The Role of Fixation in Visual Motion Analysis
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Abstract

The human eye is different from existing electronic cameras because it is not
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of a new concept, active vision (5, 6, 7).

An observer is active when he has the capability to control the geometric parame-
ters of his sensory apparatus. In [5] it was shown that an observer with the ability of
controlled self-motion can solve several recovery problems in a more efficient manner
than a passive observer. In this paper we study the computational advantages of
fixation in space-time, usually referred to as gaze control. We show that an active
observer with the ability to control its gaze and keep an environmental feature sta-
tionary on its image can solve several navigational tasks very efficiently, using well
defined input and spending very little computational effort.

2. - Overview

If we can “recover from a sequence of images the involved structure of the imaged scene
and the relative three-dimensional motion”, then various subsets of the computed pa-

rameters provide sufficient infc to solve many tical probl such as de-

tection of independent motion, passive navigation, obstacle avoid prey catching,

etc., as well as many other probl related to robotics and i hand-ey
ipped with coordinati ic docking, teleconfe ing, etc. The difficulties posed from

2 uniform resolution over the whole visual field. Near the optical axis it has the fovea where
the resolution (over a one degree range) is higher by an order of magnitude than that in
the periphery. With a small fovea in a large visual field it is not surprising that the human
visual system has developed mechanisms, usually called saccades or pursuits, for moving
the foveain a fast way. It is important to understand both the structure and function of eye
movements in the process of solving visual tasks. In other words, how does this particular
ability of humans and primates to fixate on environmental points in the presence of relative
motion help their visual systems in solving various tasks? To state the question in a more
formal setting, we investigate in this paper the following problem: Suppose that we have an
anthropomorphic active vision system, that is, 2 pair of cameras resting on a platform and
being controlled through motors by a computer that has access to the images sensed by the
cameras in real time. The platform can move freely in the environment. If this machine can
fixate on targets being in relative motion with it, can it solve visual tasks in an efficient and
robust manner? By icting our to a set of 1 tasks, we find that such
an active observer can solve the probiems of 3-D motion estimation, egomotion recovery and
estimation of time to contact in a very efficient manner. The algorithwms for solving these
problems are robust and of qualitative nature and employ as input only the spatiotemporal
derivatives of the image intensity function (i.e. they make no use of correspondence or
optic flow). Fixation is achieved through camera rotation. This amounts to a change of
the input (motion field) in a controlled way. . From this change additional information is
derived making the i ioned i 1 tasks easier to solve. The potential
of a machine ing gaze control bilities to ly address other problems,
such as figure-ground segmentation, stereo-fusion, visual servoing for manipulatory tasks
and relative depth, as discussed in [8, 17}, demonstrate that gaze control is a principle of
active vision, as already proposed in [5, 6, 7).

1. Introduction: Visual Motion Interpretation

Visual navigation problems in the past were mostly studied for the case of a pas-
sive observer. In order to d ate the p ional advantages underlying the
perceptual capabilities of an active observer capable of controlling its gaze, we first
discuss the limitations of passive vision with regard to problems of visual motion
analysis.

For years visual motion interpretation has been approached through studying the
“structure from motion” problem. The idea is to find methods of recovering the
three-dimensional motion parameters and the structure of the objects in view from
the dynamic imagery ([15], [24]). The way the problem has been addressed was first
to compute the exact position where each point in the image moved to. In cases of
small motion the vector field that represents the change of every point in the image,
the so called “optical flow field”, is computed from the spatiotemporal derivatives of
the image intensity function. This requires the employment of additional constraints,
such as smoothness. In cases where the motion is considered large, features such as
points, lines or contours in images taken at different time instances are corresponded.

From the derived optical flow field or the correspondence between features the three—
dimensional motion is then determined.

One can distinguish three phases in the evolution of research on the structure from
motion problem. First, work dealt with the question of the existence of a solution,
i.e. can we extract any information from a sequence of images about the structure
and 3-D motion of the scene that cannot be found from a single image? Intensive
research has been conducted in this field and several theoretical results have appeared
that deal with questions such as: what can be recovered from a certain number of
feature points in a given number of frames [24, 4]7 Then the uniqueness aspects of the
problem were studied. Non-linear algorithms for the recovery of structure and motion
from point {14] or line correspondences and optic flow [26] appeared increasingly in
the literature. Such algorithms were based on iterative approximation techniques, so
they lacked guaranteed convergence as well as clear analytical formulations that would
make a proof of uniqueness possible and allow other researchers to build upon them.
Later “linear” algorithms and uniqueness proofs came out for points {23] and lines
[20], as well as flow [1]; all were based on the same linearization technique. Although
research along these lines has been accompanied by many experiments, none of the
existing techniques could be used as a basis for an integrated system, working robustly
in general environments.

The reasons for the lack of applicability to real world problems are due to the
difficulty of estimating retinal correspondence, which is an ill-posed problem; the

the structure from motion problem raise the idea to seek direct solutions to the above
problems that don’t presume complete recovery. If we can furthermore supply ad-
ditional information to the solution-finding task, we may solve problems that were
originally considered as ill-posed, ill- and li Additional informa-
tion can be obtained by making the observer active and allowing him therefore to
manipulate and control certain parameters. This is the approach called for by the
paradigm of Active Vision [6, 5]. In their paper Aloimonos et al. discuss solutions
to a few problems for an active observer possessing controlled self-motion, but they
consider optical flow as input to their modules. Here, by exploiting the advant.

of gaze control, we develop solutions to the 3-D motion estimation problem which do
not rely on optic flow or correspondences but use as input only the spatiotemporal
derivatives of the image intensity function.

