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Abstract In this paper, we propose a randomized algorithm to estimate the planar motion
parameters of a finite closed set. By randomly searching points on two shapes measured at
different times, we determine the centroid and translation of the planar shapes. Taking these
centroids as references, the algorithm proceeds to determine the point-to-point correspondences
by randomly searching three points on each shape that form congruent triangles. After the point
correspondences have been determined, the rotation is estimated by solving the 'rigid motion

equation.
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1 Introduction

Estimation of motion parameters is a classical prob-
lem of computer vision which has been studied by
many researchers. There are two main approaches
to examining time-varying images: the feature-
based approach (feature correspondence) and the
differential-based approach (optical flow). Both ap-
proaches can use either monocular or binocular image
sequences.

Methods based on image feature positions must
to deal with the problem of point correspondences.
Many of these methods assume that the correspon-
dence problem has been solved. However, the advan-
tage of these kinds of linear algorithms is that they
are fast and the uniqueness of solution is guaranteed
except in degenerate cases. Methods based on optical
flow must to solve nonlinear equations through iter-
ative methods that may diverge or converge to local
minima. Hence the search in the space of motion pa-
rameters is computationally expensive, although the
optical flow under many conditions can be linearly
approximated [1]. Likewise, other workers have tried
to avoid the matching problem and the computation
of optical flow by using a direct motion approach [2].

There are a number of reasons why the problem of
point correspondences is difficult. For example, more
than one measurement may match a predicted fea-
ture or a single measurement may match more than
one feature. Also if there are occluded parts, some
features can appear in one image frame and then
disappear in the next frame. These ambiguities are
the essence of motion correspondence problem. How-
ever, the point correspondences problem is assumed
a priori to be solved for the majority of motion de-
tection algorithms.

In computer vision, recognition of a planar shape
by matching image features which are invariant under
transformations of the image caused by motion is a
well-studied problem [3], and has numerous applica-
tions. Here, we are interested in detecting the motion
without knowing a priori the point correspondences.
The approach used in this work is to take two images
acquired at different times by a camera moving in a
static environment and then use random search and
shooting circles to a develop non-model-based mo-
tion detection algorithm. We propose an algorithm
based on the randomized Hough transform (RHT)
and on the rigid body motion constraint [4]. The
rigid body motion constraint provides a condition
that makes the problem well-posed. Furthermore, it
is well known that the randomized Hough transform
approach decreases the time consumed dramatically.

The present algorithm randomly searches points on
each shape to estimate the centroids of the planar

shapes, and then determines the translation using the
centroid constraint. To solve the point-to-point corre-
spondence problem the algorithm randomly searches
three points subject to the constraint that points in
each shape form congruent triangles. After possible
3-point correspondences are identified, the algorithm
proceeds to estimate the rotation using the rigid mo-
tion constraint and ’voting’ in the parameter space.
This process continues until a limit of iteration cycles
or a peak is detected in the parameter space.

The aim of this work is to develop an algo-
rithm to estimate the motion parameters in the two-
dimensional Euclidean space, which deals firstly with
the problem of point correspondences, and takes ad-
vantage of the linear constraint and the higher speed
provided by the randomized approach.

2 Rigid Object Motion

The term rigid body means an assembly of particles
with fixed interparticle distances. Thus, in the kine-
matics of solid objects, the motion of an object is
rigid if and only if the distance between points of the
body is invariant with time. Rigid motion [5, 6, 7]
can be described as the sum of translation plus rota-
tion about an axis that is fixed in direction for short
periods of time. Let R? be the two-dimensional Eu-
clidean plane, and denoting by z, ¥ be the orthogonal
coordinates on R2, we express a vector on R? as

T = (z,y)T, (2.1)
and the norm of the vector as

2] = VaTe, (2.2)
where =Tz is the inner product of vectors. Further-

more, ¢ € R? is expressed using homogeneous coor-
dinates as

€= (z,9,1)7. (2.3)
We call a finite closed set V on R? a planar shape.

The rigid motion for a point  on a planar shape V'
is defined by

z'=Rzx+a (2.4)

where a € R? is the translation vector, R is the ro-
tation matrix such that

RTR=1, and |R|=1 (2.5)

and the two-dimensional rotation matrix is defined as

r- )

We define V”, that is the result of applying the rigid
transformation to V as

cosf sinf

—sin@ cos@ (2:6)

V' = {/lz' = Rz + a}. (2.7)



We compute the motion parameters from two shapes
V and V' measured at times ¢; and tp, respectively,
and if we know three sets of corresponding points
we can solve eq.(2.4). Otherwise, the rigid motion
constraint is a linear equation; therefore we can ap-
ply the concept of the randomized Hough transform
[4]. The Euclidean motion may be decomposed into
rotation and translation; accordingly, the algorithm
is composed of two main stages: first, computation
of the centroid and translation and second, compu-
tation of the rotation parameters. Furthermore, we
assume the rotation to be about the centroid of the
planar shape, then the translation of the centroid cor-
responds to the translation of the planar shape.

