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Determining Optical Flow under Non-uniform Illumination
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Abstract. In actual scene analysis, the influence of non-ideal conditions such as non-uniform
illumination should be taken into account. The conventional methods for the estimation of optical flow are

* violated in this situation. In this study, two approaches are carried out to extract reliable optical flow under
non-uniform illumination. These are an extended constraint equation and a pixel-based temporal filtering.
A raw image sequence is first convolved with the temporal filter, then an extended constraint equation as
well as additional constraints can be applied to the filtered image sequence. Experiments have been made
to confirm the reliability of the proposed method.
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1. Introduction

In the Computer Vision[1] fields, many
studies have been carried out with the aim of
obtaining  information on the three
dimensional (3D) environment from image
sequence. One of the most important
problems is to determine optical flow which
is the distribution of apparent velocities of
moving brightness patterns in an image
sequence([ 2, 3]). Optical flow results from
relative motion between a camera- and
objects in the scene.

A number of different approaches to
determine optical flow have been pfoposed
including gradient-based, correlation-based,
energy-based, and phase-based methods. A
recent survey is due to Barron[S] et al.
(1994) where the different approaches were

compared on a series of synthetic and real
images. - In the actual scene analysis,
however, the performance of conventional
methods is not satisfactory. There exists the
influence of non-ideal conditions in the
actual scene. For example:

Non-uniform illumination[8],

Occlusions[9],

Multiple optical flow[10, 11],

Non-rigid motion of object[12], and

Diffusion of motion[13].
If we want to obtain a reliable optical flow,
we should take into account such problems.
Recently, our research group have proposed
two methods for determining motion fields
from sequential images under spatially or
temporally non-uniform illumination[8, 14].
The methods are based on the extended
conservation equation which is obtained by



observing the total brightness change in a
fixed local closed area. One of the methods
assumes spatially non-uniform illumination
and a stationary motion field. The other one
assumes temporally non-uniform illumi-
nation and local constancy of motion vectors.
With this method, we can determine 2D
motion fields of fluid flow under spatially or
temporally non-uniform illumination [8].

On the other hand, in the ordinary
approach, noise reduction and contrast
enhancement of images are based on two-
dimensional (2-D) space filtering [4]. For
these purposes, we can introduce frequently
digital filtering with 2-D fast Fourier
transform (FFT) and non-linear filters such
as median filter. These space domain
approaches are effective for static image
processing, however, it is difficult to remove
the influence of non-uniform illumination in
a dynamic image sequence. ’

In this paper, we develop a new algorithm
to fuse two conditions of non-uniform
illumination. We introduce the extend
constraint equation with spatio-temporal
local optimization. And we propose a new
method of temporal filtering which enables
to reduce the influence of non-uniform
illumination. The effectiveness of the
proposed method is - confirmed by use of
simulation image sequence.

2. Background of extended constraint
equation

An extended constraint equation is
derived from a conservation law[16] of total
brightness in a fixed small region &5 as
illustrated in Fig.1.
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Fig.1: A schematic explanation of variables
appeared in the conservation equation.

where f(x,y,t) is a spatio-temporal
brightness distribution of a sequential image,
&S is a fixed local observation area, 6C is
the contour surrounding of &5, v =(v,,v,)
is the velocity of optical flow to be
determined, 7 is the unit vector normal to
6C which pointing outwards, and ¢ is the
rate of creation (or annihilation) of
brightness at a pixel in &5. The creation
term includes increasing or decreasing
brightness on the image plane under
influence of non-uniform illumination.
Equation(1) is reduced to a differential
formula[14]:

%= ~fdiv(T) -7 grad(f)+9 .

Under the assumption div(v) = 0[16] and
¢ = 0[17], Eq.(2) coincides with the basic
constraint equation of the gradient-based
method[7].

In this study, we adopt the following
relationship for the determination of image

flow[18]:

% =—-grad(f)+¢ . 3

This relationship is reduced from Eq.(2)
under the assumption of div(V) =0. This
assumption requires a rigid object motion
perpendicular to camera optical-axis. Since
this conservation equation contains the
creation term of brightness, it is possible to
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remove the effects of non-uniform illumi-
nation for the detection of image flow.

Nomura [8] et al. (1995) introduced an
assumption of separability of non-uniform
illumination. For the first situation, the
illumination is assumed only spatially non-
uniform and constant with respect to
time(r = r(x,y)). The reduced relationship
is

%+\7-grad(f)=fq\/\’3+\’§ —

where g(x,y) is an unknown constant. If the
velocity field is constant with respect to time,
image flow v and the unknown constant
q(x,y) are determined by minimizing the
following error function (with temporal
local optimization[14]) with the non-liner
least squares method (for example the
Newton-Raphson method):

totn

E=Y (f,+Vf+v,f,~ fa[V: +V2)*. (5)

1=t

As the second situation, we assume the case
of temporally non-uniform illumination and
local constancy of motion vectors (7 = r(z),
grad(r) = 0). The reduced relationship is

L +5-grad(r) = f T2
= fw(t) , (6

where w(t) is as an unknown constant. If
the velocity field is constant with respect to
space, image flow vV and the unknown
constant w(f) are determined by minimizing
the following error function with the liner
least squares method (with spatial local
optimization[15]): ;

Xg+l  yotm
E= S S vf v f, - @

x=xy-ly=yy~m
Here, the parameters ! and m represent the
width of the local neighborhood 85 in x and
y direction.
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3. Proposed method

The extended constraint equation for
gradient-based method contains the creation
term of brightness. Nomura[8] et al. (1995)
separated the term into two different
conditions of illumination (spatially non-
uniform illumination or temporally changing
illumination) and determined this term under
respective conditions.

