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Abstract

A problem of motion segmentation in RGB image sequences is
addressed. Methods considered are based on a stochastic model-
ing of a local motion information, i.e. the knowledge about motion
available in a pixel’s neighbourhood in space and time domains.
A bimodal approach to the stochastic description of moving ob-
Jects is presented. It is shown by examples that the increase of
mode number of the stochastic model results in motion segmen-
tation of better quality. A MRF optimization framework is used
in order to tackle a modeling simplification, i.e. the application
of few relatively simple distribution functions to any RGB motion
sequence.



1 Introduction

Motion analysis plays an important role in computer vision due to the relevance to
contemporary applications. Image sequence coding, monitoring, target tracking are exam-
ples of topics which are under interest of researchers nowadays. Even a method originated
in motion analysis has been used in human face recognition®®¥%.

In motion analysis, as in almost all applications of computer vision, two major algo-
rithm groups exist: local algorithms and global ones. The latter use the results found by
the former which operate on pure imaging data, i.e. the values of brightness information
in a pixel. The aim of this paper is to show a method of localization of moving object
in a sequence of RGB frames based on stochastic approach and local modeling only. A
historical profile of the method will be given; from the original algorithm of Bouthemy
and Lalande for gray-level frames, to the recent suggestion based on a bimodal model
used for motion segmentation in RGB sequences.

The notion “Jocal motion analysis” is understood as no need of any a priori information
of shape, size, velocity, and direction of the moving object. Only a brightness information
as well as a difference of brightness in the time domain are used. The knowledge of
the phenomenon of motion, i.e. how to distinguish the object from the background, is
expressed in a model construction. Model parameters are responsible for matching the
algorithm to a sequence analyzed.

Generally, the methods of local motion analysis can be divided into two groups: based
on optical flow and based on “pure” pixel labeling. The approach addressed in this
paper belongs to the second group. On one hand, avoiding the detection of optical flow
eliminates one step from the processing algorithm, on the other hand, the information
about the direction of motion is lost. One should notice that resigning from optical flow
does not mean that all problems related to its detection have disappeared, for example the
aperture problem ! also exists in labeling approach and is called an ambiguity of motion
information. To tackle this problem in our methods an extended local motion information
vector is used which in the case of color RGB sequences consists of six components.

In following sections first, the methods based on unimodal models are presented, from
the Lalande-Bouthemy’s proposition to the contemporary algorithms. Next, a bimodal
model extension is described. Both types of algorithms are discussed and advantages
involved by model extension are noticed. Some experimental results are given as well.

2 TUnimodal approaches

Every local motion analysis method consists in the application of at least two con-
secutive sequence frames. Such methods originated from a simple thresholding of the
difference of brightness of two frames. The result sometimes called a change mask relates
both consecutive frames analyzed. There exist also more sophisticated approaches to the



detection of change masks, for example presented in#NR84578 which use also the values
of neighbours of a pixel.

Every change detection method results in a limited motion information and the lo-
calization of moving object in each frame is usually hardly possible. Next step was done
by Bouthemy and LalandePX®® who suggested a post-processing method using the change
masks as an input information and a statistical unimodal description of the difference of
brightness to localize moving objects in every frame of a gray-level image sequence. The
method was accompanied by Markov random field framework to achieve a connectivity
of the mask of moving object detected. The Lalande-Bouthemy model has involved a
series of models. From local motion modeling point of view, a very important Lalande
and Bouthemy’s suggestion was to model separately three subareas resulted from the
object motion, i.e. covered background, recovered background, and overlapping situation.
They however, used the same statistical distribution in both transient situations (covered
and recovered background) which really limited the applicability. A separate modeling of
both transient situations was introduced in paper.X** Moreover, the experiments per-
formed and presented in*"%* allowed one to introduce a new modeling approach to local
motion labeling, i.e. a dependent use of brightness difference and brightness®N%. This
modification involved a significant improvement of the quality of motion segmentation
results. Even motion areas not found by a change detection method were recovered by
the segmentation algorithm.