Fitioned

From the measurements on the image we can only recover the relative motion
between the observer and any point in the 3-D scene. The model that has mostly been
employed in previous research to relate 2-D image measurements to 3-D motion and
structure is the one of rigid motion. Consequently, the case of egomotion recovery
for an observer moving in a static world has been treated in the same way as the
estimation of an object’s 3-D motion relative to an observer. We argue here that the
rigid motion model is the appropriate one if only the observer is moving, while this
holds only for a restricted subset of moving objects—mainly man-made ones. Indeed,
all objects in the natural world move non-rigidly. However, considering only a smail
patch in the image of a moving object, a rigid motion approximation is legitimate.

Therefore, for the case of egomotion we can use data from all parts of the image
plane, whereas for object motion we can only employ local information. Hence, we de-
velop two conceptually different algorithms for explaining the mechanisms underlying
the p 1 of tion recovery and 3-D object motion recovery.

We analyze the following two problems:

(a) “Given an active observer viewing an object moving in a rigid manner (translation
+ rotation), recover the direction of the 3-D translation and the time to collision
by using only the spatio-temporal derivatives of the image intensity function”.
Although this problem is not equivalent to “structure from motion”, because
it does not fully recover the 3-D motion, it is of importance in a variety of
situations. If an object is rotating around itself and also translating in some
direction, we are usually interested in its translation—for example in problems
related to tracking, prey catching, interception, obstacle avoidance, etc.

(b) Given an active observer moving rigidly in a static environment, recover the
direction of its translation and its rotation and determine relative depth. This
is the process of passive navigation,' a term used to describe the set of processes
by which a system can estimate its motion with respect to the environment.

3. The Input

We want to avoid using optical flow and use data that is derived from just the varia-
tions in the image intensity function as the input to the estimation of 3-D motion. As
the only available constraint for the flow (u, v) of the time changing image /(z,y,1)
we accept the constraint Lu + Ly + I, = 0 [12], where subscripts denote partial
differentiation. This just means that we can only compute the projection of the flow
on the gradient direction (., 1) - (u,v) = —1), i.e. the so-called normal flow. This
equation, the optic flow constraint equation, is derived when assuming that the irra-
diance at time ¢ at point P(z,y) and at time ¢ + 6t at point P(z + éz,y + 6y) are the
same, or in other words, % = 0. The input we use is the spatio-temporal variation
in the brightness pattern, which is associated with the vector field of apparent veloc-
ities, the optical flow field. It is often considered to coincide with the motion field,
the projection of the 3-D motion on the image plane. This fact is stated through
the assumption % = 0, which says that the two fields are the same., However, the
optic flow field and the motion field are not equal in general. Verri and Poggio [25]
reported some general results in an attempt to quantify the difference between them.
In Fermiller and Aloimonos [10] the difference between the normal components of
these two fields is estimated by using a first-order Taylor series approximation for the
spatio-temporal variation in the image intensity. If u, denotes the normal flow value
at point (z,y) and @, the normal motion value at the same point, then the difference

assumptions that have to be made to derive optical flow; and the of 3-
D motion estimation to small changes in the data. Even optimal algorithms [19]—
optimal under the ption of G perform quite poorly in the presence
of moderate noise. The efforts to remove these shortcomings contributed to the birth

!Passive navigation is a prerequisite for any other navigational ability. A system can be guided
only if there is a way for it to acquire information about its motion and to control its parameters.
Although it is possible to obtain the necessary information by using expensive inertial guidance
systems, it Temains a challenge to solve the task by visual means.



is given by:
- 1 dl

Uy = Uy = T
I 1 dt

This shows that the two fields are closer when the local image intensity gradient
w1 is high. Thus, if we measure normal flow only in regions where the intensity
gradients are of high magnitude, we will guarantee that the normal flow measurements
can be used for inferring 3-D motion.

4. Previous Research

Our work is directed towards the recovery of 3-D motion using the activity of fixation
or tracking and the image gradients (normal fiow).

The idea of employing fixation and using the tracking parameters for motion esti-
mation appeared in [5, 9], where a closed form solution is prov:ded for the computation
of the tion p forab lar observer by employing the rotation an-
gle and its first and second derivative (angular velocity and acceleration) along with
values of the optic flow field. We go two steps further and we develop a solution
for a monocular observer using normal flow, i.e. without employing correspondence.
On the other hand, the idea of using the image gradients to directly estimate 3-D
motion without going through the intermediate stage of calculating the optic flow
field first appeared in the work of Aloimonos and Brown [3]. They presented a com-
plete solution for the case of pure rotation, whereas a detailed study of translational
motion can be found in Horn and Weldon [13] and Negahdaripour [16]. Finally, a
hybrid technique appeared recently [21], using both optical flow and image gradients
for addressing 3-D motion estimation in the general case (rotation and translation).
Our contribution here lies in the introduction of several novel geometric properties
of a normal flow field due to rigid motion that give rise to simple pattern matching
techniques for recovering 3-D motion.

5. The Observer and the Choice of the Coordinate System

Figure 1 depicts a pictorial description of the active observer. Notice that the camera,
controllable by a motor, is resting on a platform that can move rigidly. Figure 2 shows
a geometric model of the camera. O denotes the nodal point of the eye and the image
plane is perpendicular to the optical axis OZ at distance f (focal length) from the
origin. The image is formed through perspective projection.

Since motion parameters are expressed relative to a coordinate system, prediction
of the position of the moving entity (object or observer) at the next time instance
is dependent on the choice of the coordinate system. In the case of egomotion it
makes sense to attach the coordinate system onto the observer, simply because the
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Figure 1: The active observer.

Figure 2: Imaging geometry and motion tion ( d).

Figure 3: Object-centered coordinate system.

quantities recovered are directly related to the way the observer moves (Figure 2).
On the other hand, when the observer needs to make inferences regarding another
object’s motion, the ideal place to put the origin of the coordinate system would be
the mass center of the object (the natural system).