In actual scene, however, there is the case
coexisting two conditions of non-uniform
illumination. In this section, we propose new
model which fuses two conditions of non-
uniform illumination. We introduce the
extended constraint equation with spatio-
temporal local optimization[19].

3.1 A spatio-temporal local optimization

The parameter ¢(x,y,t) of Eq.(3)
represents the non-uniform illumination.
Under the assumption that the illumination
is only spatially non-uniform,
¢, =fVi+viq(x,y). On the other hand,

¢, = fw(z)
illumination is only temporally non-uniform.
Here, q(x,y) represents spatially non-
uniform illumination and w(f) represents
non-stationary illumination. Now we assume
the case that ¢(x,y,t) is represented by the
following equation:

¢(x9y»t) = ¢1(X»)’J) +¢2(xoy,t)

= fV Va0 +w). @)
When the unknown variables v,, v, are
assumed to be constant in a local spatial-
temporal neighborhood 6V = éx-dy- &,
Eq.(8) can be reduced:
¢ = f(x,y,t)cq(x,y) + w(1),

where c¢= ,,vf +v) =const. We also

when we can assume that the



assume that the image function f(x,y,t)

varies rapidly with respect to time and space
compared to the effect of non-uniform
illumination ¢q(x,y) or w(#). Thus, we

obtain a simplified relationship:

L 5 grad(p)+ ', ©
where w’ = cq(x,y)+w(t) is a constant in
the local volume &V . Since this equation
contains both effects of spatially non-
uniform illumination and non-stationary
illumination, it seems possible to manipulate
the effects of every conditions of non-
uniform  illumination under  above
assumptions.

The above assumption seems to be valid
in a small spatio-temporal neighborhood
6V =& -dy-8t. For the determination of
three unknown variables in Eq.(9),
V=(v,v,) and w’, we propose the
assumption that the components of image
flow and unknown variables are constant

with respect to time and space in a local
volume of &6V =éx-dy-dt :

w' = const
v, = const in éV. -(10)
v, = const

Image flow ¥ and the unknown constant w’
can be determined by minimizing the
following error function.

E=YSS(f+vf.+v,f,— W) (11)
& » &

We call this approach "the spatio-temporal
local optimization" (STO) tentatively. Since
this method can manipulate many equations
effectively compared with SLO and TLO, it
is expected to determine more accurate
image flow. It is also possible to introduce
smoothness constraints or regularization
approach to solve Eq.(9).

3.2 The pixel-based temporal filtering

In this paper, we also introduced a new
approach based on a pixel-based image
sequence processing [20]. With a temporal
trace of brightness intensity at each pixel site,
a band-pass or a low-pass filtering is carried
out in a local time window. By shifting the
time window step by step, we can create
filtered image sequences. From raw image
sequence, a sequential image is created to
enhance the brightness of moving object and
expected to reduce the influence of non-
uniform illumination.
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Fig.2: A schematic explanation of a pixel-based temporal
filtering. The reduced instantaneous spectrum F(x.y.t; Wy )

can be represent by
++8T/2

F(x,y,t;0x) = 3, f(x,y,0)exp(-iwgt),
1-6T/2 |

where @y = 27tk / 8T . After a digital filtering of the
spectrum, inverse transformation is carried out at each
pixel site to create filtered images:

f(x3,8) =Y F,.(x,y,t;0¢)exp(iogt),
where F, (x,y,5,0;) = F(x,y,t;0; # 0).
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For sequential image, temporal change of
the brightness at each pixel is regarded as a
time series. The method is based on digital
Fourier transform and digital filtering under
the assumption of local constancy of
statistical characteristics of the time series.
We evaluate temporal development of the
spectrum within a finite time at each pixel
by fast Fourier transform. After a digital
filtering of the spectrum, inverse transfor-
mation is carried out at each pixel site to
create filtered image sequénces (see Fig. 2).

4. Simulation

In this section, we try to apply the
proposed method to determine motion vector
fields under non-uniform illumination
(containing non-stationary illumination with
respect to time and non-uniform illumination
with respect to space). We compare the
proposed method with the conventional
methods and discuss the usefulness of the
proposed method.