The first autonomous motion segmentation method, i.e. without the use of change
masks, was introduced in¥AN% and the first RGB version of it was presented in XAN96=

All the models, what was not written clearly in mentioned papers, were in fact uni-
modal ones, i.e. based on an assumption that the brightness information of this part of
image which shows moving object is distributed according to a Gaussian function. If
so, the difference of brightness is also Gaussian and moreover, the total distribution is
Gaussian as well. According to an intuitive knowledge, the description of brightness of
moving object by one Gaussian function may not be an exact model in any case. This
is the reason why a MRF framework has to be incorporated to the model, i.e. in order
to “correct” errors of labeling resulted from too simple model. In fact, both unimodal
modeling and MRF framework together involved a tradeoff between the model complexity
and the quality of segmentation.

In short, the method of motion segmentation in RGB sequences based on the unimodal
model looks as follows?:

e An RGB sequence is considered as a sequence of pairs of consecutive frames, i.e.
a sequence of two-frame subsequences. Moreover, there is an overlapping of subse-
quences, i.e. one frame of source sequence belongs to two neighbouring subsequences.

e A local motion information vector consists of six components:

o = [ARk, AG, ABy, By, G, B” (1)
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where, k is a number of sequence frame (the index of subsequence), i points a pixel
in the image plane, ARy = Ryy1 — Ry means the difference of R component of k&
and k + 1 frames, superscript T is a symbol of vector transposition.

¢ A stochastic model of one subsequence consists of four Gaussian distributions func-
tions describing the local motion information or. The number of Gaussian dis-
tributions is related to four types of motion areas which exist in two consecutive
frames: covered background, recovered background, overlapping situation and static
background. In a simplest version (without MRF framework) if there are parameters
of all four distributions, in every pixel a label configuration is chosen which results
in the largest likelihood, i.e. this is a Maximum Likelihood (ML) labeling approach.

e A MRF framework is used which supports the spatial connectivity of a label set
detected. The framework removes misdetections caused by the model simplification
(unimodal modeling) as well as noise and so on. Exponential expressions of four
mentioned Gaussian distributions are used as additional energy term of MRF. A
deterministic relaxation algorithm is applied to find a mode of MRF model, i.e. to
perform a motion segmentation.

From mathematical point of view, the model and the MRF framework applied to two
consecutive frames look as follows:

e distribution functions of o, vector in two-frame subsequence:

1 1 _ 1
plor 1) = gz e {5 [(on — ) B0 ox ~ )] ~ g Z D} @
where, [ € {0, 1,2, 3} is an index which points a label configuration, i.e. (background,
background), (motion, background), (background, motion), and (motion, motion),
respectively, -

u =[AR,AG,AB,R,G,B) (3)
denotes a mean vector, X' is a 6 x 6 covariance matrix of the vector o;. If Egs.(2)
are considered as a function of | parameter, they become a likelihood function.

e global energy of MRF:
W=W, +W,,, +W, (4)

where, W, , W,, . are the spatial energies responsible for the connectivity of con-
figuration of labels of two consecutive frames k and k + 1, respectively, and W, is
a consistency energy which describes the influence of vector o.

k+1

o local energy of MRF:
U(Z) = Usk(i) + U3k+l (7’) + Uck(i) (5)

where, all local sub-energies U, (i), Us,,, (i), U,(i) are only the parts of energies
Wes Werrrr We, that include the potentials of all cliques to whom pixel i belongs.
Both spatial energies assume the form:

U(i) = ) Ve (6)
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where, C is the set of all cliques including pixel i, cs denotes a two-pixel spatial
clique, V;, denotes the potential of cs which equals:

V. = Bs  if both labels are different, )
“ | =B, if both labels are the same,

where 3, is a constant grater than 0. The comnsistency subenergy is:

Unfll0)] = 2 [045) — " 57 [or(6) — ] + S 1n (| 4 ) ()
2 2

where, [ is an index of label configuration.