Setting dz and dy to define an infinitesimal lenghts
on z and y axes respectively, the centroids of V and
V' are obtained as

dzd _// tded

g= .y o (28)
[hoasar = Jf e
respectively. Since we have
dzdy = / / dzd 2.9
//v' zdy = [[ dedy (2.9)
and
'dedy = / / Rz + a)dzd
//v,:: zdy v( z + a)dzdy
= /:/ Radzdy + a
v
= //;, zdzdy + a, (2.10)
we obtain the following relation.
Proposition 1 Since
gd=g+a, (2.11)
the relation
a=g'-g (2.12)

holds.

In addition, in rigid object motion the distance be-
tween two object points is conserved and three cor-
respondence points provide enough constraints to re-
cover the rotation parameter [8]. We randomly select
three noncollinear points from each frame. Hence if
these two sets of three points form congruent trian-
gles in shapes V and V', then these two sets define
point correspondences (see figure 1).

Let V be a planar shape; that is, V is a finite
closed set on R?. Denoting by 8V the boundary of
V, for a point g € V', we define a set

K(ry=ovn{z|lz-g|l=7r, r>0}. (2.13)

Furthermore, letting |K(r)| be the number of ele-
ments of K(r), we obtain the following theorem.

Theorem 1 For any triplet of vectors ¢, y and z €
K (r) we can show that

|z - y|, (z — 2)T(y — 2), and |K (r)| are invariant
under Buclidean motion.

(Proof.) For® € V let

V'={z'|z' = Rz + a}, (2.14)

thus

|e'-y'|=le-y], Yy € V' andVz €V (2.15)

and

(@ -y -2) = (2-27(y-2), (216)

Vy eV andVzeV.
Furthermore, K (r) C V, and by setting

'=g+a, (2.17)

we obtain

K'(ry=0v'n{z'||le'—g'|=1}.  (2.18)

This leads to the conclusion that |[K'(r)| = |K (r)|.
(Q.E.D)

Theorem 1 implies that in a continuous space, we
can solve the point correspondences problem by using
|K(r)] and |K'(r)|, since in most cases |K(r)| and
|K'(r)| are finite. The set of three points is selected
from the intersection of the boundary and a circle
whose center is the centroid g with radius r.

After point correspondences have been established,
the rotation is computed using the rigid body motion
constraint. Random point selection is continued until
a peak is detected in the parameter space or a limit
of iteration is reached.

3 Randomized Algorithm

Primarily, for computation of motion parameters we
require a digital image. Hence, we proceed to detect
the image boundary, in this case using binary dilation
[9], after which we can apply the algorithm.

3.1 Estimation of Centroid and Transla-
tion

The centroid g=(%, )T of a region V is defined as

d /d
fozie f

zZ= ¥= .
/ dzdy / dzdy
v v

A region V' can be decomposed into nonoverlapping
parts, that is,

(3.1)

V=VinV,, i#jforij=123,..0 (3.2)



For V; CV and V; CV,
ntV;nintV, =0 (3.3)

where 1ntV is the interior of the region. For a region,
V =90V UintV. (3.4)

Denoting by g and g; the centroids of V' and V;, we
have the relations

1 n
9= |V|‘§=1:|Vi|9i (35)
d [V\Va [Val
VA\VLl_ Va
= —On- —_— .6
g |Vi gn—-1 Ivlgn’ (3 )

where |V| is the area measure of the set V" and

1 n—-1
g = — V:lg: 7
gn-1 V\Val ; Vilg:, (3 )
where \ is the usual set subtraction operation. Thus,
for a digital image, eqs.(3.1) and (3.6) can be written
as

18 1<
i:;Za:;, Vz; € V ﬁ:;z‘y;, Vy, € V.

=1
(3.8)
For our random approach we rewrite these equations
as:

=1

n
Gnt1 = mgn + mfﬂ

! n / 1 !
1= — —— 3.9
gn+1 n+lgn+n+1z ( )
where go = 0, g = 0. The algorithm randomly
selects points z €V and ' € V', where V and V"' are
the sets of the planar shape points, then the centroid
is computed until a limit of iteration cycles is reached.