Since the mass center is not known, different choices have to be made. Most
commonly the camera’s nodal point is chosen as the center of the coordinate sys-
tem (“camera- 1" di system). is described around the nodal
point. In the case of object motion this leads to different values for the motion pa-
rameters for each new frame, which is an unwelcome effect in the task of finding
translational motion.

Rotat:

‘We therefore decided to attach the center of rotation to the object’s point of inter-
section with the optical axis (an “object-centered” coordinate system) (see Figure 3).
The active observer is free in its choice of the center and will therefore decide for
a point belonging to a neighborhood of iform bri with distinguishable
features.

ht

This approach can be justified by the following argument: When choosing as
fixated point the mass center of the object’s image or a point in its near neighborhood,
the resulting motion parameters are in many cases close to those of the natural system.
In the natural coordinate sysiem with center Opayyral the velocity v at point P is
due to the translational and the rotational component:

= tyatural + @ X Onatural !

and in the object-centered coordinate system with center Ogpject the same velocity
is expressed as

—
v = Ighject +w X oobjeclp

Figure 4: The difference in translation between ¢, in the natural system with center
O, and t, in the object centered system with center O, is w x 0,0,.

Therefore the difference in translation between t,,4,,ra) and tobject (see Figure 4) is
given by:
tratural ~ fobject = @ X (OobjectP — OnaturalF)
———
= w X OgbjectOnatural

- S—
This value becomes smaller as Oobjectonatnral decreases.

6. Active 3-D Motion Estimation

We are accomplishing the computation of the FOE and the time to collision through
three modules that involve the activities of fixation and tracking.

1. By fixating at an object point, which we consider to be the origin of the used
coordinate system, we get image velocity at the center that represents the pro-
jection of parallel translation. We show how tracking can be used to derive the
projection of parallel translation from just the spatio-temporal derivatives.

™

In the next step, the output of the first module is used to acquire information
about translation parallel to the optical axis. Again tracking is used, here as a
tool for accumulating depth information over time.

1

. In a third module we show that time to collision is related to the FOE and how
to estimate it from the spatio-temporal information at the fixated point.



6.1. Tracking gives parallel translation

The first activity used in this approach is fixation. This action provides us with linear
relations between the 3-D and the 2-D velocity-parameters. An object at distance
Z in front of the camera moves in the 3-D environment with translational velocity
(U, V, W) and rotational velocity (w, wy,w.). In an object-centered coordinate system
with center P(Xo, Yo, Zo) under perspective projection the optical flow (u, v) is related
to these parameters through the following equations:

= u = ﬂ—~1‘5—ﬂjﬂ+w2(?+~l—1’222")—w3y
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In a small area around the center x, ¥ and 1%1 are close to zero. The optical
flow components due to rotation and due to translation parallel to the optical axis
converge to zero, and u becomes EZJ: and v becomes in

The flow at the center of the image gives the projection of parallel translation, but
only normal flow is available. We show that tracking can be used for the evaluation
of optical flow in an iterative technique and prove the convergence of the method to
the exact solution.

The problem of current optical flow algorithms is that additional constraints are
imposed. Constraints that impose a relationship on the values of the flow field are
usually used, and this results in assumptions, such as smoothness, about the scene
in view. This basic problem is overcome by providing the observer with activity.
The computation is thus transferred to the active observer, who has the ability to
iteratively adjust his motion through his control mechanism to the given situation.

In cases where the dominant motion of the object is translation towards the ob-
server, the resulting optical flow vectors are emanating from a point which lies inside
the object’s image. The coordinates of this point, the FOE, are consequently close
to zero. Otherwise the optical flow pattern is due to vectors that are about parallel
and have about the same magnitude. Typical normal flow patterns for both cases are
shown in Figure 5.

For these cases, where the FOE lies inside the object, the normal flow vectors are
mainly due to translation, because the rotational components near the object center
are very small. Therefore a simple technique using only the direction of the normal
flow measurements can be applied. Given the normal flow vector at a point, we know
that the FOE lies in the half-plane, which is separated from the one containing the
normal flow vector through the greylevel edge. Considering every available normal
flow measurement will narrow the possible location of the FOE to a small area (see
Figure 6) (see also [13, 2]). When dealing with such normal flow patterns, it would
make no sense to use the method introduced in this paper; we are concerned here
with the more complicated case as displayed in Figure 5b.

Let us compute the normal flow in a set of directions in a small area around the

@ b

Figure 5: (a) Normal flow vectors emanating from a point inside the object. (b)
Normal flow vectors, when the translational component parallel to the image plane
is not much larger than the component perpendicular to the plane.
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Figure 6: Each available normal flow
of the FOE.

constrains the possible location

@ ()
Figure 7: (a) Normal flow vectors measured in different directions. (b) The new flow

vector (resulting from object motion and tracking) is due to a, the error in magnitude,
and due to b, the error in direction.

origin (fixation point). The normal flow is the projection of the optical flow on the
gradient direction. The largest of the normal flow values in the different directions is
therefore the one closest to the optical flow. Let us call this normal flow vector the
“maximum normal flow” and denote it by (u",v") (see Figure 7a). We take it as an
approximation to the correct optic flow and use it to track the fixated point. The
purpose of tracking is to correct for the error in the approximation. In order to keep
a point with optical flow (u,v) in the center of the image the observer has to perform
a movement that produces the same value of optical flow in the opposite direction.
The way our observer accomplishes this task is by rotating the camera around the
nodal point about the z- and y-axis. While the observer is moving it takes the next
image and computes again the normal flow vectors. If the maximum normal flow was
equal to the optical flow, a new optical flow {due to object motion and egomotion) of
zero will be achieved.