3 Bimodal approach

In order to enhance the fitting quality of the mathematical model to the data analyzed
we have suggested“™* a model featured with two modes of brightness information of
moving object, i.e. we have assumed a priori that the moving object consists of bright
and dark areas. The bright areas are described by the first mode and dark areas by the
second one.

Virtually, it would be possible to use a bimodal distribution as a model of brightness
of moving object however, in such a case one usually would be able to tell nothing about
neither the shape and the type of the distribution of brightness difference nor the type
of the total distribution of brightness and brightness difference. Moreover, if the total
distribution does not belong to the exponential family, a MRF optimization framework
would not be applicable™%. So, we approached the problem in other way. We assumed
that the bright areas of the object are modeled by one Gaussian distribution and the dark
areas by another Gaussian with different parameters of course. Due to the last assumption
the difference of brightness is also Gaussian as well as the total distribution is.

In other words, the basic modeling assumption in a new approach is that one RGB
frame can be described in total by three Gaussian distributions; one used for background,
and two others for moving object. This involves three-label set used by motion segmen-
tation algorithm applied to a two-frame subsequence. The other modeling and motion
segmentation algorithm assumptions are:

e vector oy given by Eq.(1) is used as the local motion information,
e as a consequence of three-label set, there are nine possible label configurations in a
pixel:

(background, background), (background, motion1), (background, motion2),
(motioni, background),  (motionl, motionl), (motion1, motion2),
(motion2, background),  (motion2, motion1), (motion2, motion2)

where the first label is assigned to a pixel in the first frame of a two-frame subse-
quence and the second label to the same pixel but in the consecutive frame.



e the model of a subsequence of two consecutive frames consists of nine distributions
given by Eq.2 which involves [ € {0,1,2,3,4,5,6,7,8} where [ in the index of label
configurations given above.

In the model presented, there are four label configurations responsible for the transitive
motion situations (all the label configuration where exactly one background label exists),
four label configurations corresponding to the overlapping situation (no background label),
and one where the static background exists in both frames.

The other mathematical foundations remain the same as for model presented in Sec.2
with an extension of the possible values of index [ where applicable.

4 A comparison of unimodal and bimodal
approaches by experiments

We performed a series of experiments with different RGB image sequences. An example
of test sequence is shown in Fig.1. The moving object consists of two different types
of color areas, white car body and dark windows, shadow and wheels. For the test
sequence we applied two motion segmentation algorithms, one based on the description
from Sec.2 and the other presented in Sec.3. The results of experiments are shown in
Figs.2, and 3, respectively. In the case of the unimodal approach the moving shadow,
wheels, car windows, and car body were modeled by one Gaussian distribution, whereas
in the bimodal algorithm for the car body and the dark moving areas different modes
were applied.

The results found by the bimodal approach are of better quality. Due to an initializa-
tion stepAN%P the first mask found by both algorithms are of worse quality however, in
the case of the bimodal model the exact shape of the object detected is achieved earlier
than in the case of the unimodal approach. The fourth frame found by the bimodal algo-
rithm shows an exact shape of the object whereas the frame of the same number detected
by the unimodal model still has an undetected areas of moving shadow. Moreover, in all
frames found by the unimodal algorithm there exists the undetected area of the right lamp
of moving car. Such an undetected area disappeared in the bimodal algorithm already in
the third frame. The undetected lamp area deteriorates the connectivity of the mask of
moving object.

As a conclusion one can notice that the motion segmentation algorithm based on

the bimodal model results in the better quality masks of moving object and the smaller
influence of the initialization step.



" Figure 1: RGB test sequence.

Figure 2: Motion segmentation with unimodal modeling.

Figure 3: Motion segmentation with bimodal modeling.

5 Conclusions

Two kinds of stochastic local motion segmentation algorithms by labeling approach
are presented in this paper. One method is based on a unimodal model and the other one
on a bimodal description. Performed experiments have shown that the bimodal approach
is better than the unimodal one because the influence of the initialization step is shorter
and masks detected are of better quality.
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