The translation is estimated using

n
—a,
n+1

(' - =), (3.10)

Any1 =

where ag = 0. As in the centroid estimation the al-
gorithm randomly selects points € €V and =’ €V,
and then computes the translation until a limit of it-
eration cycles is reached. We also compute the trans-
lation using

Oni1 =9'ny1 = Gnyr- (3.11)
We show later that the centroid of the boundary of
the shape approximates the real centroid in some
cases. Figure 2 shows the algorithm for centroid and
translation detection.

3.2 Rotation Estimation

After the algorithm computes the centroid and trans-
lation it proceeds to estimate the rotation matrix. To
achieve this we first define a search area based on the
centroid, and randomly select a search radius that is
uniformly distributed in 7o < 7 < r;. Then defining
the sets :
K ={zlle-gl=r}  (312)
K'(r)={z'||e'-g'| =1} (3.13)
we randomly select « € 8V and =’ € 9V, such that
K(r)yndv =10 - (3.14)
K'(r)ynav' =0. (3.15)

We set a small threshold ¢, for the points z;,z,, 23 €
K(1) N 8V and the points =}z, =5 € K'(r) n oV’
such that

[ley — 2] — |&] —2}|| < € (3.16)
llez — 3| — |25 — @5l < e (3.17)
llza — @] — |2 — ][] < e (3.18)
Then we calculate the triangle vectors,
zyy=ai—x;, =2 - (3.19)
@i = (2, 5)" 5 @55 = (k5 ¥%5)" (3.20)

where 1,7 = 1,2,3. We have to ensure that the three
points are not in the same line. Likewise the points
are selected in the same order (see figure 3). Sub-
sequently, the algorithm can compute the rotation
matrix for each pair of triples. Since

' 1
z.; = Rz; (3.21)
we obtain
[ E'lz 1!'23 ] = R[ &1 23 ] (322)
this is equivalent to
T, Th -R Ti2 ZT23
Yi2 Yo Y12 Y23
Ti; Zhs Ti2 T23 - y
R= , 3.23
[ Viz Va3 ] [ Y12 Y23 ] ( )
where
R= [ i T2 ] (3.24)
T21 T22
and , ,
T = Z12¥2 — T3a¥12 (3.25)
Z12Y23 — T23Y12
1] T !
rip = S22 F10738 (3.26)

T12Y23 — T23Y12



_ YiaV23 — Yna¥iz

(3.27)
T12Y23 — T23Y12

T21
_ Vh3T12 — Y12%23
T Tia¥as — Ta3Y12
Then we ’vote’ for r;; in the accumulation space Aij
= ( 7,5, score(r;;)). For each iteration the score(r;)
= score(ri;) + 1. The process of random selection of
radius r, and points ¢; and =} is repeated until the
maximum number of iterations has been exceeded or
a peak has been detected in the accumulation space
for each r;;. Figure 4 shows the procedure used to
compute the rotation.

T2 (3.28)

4 Experimental Results

The algorithm was tested using binary images rotated
about the image centroid and then translated. The
image size is 512 x 512 pixels. The centroid and
translation were detected with good accuracy; the er-
ror in most cases is & 1 pixel. For the computation it
was necessary to perform sufficiently many iterations
such that the law of large numbers ensures good re-
sults as shown in tables 1 and 2. In these tables the
first column was estimated using eq.(3.8) and the sec-
ond column using eq.(3.9).

The estimations for the translation are shown in
tables 3 and 4. The first column is the actual trans-
lation applied to the figure, the second column is
the estimation using eq.(3.10), the third is that us-
ingeq.(3.11) and the centroid estimated from random
search eq.(3.9), and the fourth is that using eq.(3.11)
and the centroid estimated from eq.(3.8). If the fig-
ure is rotated about the origin the problem is dif-
ferent and we must first compute the rotation and
then solve the translation. For this case also we have
a good approximation for the rotation. From these
results we find that by using the boundary of the fig-
ure for the translation estimation we can obtain good
approximations. i

To compute the rotation, the algorithm searches at
least one point for the same radius in both images; if
a prefixed limit is reached then it looks for another
radius until it can find three points. Depending on
the shape and also the error allowed in matching the
two triangles, the number of iterations necessary to
find three points varies. The optimum value for the
error of matching the two triangles is between 3 and
5 pixels. The algorithm is sensitive to the choice of
this value. Likewise, for the interval for search radius,
initially we must select a good estimation and limit
this interval to reduce the computation time, and to
ensure sufficient points to estimate the rotation ma-
trix. :

Table 5 shows the values of the rotation matrix
that we can consider as good approximations, but the

accuracy of these values will depend on the shape and
the rotation angle, and table 6 shows the estimation
of the rotation angle. This means that the accuracy
of the algorithm varies. For instance, the accuracy of
the algorithm using figures of regular shapes such asa
square or rectangle is not perfect, but we can expect
at least two of the values of the rotation matrix to
be a good approximations of the rotation angle. This
means that the performance of this algorithm also
depends on the shape. All tests were executed on a
Sun SPARC model IPX.

