferring the Scene Coordinates to a New
Reference Frame.

In a continuously operating vision system, it is convenient to be able to
transfer the reference frame to any object in the scene. The simplest way to
do this is to empty the 3-D model, chose a new reference object and then
reconstruct the model with respect to this new object. However, in some
cases it may be desirable to preserve the 3D model, and transform it to the
new reference frame. This section concerns a method to obtain the four by
four homogeneous coordinate expression for a transformation of the 3D
model to a new reference frame. This technique may be used when both the
new and the old reference objects are simultaneously in the field of view of
the two stereo cameras. This transformation makes it possible to "hop” the
coordinate system of the 3D model from one object in the field of view to
another.

The projective transformation has the form of a 3 by 4 homogeneous ma-
trix. The 3 dimensional side produces points in image coordinates while the
4 dimensional side refers to scene coordinates. A four by four correction
mairix provides a transformation to the scene based reference frame. Such
a transformation may be used to change the scene based reference frame.

Suppose that we have calibrated to a known reference object, and that we
now wish to transfer the coordinates to a new, perhaps unknown object.
Such a transformati on may be achieved using the observed scene position
of four points. That is, any four points in the scene can be used to define a
new affine reference frame, without re-calibration. In particular, it is pos-
sible to "hop" the reference frame from the original calibration object to a
sequence of other objects reconstructed by stereo.

Let us designate the the original reference frame as "O" and the new refer-
ence frame as "S". To transform our reference, we need the homogeneous
transformation from O to S: ’T. Let "M and *M be the results of cali-
brating to the reference frame "O" as described in section 2 above. We note
that post-multiplying our calibration matrices by a homogeneous matrix
T transforms the calibration matrices to the new reference frame.

T

S

A
D
e

Figure 3.3 Left and right images of cube and sugar box used for table 3.6.



M= M OT  and M= M OT

Let us call these four reference points expressed in the original coordinate
system: °R, °R, °R, and °R,. To obtain °T we compose a matrix with the
3D position of these reference points.

OR =[ °R; U Rz U °R3 L %Ro ]
We note that in the new reference frame, these same points will represent

the origin and the three unit vectors, represented by

1000
0100
0010
1111

To calculate °T we write
OR = SoT SR

and then note that SR has a trivial inverse (as in chapter 2.) Thus °T is
given by

1000
T = oR SR =OR 0100
0010
“1-1-11

X1-Xo X2-X0 X3-Xp X0

- Yi-Yo Y2-Yo Y¥3-Yo Yo @n
z-20 -2 23-20 20
0 0 0 1

Thus the affine reference frame can be moved to any set of four points
whose position is known (or observed) in the original reference frame by a
direct formula.

5 Discussion and Conclusions

The reliable operation of a 3D vision system depends on accurate calibra-
tion. Calibration procedures which require time consuming and cumber-
some set-up a re of litile use when the optical parameters of the lenses are
continually changing. In this paper we have presented the foundations for a
technique in which camera calibration is determined and maintained using
objects in the scene. These techniques permit objects in the scene to serve
as the reference frame in which the scene is reconstructed. Because the
object is reconstructed in its own reference frame, information about the
shape of an object can be registered and fused without knowledge of the
camera positions relative to the object.

After some definitions, we presented a technique in which six points in the
scene, for which at most four are in the same plane, can be used to compute
the transformation from scene to image. While most of the experimental
results have been presented using a cube, the same techniques can be used
with any object for which the six points can be unambiguously determined.
When the reference points are taken from the corners of a right
parallelpiped (such as a box), the resul ting basis is orthogonal. Otherwise,
the result is an affine 3D basis. In either case, the coordinate system is
invariant to camera viewing angle and may be used for a reconstruction
which is intrinsic to the shape of the reference object.

Finally we have shown how tracking four points for which the scene posi-
tion is known can be used to hop the coordinate reference frame from one
object to another. We have also shown how four reconstructed points can
be used to keep the reference frame locked onto an object as the head (or
object) is moved.

This paper is concerned with the mathematics of calibration and recon-

struction. The precision of stereo reconstruction is very sensitive to the pre-
cision of the image location of the points on which calibration is based.
This dependence is highly non-linear. We can draw several conclusions
from this dependence.

The precision of reconstruction is very dependent on the focal length of
lenses and the size of images. Many of the experiments for this paper were
initially performed with 256 x 256 images, formed by digitizing only the
even lines from the image. This was done to avoid interlacing problems
during motion. Changing to 512 x 512 images (with the same lenses) im-
proved the 3-D precision by well over a factor of 4.A reduction in the size
of image must be accompanied by a increase in the focal length of the
lenses, in order to maintain a similar reconstruction precision.

In this paper, we have not addressed the problem of locating the reference
points. Yet the cri tical dependence of 3-D precision on image location
shows that this is a fundamental problem for which a satisfactory solution
still does not exist. What we can offer to this problem is the criteria for
evaluating image analysis techniques for 3D reconstruction. The math-
ematics of reconstruction show that an image description algorithm must
locate image features with both high precision and with stability. Advances
in precision have generally resulted in reduction in stability. Real time ac-
tive vision requires both.

A final conclusion involves calibration. The current wisdom argues for an
initial calibration phase using a complex set up involving many reference
points. The argument is that additional reference points permit improve-
ment in precision through use of statistical methods. In a continuously op-
erating vision system, calibration matrices must be continuously corrected
for effects due to focus, aperture, vergence and camera zoom, as well as
vibrations that can change the lense mounting. Thus, a more precise recon-
struction of the scene requires continually updating the calibration.
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