Usually, however, the maximum normal flow and the optical flow are not equal;
they will differ in magnitude and/or in direction. An error in magnitude results in
a flow vector in the direction of maximum normal flow, and an error in direction
creates a flow vector perpendicular to it (see Figure 7b). The actual error is usually
in both magnitude and direction. Thus the new flow vector is a vector sum of the
two components. Again it can be approximated by the largest normal flow vector
measurement. The new measured normal flow is used as a feedback value to correct
the optical flow and the tracking parameters; the new normal flow vector is added to
the maximum normal flow vector computed in the first step. Proceeding by applying
the same technique to the successive estimated errors will result in an accurate esti.
mate of the actual flow after a few iterations. The proof of convergence to the exact
solution follows:

We use here a simplified model to explain tracking. The change of the local
coordinate system during tracking and the fact that the object is coming closer is not
considered. Since for the purpose of optical flow estimation the number of tracking
steps is small, the error originating from this model is not essential. Concerning a
specific application, the algorithm will stop when the computed error is smaller than
a given threshold, whick will cover model errors.

In each iteration step we are computing an approximation to the difference be-
tween the observer’s egomotion and the object motion. Considering the possible
sources of error we have to show that the approximation error will become zero.

Deviations of the chosen maximum normal flow from the optical flow value are
due to the following reasons:

® Deviations covered through the model:
The fact that normal flow measurements are computed in a finite number of
directions causes an error in direction of up to half the size of the interval
between two normal flow . I nents in n directions are
performed the maximum error y is bounded by: y < z

Deviations coming from simplifications and discrete computations:

In the evaluation of flow measurements the parts linear and quadratic in z, y,
and Z — Zo are ignored. Furthermore each measurement in one direction is
computed as the average of the normal flow values in a range y of directions.
These reasons may cause errors in magnitude as well as direction, and a different
vector than the closest normal flow vector may be chosen.

General errors occuring in normal flow computation:

Sensor noise in normal flow measurements and the numerical computation of
the derivatives of the image intensity function can influence the magnitude and
the direction of the estimated value.

Let v be the magnitude of the actual optical flow. The error sources give rise
to specifying the error in magnitude, z, in percentage of the actual value. z; is the
magnitude error in the maximum normal flow measurement in step i and y; is the
the angle between maximum normal flow vector and the optical flow vector, where
zi < z and y; < y. Therefore the difference between the optical flow and the first
VT COB Yy

vsinyy
x-axis is aligned with the maximum normal flow vector (see Figure 8). The square of
its magnitude is computed as:

measurement of maximum normal flow is given by diff; = , where the

|1diff, |I* = v*2} cos? gy + v? sin’ y,
The second pormal flow vector, if measured from the direction of the maximum normal

o - . diff|||xy cos ya
flow vector derived in th d step, is given by diff, = I AR and
e the econd st i gven by i, = 1R ),
the square of its magnitude is therefore

2,2

2 . L2 2 2,2 502 2
I1diff o|* = a3z3v? cos? y; cos? yz +2v* cos? yi sin® yo-+o” sin? y; sin® ya+250? sin’ yy cos? g2
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Figure 8: Difference between optical flow vector and maximum normal flow vector.

In general, if we denote by {a, b} the fact that cither a or b has to be chosen, then
||diff ,||* can be expressed as

||diff o}f* = o ): H{r cosy},siny?}

permutations i=1

Since z; < 1 and siny; < 1 it follows that [1;{z? cos y?,siny?} and thus the whole
term converges to zero. Therefore we have shown the convergence of the approxima-
tion value to the actual optical flow value for the “simplified tracking model”.

6.2. [Estimating the FOE using tracking

When continuing with tracking over time, as an object comes closer and the value of
Z becomes smaller, the optical flow value increases. In order to track correctly and
adjust to the increasing magnitude of the optical flow value, the tracking parameters
have to be changed, too. ;From the change of the tracking parameters the change in Z
can be derived. If tracking is accornplished by rotation with a certain angular velocity,
this just means that the change in depth is derived from the angular acceleration.
In the sequel we show the relation between image motion and tracking movement
and explain the computation of the tracking parameters, which have to be changed in
every step. We explain the exact process of tracking for a geometric setting consisting
of a camera that is allowed to rotate around two fixed axes: X- and Y-. These axes
coincide with the local coordinate system of the image plane at the beginning of the
tracking process.

We describe rotation by an angle ¢ around and axis, which is given by its direc-
tional cosines ny, ng, ng, where n? +n3 + n3 = 1. The transformation of a point P
with coordinates (X,Y, Z) before and (X’,Y”, Z') after motion is described through

the linear relation:
X' X
Y |=R|Y
z' Z

where the transformation matrix R is of the following form:
n? + (1 — n?) cos ¢ (1l — cos @) —ngsing nyna(l — cos @) + nesin g
nung(l — cos @) + nasing nd +(1—nl)cosd ngna(l — cos ¢) — ny sin ¢
nyng(l~cos @) —ngsin @ nany(l —cosd) +nysing nd + {1 —nj)cosg

T T3
=|ra 715 s
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Since the image coordinates (z,y) are related to the 3-D coordinates through:
z=Xf/Z and y =Y f/Z, we get the following equations:

(Tl$ +ry +13f)f
(rre + sy + rof)

o ezt oy +ref)f
(r7z +rsy + rof)

In order to compensate for the image motion (u,v) of the point P, which moves
from (0, 0) to (u,v) at one time unit the camera has to be rotated by ¢, n, and n2,

where
u

v

naf tan ¢
—n,ftang

]

Taking at the center of the image the flow measurements (u,v) at the beginning
of the tracking process at time ¢;, and assuming that the object doesn’t change its
distance Z; to the camera, we can conclude that during a time interval At an image
flow (uAt, vAt) would be measured. The tracking motion necessary for compensation
is given by

U
-Z% = nytang.
But at time ¢, the object has moved to distance Z; and we measure a rotation
us _
—= =njtang’
7 =mitand

Figure 9 shows the relationship between the 3-D motion and the tracking param-
eter. Since Z; — Z; = WAt, the change in the reciprocal of the rotation angle is
proportional to g, because

1 1 Zy— 2,

nptang mtang  UAL | UAL
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Figure 9: ;From the optical flow value, which is due only to translation parallel to
the image plane, a translation of P from P(t) to P(t,) is inferred, and therefore the
tracking p ters (ny, ¢) are ted. But actually the point has moved to P(tz)
and a rotation described by (ny, ¢') is measured.

and the FOE ({, %) can be computed as

Y= ke — i) = Yignaw ~ &
and
L = V(i — A0

It remains to be explained how tracking is actually pursued, since we are facing
the problem of a constantly changing local coordinate system. The interested reader
can consult [11], which is devoted to the tracking parameter computation.