4.1 Simulation image analysis

Fig.3 shows a snap shot of simulation
image seqi.lence (Yosemite sequence'). The
image sequence has a resolution of
316x252 pixels. The brightness is
quantified into 256 steps. The Yosemite
sequence is a complex test case. In the scene,
the cloud has a translational motion with a
speed of 2 pixels/frame, while speed in the
lower left is about 4-5 pixels/frame.
However, the brightness of cloud changes
with respect to time and space. The
landscape (mountains, river, etc. ...) moves
against depth direction. Then, motion fields
expands. This sequence is challenging
because of the rangeof velocities and
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Fig.3: A simulation image sequence
(Yosemite sequence).
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Fig.4: Theoretical motion fields of Yosemite sequence

occluding edges between the mountains and
at the horizon, divergence, non-uniform
illumination. Fig.4 represents the theoretical
motion fields of Fig.3.

4.2 Comparison of conventional method
with the proposed method

We try to determine motion field of this
image sequence by use of the following
methods.

First, we use the conventional gradient-
based method [7]. :
Spatio-Temporal Local Optimization (STO):
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Fig.5: Motion fields determined by STO
(conventional gradient-based method).

We assume that optical flow is constant with
respect to time and space in a local volume
of 5x5 pixels and 8 frames. The result of
obtained motion fields is shown in Fig.5.
Second, we use the proposed method in
Eq.(9). We assume that the image flow v
and ¢ are constant in a local volume of
5x5 pixels and 8 frames. The result of
obtained motion fields is shown in Fig.6.
The motion fields obtained by the
conventional gradient-based methods (with
STO) have serious errors at the place of
foreground mountain surface and cloud
position where the brightness changes
temporally and spatially. When we apply the
extended constraint equation under the
assumption of Eq.(9), motion fields at these
places are apparently improved. However,
reduction of the error at foreground
mountain surface is not satisfactory. Because
that the texture of foreground mountain
surface has only pinstriped, it is easy to
encounter the aperture problem. When we
try to determine image flow by the gradient
method, we have to consider the aperture
problem. If the pinstriped texture area is
larger than observation area, it is hard to

ecress
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Fig.6: Motion fields determined by
the proposed method.

obtain the correct image flow. With the local
frame of the aperture, we cannot determine
the moving direction and velocity of the
pinstripe. In general, it is not possible to
compute true velocity and direction by the
observation within a small neighborhood (a
local area). In order to overcome the
shortage, it seems to be considerable to
introduce a spatial filtering(e.g. Gaussian
filter) based on the image sequence(see
Fig.8), we also can introduce the global
optimization techniques [7] and hierarchical
approaches [6]. It is possible to introduce
such a global approach in the proposed
method.

4.3 Comparison of conventional method
with raw images and with filtered images

In Fig.8 we demonstrate a different
approach to remove the influence of non-
uniform illumination in motion analysis. The
original image sequence is also Yosemite
sequence shown in Fig.3. Example of
filtered image sequence obtained by
temporal filtering described in section 3.2 is
shownin Fig.7(a). We applied the
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Fig.7(a): A filtered image sequence: DC-cut
(Yosemite sequence).
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Fig.8: Motion fields determined by STO: applied to

temporal filtered and Gaussian spatial filtered images
(conventional gradient-based method).

conventional gradient-based method with
STO to obtain optical flow fields from the
filtered (Fig.7(a)) image sequence. Fig.7(b)
shows the analyzed optical flow. By the
comparison between the analyzed flows
(Fig.5 and Fig.7(b)), the error of optical
flow estimation at the cloud place (non-
uniform illumination) is reduced in Fig7(b).

5. Conclusions

In this paper, we proposed a method to
determine optical flow from an image
sequence under non-uniform illumination.
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Fig.7(b): Motion fields determined by STO: applied to
filtered images(conventional gradient-based method).

The proposed method is based on the
extended constraint equation from the
conservation law of total brightness in a
fixed observation area. Then, it is possible to
manipulate the effects of non-uniform
illumination. Since we adopted the spatio-
temporal local optimization, we obtained
high resolution and high reliability of the
determined image flow compared to the
conventional extended gradient method. The
usefulness of the proposed method was
confirmed by the analysis of an synthetic
image sequence.

In this paper, we also propose a different
approach to remove the influence of non-
uniform illumination. The algorithm is based
on a local temporal filtering. From an
original image sequence, a dynamic scenes
is created which is defined in a local time
domain JT at around t. By the experiment,
the reduction of the effect of non-uniform
illumination is also confirmed.

However, the obtained motion fields was
still not satisfactory. As the cause of this fact,
we have to consider the following unsolved
problems in future:
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* Divergence of the velocity field at the
motion boundary and the motion toward
depth direction, and

* The aperture problem at the straight

contour of object texture or the motion .

boundaries.

Divergence of the velocity is explicitly
given as the term of div(y) in Eq.(2),
however, we always assume div(¥) =0 in
the proposed method. In the future stage, the
estimation of this term can be a key step to
establish a reliable method to determine
more realistic optical flow from a real image
sequence.

Notes
1. The image sequence of Yosemite sequence is
obtained from the ftp-site of ftp.csd.uwo.ca.
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