Table 1: Centroid results using image boundary points

Figure | Centroid | Estimation
X y X y
Fig. 5 | 279 215|279 215
Fig. 6 | 219 235|219 236
Fig. 7 | 256 234|256 234
Fig. 8 | 284 222284 223
Fig. 9 | 226 247|225 247
Fig. 10 | 259 241 | 259 241

Table 2: Centroid results using all tmage points

Figure | Centroid | Estimation
X y x y
Fig. 5 | 281 212|281 213
Fig. 6 | 215 252|215 253
Fig. 7 | 336 222|336 221
Fig. 8 [ 287 219|286 219
Fig. 9 | 222 263|222 262
Fig. 10 | 340 228 | 340 229

Table 3: Translation results using image boundary
points

Figure | Trans. | Est. 1 | Est. 2 | Est. 3

x v x yix yl|x ¥y
Fig. 816 74 715 8|5 7
Fig.9 |8 116 9 |6 117 12
Fig. 10| 5 7 {3 5 {3 7 ({4 7

5 Conclusions

In this paper we introduced a basic algorithm which,
by using invariant features can detect motion param-
eters of a planar shape without assuming point cor-
respondences.



Table 4: Translation results using all image points

Figure | Trans. | Est. 1 | Est. 2 | Est. 3
X Yy [x ¥yiIx ylx ¥y
Fig.8 |16 7 1!5 71!5 66 7
Fig.9 |8 11 |7 11{7 9|7 11
Fig.10|{5 7 [4 6 {4 8 |4 8
Table 5: Rotation Matriz
Figure | Angle Estimation
Ti1 T12 T21 T22
Fig. 8 [ 15.0° | 0.955 0.260 -0.287 0.969
Fig. 9 | 45.0° | 0.688 0.719 -0.712 0.712
Fig. 10 | 17.0° | 0.968 0.280 -0.276 0.965
Table 6: Rotation Angle
Figure | Angle Estimation
Cos Sin -Sin Cos
Fig. 8 | 15.0° | 17.13 15.09 -16.73 14.09
Fig. 9 |45.0° | 46.52 46.05 -45.40 44.54
Fig. 10 | 17.0° | 14.30 16.28 -16.06 15.15

Table 7: Time consumption

Figure Time (cpu unit)
Fig. 5/8 | 3l.1u
Fig. 6/9 | 137.0u
Fig. 7/10 | 46.4u

A remaining problem is the accuracy, which is af-
fected by (i) the number of matching points, (ii) the
search radius, (iii) the triangle side error and (iv) the
maximum score and number of iterations. However
we can find at least three good angle approximations
from the rotation matrix. The algorithm works well
for smooth figures, although for angles less than 15
degrees the accuracy of some of the matrix values is
poor. However in this case we can ensure that at least
two values of the rotation matrix are good estimates.
If we also, apply the constraint that the determinat
of the rotation matrix is 1, we can select accurate es-
timation from these four values. Table 7 shows the
algorithm performance in terms of cpu time including
all processes, which also depends on the figure shape.
Finally, we showed that using the image boundary is
sufficient condition to estimate the motion parame-
ters.
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Figure 1: Geometric description

Procedure Translation — Centroid;
begin
(* Detection of centroid *)
procedure centroid;
begin
while not limit do
begin
Select point on shapel;
Select point on shape2;
compute centroid shapel;
compute centroid shape2;
end;
write centroid;
end;
(* Detection of translation *)
procedure translation;
begin
while not lmit do
begin
Select point on shapel;
Select point on shape2;
compute translation;
end;
write translation;
end;
end;

Figure 3: Triangle order

procedure Rotation;
begin
(* Detection of rotation *)
while not limit do
begin
Select triple of coplanar
vectors from each frame;
if (form congruent iriangles)
then begin
compute rolation;
vote parameter space;
end;
check mazimum;
end;
write rotation;
end; (* end procedure *)

Figure 4: Procedure for Rotation Estimation

Figure 2: Procedure for Centroid and Translation De-
tection



Figure 5: Test shape 1

Figure 6: Test shape 2

Figure 7: Test shape 8

Figure 8: Rotated and translated shape 1

Figure 9: Rotated and translated shape 2

Figure 10: Rotated and translated shape 3