6.3. Estimating the time to collision

If the values of the motion parameters don’t change over the tracking time the value
%, the time to collision, expresses the time left until the object will hit the infinitely
large image plane. A relationship between FOE and time to collision is inherent in the

—_—
scalar product of the optical flow vector (u,v) with the vectors in gradient direction

(@B
(4)(5)=mwm

For the pixels in the center, for which we ignore the linear and quadratic parts
in z, y and % in the relation between optical flow and 3-D parameters we get the
relationship:

U v
Tos o =1pm)
Uf "
e

Since we know the FOE, we can compute the time to collision from this refation-
ship, by measuring the normal flow value in all directions of the set and by solving
an overdetermined system of linear equations by minimizing the least square error.

7. Active Egomotion Recovery

For an active monocular observer undergoing unrestricted rigid motion in the 3-D
world we compute the parameters describing this motion. Using a camera-centered
coordinate system, the relating the velocity (u,v) of an image point to the

3-D velocity and the depth Z of corresponding scene point are [14}:

u_ﬂz‘w+ ﬂ(—+f)+w
U=('_sz;ywl+ﬂ(7+f)—ﬂ—f——71

where (U, V, W) denotes the translation and (a, 3,7) the rotation vector.

The number of motion parameters that a monocular observer is able to compute
under perspective projection is limited to five: the three rotational parameters and
the direction of translation. We therefore introduce coordinates for the direction of
translation (zo,y0) = (U f/W,V f/W), and rewrite the right-hand sides of the above
equation as sums of translational and rotational components:

z?
F+N+w

(—zg-&-xf)%Jraﬁ—ﬂ( 7

f

w
v =ttrans + ot = (~Bo+uf)5+ ( +f)

¥ = Ugrans + Urot =

___71

Since we can only compute the normal flow, the projection of the optical flow on
the gra.dxeut direction (nz,ny), only one constraint on the optical flow can be derived
at any given point. The value u, of the normal flow vector along the gradient direction
is given by



Uy = Uz +UNy

. :
(Ce0+ )y +a% = HE 4 1)+ win,

Un
2 T
e+ uf) +als 4 )= 4% = y2in, )

The above equation demonstrates the difficulties of motion computation using
normal flow for a passive observer. There is only one constraint at every image point
but there are five unknown motion parameters and every new point introduces one
more unknown (a scaled depth component —%) However, the ability of an active
observer to fixate at an environmental point and keep it stationary at the center of
the visual field can be exploited to provide additional information and thus simplify
the problem. The estimation of an active observer’s 3-D motion relative to a static
scene is accomplished through four modules.

1. Through the fixation and tracking of a point in the scene additional information
about the location of the FOE is derived. The FOE is constrained to lie on a
straight line and this line also supplies partial information about the observer’s
rotation (Section 7.1).

N

. Selected normal flow values form a global pattern in the image plane which is
defined by the coordinates of the FOE and one rotational parameter. Using the
information provided by the previous module, locating this pattern amounts to
one-dimensional search. This procedure provides a set of possible locations for
the FOE (Section 7.2).

w

. In order to further narrow down the possible locations of the FOE and to
compute the remaining rotational parameters, a process of “detranslation” is
performed. For every candidate FOE provided by the previous module the
normal flow vectors which do not contain that translation are examined to find
out whether they are only rotational (Section 7.3).

-

. Finally, the fourth module (total d ion) eli all impossible solutions

by checking the validity of the five motion parameters at every image point
(Section 7.4).

7.1. The fixation constraint

Assume that an active observer in rigid motion is tracking, as before, an envi I

FOE

Figure 10: Fixation constrains the FOE lo lie on the line y = Tz and provides the
value for the ratio g%:: =T (see 7.2).

In the sequel we denote the known quantity % which is defined
by the ratio of the tracking accelerations in the vertical and horizontal directions,
by T. If (zo,%0) = (Hw[,‘,'—,,,lg is the FOE, the above equation becomes L= % =T,
which is a linear constraint on the FOE. It restricts the location of the FOE to a
straight line passing through the origin of the image coordinate system with slope 7'

(see Figure 10).

7.2. Patterns of normal flow

Since the tracking rotation is only around the z- and y-axes, it would be interesting
to examine the structure of the normal flow field values not depending on rotation
around the z-axis. In other words, tracking adds a rotational field but does not affect
the rotation around the z-axis.

In the sequel we concentrate on the normal flow vectors not containing rotation
around the z-axis, hereafter called v-vectors. These are all the normal flow vectors
perpendicular to circles with center at the origin of the image coordinate system.
The lines defining the directions of such vectors pass through the origin. Let us also
call a 7-vector positive if it points in the direction (z,y) (Figure 11); otherwise, its
orientation is said to be negative.

First, we concentrate on the rotational component of the y-vectors: Along the

point whose image (z,y) lies at the center of the visual field {(x,y) = (0,0)). Assume
then that during a small time interval [t;,1,] the motion of the observer remains
constant and that during this time the camera, in order to correctly track, rotates
around its z- and y-axes with rotational velocities w,(t),wy(t) respectively, with ¢t €
[t1,2). The tracking rotation adds to the existing flow field (u,v) a rotational flow
field (u;,,vyy), where:

_—Uf+aW | axy i
“_T+T_ﬂ(f+f)+7y
2
V=M+a(y7+])—ﬂj}—y—7r
Uy = wﬁ}—wy(#-’-f)

Vyp = Wy (’Ii +f) —w, %
w,,w, are the tracking velocities at the time of the observation, and Z is the depth
of the tracked point.

As before, if tracking rotation is represented by an angle 4 around a rotation axis
(n1,n2,0) with ny,n; directional cosines, then the introduced flow (s, vyr) is given
by:

ur = myftand
vy = —mftané

Since the camera is continuously tracking the point at the origin, at any time
t € [ty,1,] the introduced tracking motion compensates for the existing flow there, i.e.
g, ftand, = YL + Bf
ny, ftang, = -—% +af

with the subscript ¢ denoting the time of observation. Writing the above two con-
straints at times ¢, and t; we have:

m, fandy = 7+ 51 @
iy, f ton g, = —;—!’: fof ®
i, ftan i, = L+ B @
i ftandy, = —L taf 5)

Tz,
Subtracting (4) from (2) and (5) from (3), we obtain:

Uf [ - 2]
vil&-%

f(na, tan gy, —na, tand,) =
f(n, tan éy, —ny,, tand,) =

or by dividing
vV _m,tan i, — m, tan gy,

U ™ ny, tan ¢, — ng, tandy,
1 ey

positive di , the rotational contribution is

f f

where A = a+w;, B = f+w,, r is distance from the image center and the angle ¢ is

Ura(ry ) = —A ('_2+f) sin¢+B(L2+f) cos

Figure 11: Positive y-vectors.

measured from the z-axis. Thus, the rotational component of the normal flow along
a vector pointing away from the image center can be described by a trigonometric
function with amplitude max(A, B) and period 27. Along the line which passes
through the image center and makes angle ¢ = arctan(B/A) with the z-axis, the
values of the y-vectors are zero. This line divides the plane into two halves. In one
half the vectors point in the positive direction, and in the other half they point in
the negative direction; in the future we simply refer to them as positive and negative
vectors (Figure 12a).

We now turn our attention to the translational component of the y-vectors: The
translational component of the motion field is characterized by the location of the
FOE in the image plane. The y-vectors lie on lines passing through the image center
and the optical flow values due to translation lie on lines passing through the FOE.
These two lines are at right angles for all points on a circle which has the FOE
and the image center as diametrical opposite points. At these points the v vectors’
translational components vanish. Thus, the geometric locus of all points where there
is zero translational normal flow is a circle. The diameter of this circle is the line
segment connecting the image center and the FOE. At all points inside this circle the
two lines enclose an angle greater than 90° and the normal flow along the y-vector
therefore has a negative value. The normal flow values outside the circle are positive
(Figure 12b).

In order to i igate the cc d with a general motion, the geo-
metrical relations derived from rotation and from translation have to be combined. A
circle separating the plane into positive and negative values and a line separating the
plane into two halfplanes of opposite sign always intersect (in two points or one point
in case the line is tangential to the circle), because both the line and the circle pass
through the origin. This splits the plane into areas of only positive or only negative
v-vectors, and into areas in which the rotatjonal and translational flows have oppo-
site signs. In the latter areas, unless we make depth assumptions, no information is
derivable (Figure 12c).

We thus obtain the following geometrical result for the case of general motion.
Points in the image plane at which the gradient direction is perpendicular to circles
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Figure 12: {a): The v-vectors due to rotation separate the image plane into a halfplane
of positive values and a halfplane of negative values. (b): The 4 vectors due to
translation are negative if they lie within the circle defined by the FOE and the image
center and are positive at all other locations. (c) A general rigid motion defines an
area of positive ¥ vectors and an area of negative y-vectors. The rest of the image
plane is not considered.

around the image center can be separated into two classes. For a given FOE, and
for a line through the image center which represents the quotient of two of the three
rotational parameters, there are two geometrically defined areas in the plane, one
containing positive and one containing negative values. We call this structure on the
y-values the y-pattern. It depends on the three parameters o, yo and %. If we can
locate this pattern through some search then in effect we have located the position
of the FOE and the value %. The ~-pattern depends on three parameters, but the
constraints derived from fixation (previous section) reduce the search for the pattern’s
position to only one dimension.

Indeed, from equations (2) and (3) at the origin we have:

ny ftangy —af _ ¥V

o, ftangy —Bf U

Since at the center n;, ftand, is equal to —w f and ng flang,, is equal to
—w, f, we obtain

weta A_V_ w__p
wy+B B Zo
or B =T andte=T

In other words, tracking provides not only the line 2 = T on which the FOE

zo

lies, but also defines the line y = %z which separates positive and neg

m tational

Figure 13: Normal flow vectors perpendicular to lines passing through the FOE are
only due to rotation.

diref:tion at a point (z, y) is ((yo—y), (—zo+x)) the scalar product of the translational
motion component and a vector in the gradient direction is zero (Figure 13).

For each of the possible solutions (zo;,0,), 7 = 1,...,7, for the FOE provided by
the pattern matching of the previous section, the normal flow vectors perpendicular
to the lines passing through (zo,, 30;) have to be tested to determine if they are only
due to rotation (see Figure 13). This results in solving an overdetermined system of
linear equations, with two unknowns, since the ratio % is already known.

Indeed, suppose that we want to test if (o,,0,) is the correct location of the
FOE. Consider all normal flow vectors @,, = u,,{(ns,,ny,), i = 1,..., &, perpendicular
to the lines passing through (wo,,90,). Then,

2
um=(A’—)f’—B(’TH)+Cy)n,_+(A<"’72+f)—B?—0x)n,,_
and since % = —T, we have:
u, =(—B(m+r—2+f)+0y)n ~(BT(£+f+ﬂ)+Cr)n i=1,....k
' f o f = f f T e

So, if the above k linear equations in the two unknowns B, C are consistent, then

we have found a possible FOE ((zo,,4o,)) and we have computed its corresponding
rotation.

7.4. Complete derotation

Assume that the previous processes don’t provide a single solution but a set of solu-
tions § = {81,2,...,8n} With s; = (20,30, @, fi, ) candidate egomotion parame-

Figure 14: Normal flow vectors due to translation are constrained to line in halfplanes.

ters. In order to eliminate all motion parameters which are not consistent with-the
given normal flow field, every normal flow vector has to be checked.

This check is performed using a “derotation” technique. For every parameter
quintuple of S a possible FOE and a rotation is defined. The three rotational pa-
rameters are used to derotate the normal flow vectors by subtracting the rotational

flow. This reduces the search for the pattern of Figure 12c to one dimension. We
simply search for a circle with diameter the segment connecting the origin with a
point along the line £ = T. This is a robust procedure as it only utilizes the sign of
the normal flow. If a wide-angle lens or logarithmic retinae [22] are employed most
of the directions representing the FOE lie in a bounded area of the image plane.
Alternatively, in order to cover all possible cases, the search can be realized in the
stereographic space [18] where the space of all orientations is bounded.

Pattern matching, since it does not utilize all values of the normal flow, may
provide a set of solutions for the location of the FOE. To further narrow down the
space of possible FOE location and to esti the rotational y ters, the process
of detranslation (next section) is performed.

7.3. The process of detranslation

By detranslation we refer to the process that, given the position of the FOE, selects
the normal flow vectors due to rotation only. Indeed, if the location of the FOE is
given, the directions of the translational motion components are also known. The
translational vectors lie on lines passing through the FOE. The normal flow vectors
perpendicular to these lines do not contain translational components; they have only
rotational components. This can be seen from equation (1). If the selected gradient

comp 1t (trots U ). At every point the flow vector (vger, vaer) is computed:

Uder = Unllz — UrotNls

Vder = Unlty — VrouTly

I the parameter quintuple defines the correct solution, the remaining normal flow
is purely t lational. Thus the ding optic flow field consists of vectors
that all point away from one point, the FOE [13]. Since the direction of optical flow
for a given FOE is known, the possible directions of the normal flow vectors can be
determined. The normal flow vector at every point is confined to lie in a half plane
(see Figure 14). The technique checks all points for this property and eliminates
solutions that cannot give rise to the given normal flow field.

7.5. The algorithm

Assume that a rigidly moving observer is capable of tracking (with tracking velocities
wy,wy) an environmental point whose image is at the origin. Then, the following
algorithm outputs the observer’s motion.

Step 1. The tracking acceleration provides a line y = T'z on which the FOE lies, as
well as the ratio %1'—::— (Section 7.1).



Step 2. Using the result of the previous step, a 1-D search along the line y = T'z for
the pattern of Figure 12c is performed to find solutions for the FOE.

Step 3. The previous step may provide a set § = {(zo,,%0,), (Zo,¥0,):- - -, (To,,» You ) }-
For each (zq;, %o,) we perform the process of detranslation which may have two
consequences. One would be to reject (zo,,yo;) as a possible solution and the
other would be to accept it with the computed rotation (A;, B;, C;).

Step 4. Step 3 may provide a set S of candidate solutions for the translation and
the rotatjon:

S = {(zo0,, Y01 A1, B1,C1), - - ., (€0,1 Y0, Any Ba, Ca) }.

In order to reject impossible solutions complete derotation is performed to check
every single normal flow vector for consistency with the motion parameters.

8. Experiments

We have tested the technique computing object motion on synthetic imagery by using
the graphics package Swivel. In this way we were able to simulate object motion
as well as camera rotation. In order to analyze the robustness of the method, we
evaluated the accuracy of the normal flow values in the center of the images. At
every point we determined vy, the projection of the known optical flow value on
the gradient direction computed there. The error (err) in the normal flow values was
defined as standardized diffe bet Vact and the normal flow value, vmeas
(err = (vact — Ymeas)/vact %) This way we computed an average error of 76.14%
and a standard deviation of 179.64% for the motion sequence at the beginning of the
tracking process. This constitutes a large error and is comparable to errors appearing
in noisy real imagery.

The object displayed in Figure 15 moves in the direction U/W = 4 and V/W =2,
with an image motion at the center of v = 0.004 and v = 0.002 focal units, and we
tracked it over a sequence of 100 images. Concerning the implementational details, we
computed normal flow measurements in 10 directions in an area of 9 x 9 pixels at the
center of the image. When testing the first module, with which parallel translation
is estimated, we used a threshold of 0.0002 focal units. The method converges very
quickly, usually after 2 to 3 iterations. We added rotation of growing magnitude to
the object motion, and it turned out that the algorithm converges for this set-up even
for relatively large rotations. (The object was 25 units away from the camera and
moved with translational velocity of U = 0.1, V = 0.05, W = 0.025 units per time and
the method converges for rotations of up to 0.3° per time unit around the x- y- and
2- axis.) Some graphical representations are given: Figure 16 shows for the case of no
rotation the three normal flow fields that were computed in the the 9 x 9 pixels large
area, before convergence was achieved. In Figure 17 two maximum normal flow vector
sequences are displayed (a: for no rotation, b: for rotation w, = 0.1°, w, = 0.1°).

Figure 15: First image in the sequence used for tracking.
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Figure 16: Normal flow fields for a tracking sequence.

Figure 17: Maximum normalflow vectors for (a) no rotation and (b) rotation w, =
0.1°/At, w, = 0.1°/At.

Using the estimates of parallel translation from this module and continuing with
tracking over 100 steps resulted in FOE values of less than 15 % error (eg., for the
case of no rotation we computed an FOE of U/W = 4.21 and V/W = 1.79). With
these experiments we demonstrated that the technique to compute object motion can
tolerate a large amount of noise in the input (normal flow).

Especially we showed that tracking can be successfully accomplished using only
normal flow under noisy conditions and that tracking acceleration can be employed
for robust parameter estimation.

Building upon a successful tracking mechanism in a second series of experiments
we tested the last three modules of our egomotion recovery algorithm: pattern match-
ing, detranslation and derotation. Concerning the impl tion of these modul
we took the following approach: The elimination of impossible parameters from the
space of solutions involves discrimination on the basis of quantitative values. We have
implemented this in the following way: Normal flow values in certain directions are
selected, if they are within a tolerance interval of 10°. This relatively large degree of
freedom, of course, will introduce some error, but there is a tradeoff between accuracy
and the amount of data used by the algorithm. In the pattern matching and the dero-
tation modules counting is applied to discriminate bet possible and i ibl
solutions. The quality of the fitting, the “success rate”, is measured by the number
of values with correct signs normalized by the total number of selected values. The
amount of rotation in the derotation module is computed through a simple linear least
squares minimization and the discrimination between accepted and rejected motion
parameters is based on the value of the residual.

In the pattern matching and d i dules no quantitative use of values is
made, since only the sign of the normal flow is considered. Such a limited use of
data makes the modules very robust, and the correct solutions are usually found even
in the presence of high amounts of noise. To give some quantitative justification of
this we define the error in the normal flow at a point as a percentage of the correct
vector’s length. Since the sign of the vector is not affected as long as the error does
not exceed the correct vector in value, our “pattern fitting” and derotation will find
the correct solution in all cases of up to 100% error.

Several experiments have been performed on synthetic data. For different 3-D
motion parameters normal flow fields were generated; the depth value within an in-
terval and the gradient direction were chosen randomly. Pattern matching was tested
by assuming knowledge of the lines y = T'z (where the FOE lies) and y = %x (which
separates positive from negative rotational ts) provided by the tracking
constraint. The set of possible solutions was then further reduced by detranslation
and derotation which were implemented as described above. In all experiments on
noiseless data the correct solution was found as the best one. Figure 18 shows the
optic flow field and the normal flow field for one of the generated data sets: The
image size was 100 x 100, the FOE was at (-40,~40) and the ratio of the rotational
components was A: B:y=1:~1:15. In Figure 19 the fitting of the y-pattern to
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(a) Optical flow field. (b) Normal flow field.

Figure 18: Flow vectors for synthetic image.

- the y-vectors is displayed. Points with positive normal flow values are rendered in a
- light color and points with negative values are dark. Perturbation of the normal flow
- vectors’ lengths by up to 50% did not prevent the method from finding the correct
* solution.

As an example of a real scene the NASA-Ames sequence? was chosen. The cam-
era undergoes only translational motion, and we added different amounts of rotation:
For all points at which translational motion can be found the rotational normal flow
is computed, and the new position of each pixel is evaluated. The “rotated” image is
then generated by computing the new grey levels through bilinear interpolation. The
images were convolved with a Gaussian of kernel size 5 x 5 and standard deviation
9 = 1.4. The normal flow was computed by using 3 x 3 Sobel operators to estimate the
spatial derivatives in the z- and y-directions and by subtracting the 3 x 3 box-filtered
values of consecutive images to estimate the temporal derivatives. When adding ro-
tational normal flow on the order of a third to three times the amount of translational
flow, the exact solution was always found among the best fitted parameter sets. In
Figure 20 the computed normal flow vectors and the fitting of the v-patterns for one
of the “rotated” images are shown. Areas of negative normal flow vectors are marked
by horizontal lines and areas of positive values with vertical lines. The ground truth
for the FOE is (—5 ,—8), the focal length is 599 pixels, and the rotation between the
two image frames is a = 0.0006, 8 = 0.0006, and ~ = 0.004, The algorithm computed
the solution exactly.

2This is a calibrated motion sequence made public for the ‘Workshop on Visual Motion, 1991.



Figure 19: (a) Positive and negative y-vectors. (b) Fitting of v-pattern: The line
y = Tz on which the FOE lies and the line y = %a:, which separates the rotational
components, are found through the fixation constraint.
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(a) (b)
Figure 20: Real scene: Normal flow field and fitting of v-patterns.

9. Conclusions

It has been argued by psychologists that biological organisms use tracking in the
motion estimation process. In this paper we have exploited the advantages of the
tracking activity to estimate egomotion and 1o solve for a monocular observer the
problem of computing a moving object’s translational direction and its time to col-
lision. We have presented a complete solution to this task by showing how tracking
can be pursued when only normal flow measurements are used and how these param-
eters are of use in the 3-D motion parameter decoding strategy. The technique for
estimating an object’s motion consists of three modules. First, tracking is used in
combination with fixation to estimate the motion components parallel to the image
plane. Second, tracking serves to compute the perpendicular translational compo-
nents and to estimate the FOE. The output of these modules is then employed to
estimate the time to collision. A theoretical analysis of the tracking algorithm in
the first module has been performed and the convergence of the method has been
proved. Experimental studies have been conducted on synthetic imagery and yielded
very good results. .

In contrast to the first method where an object-centered coordinate system is used,
for egomotion estimation a camera-centered coordinate system is more appropriate.
The main difference between the two algorithms described in the paper lies in the
fact that object motion is computed from local data while egomotion estimation is
based on global data. The technique uses data from all parts of the image plane and
exploits geometric relations that are characteristic of a normal flow field due to rigid
motion. The algorithms can be regarded as a search technique in a parameter space
where the use of fixation and tracking, along with an appropriate selection of normal
flow values, is used to reduce the dimensionality of the motion estimation problem
from five dimensions to one.

The theoretical analysis and the experiments described in this paper demonstrate
that the introduced algorithms have the potential of being implemented in real hard-
ware active vision systems, such as the ones described in [8, 17].
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