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Euclidean Structure from Uncalibrated Images
Using Fuzzy Domain Knowledge: Application to
Facial Images Synthesis
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Use of uncalibrated images has found many applications such as image synthesis. However, it is
not eaéy to specify the desired position of the new image in projective or affine space. This paper
proposes to recover Euclidean-structure from uncaiibrated images using domain knowledge such
as distances and angles. The knowledge we have is usually about an object category, but not
very precise for the particular object being considered. The variation (fuzziness) is modeled as a
Gaussian variable. Six types of common knowledge are formulated. Once we have a Euclidean
description, the task to specify the desired potion in Euclidean space becomes trivial. The proposed
technique is then applied to synthesié of new facial images. - A number of difficulties existing in
image synthesis are identified and solved. For example, we propose to use edge points to deal with
occlusion.



1 Introduction

The study of uncalibrated images [2, 3] has many im-
portant applications such as the reconstruction of the en-
vironment from a sequence of video images where the
parameters of the video lens is submitted to continuous
modification such that camera calibration in the classical
sense is not possible. We cannot extract any metric infor-
mation, but a projective structure is still possible if the
camera can be considered as a pinhole. The projective
structure still contains rich information, such as copla-
narity, collinearity, and cross ratios (ratio of ratios of dis-
tances), which is sometimes sufficient for artificial sys-
terns, such as robots, to perform tasks such as navigation
and object recognition [8, 9, 1].

However, for many other applications, such as virtual
reality, we need Euclidean structure, but not the projec-
tive structure, because a human being is familiar with
Euclidean environments. For those who have worked
on animation from uncalibrated images, they must know
how it is difficult to specify the desired trajectory of
the camera in projective space. In this paper, we pro-
pose a technique to recover a quasi-Euclidean structure
from uncalibrated images using fuzzy domain knowl-
edge. The application domain we consider is the gener-
ation of new face images.

In this paper, we consider Euclidean structure recov-
ery from affine cameras using fuzzy knowledge. Use of

affine cameras [S5] is motivated by the fact that the depth )

variation in our domain application (faces) is not very
large. In consequence, affine camera model is a reason-
ably good approximation to the true camera. We develop
a technique which takes into account variety of fuzzy
knowledge, ranging from simple ones such as location
of points and distances between two points to more com-
plex ones such as ratios of distances. By “fuzzy”, we
mean that we do not have exact measure of the particular
object being considered. What we have is the knowledge
about the object category (faces in our case). There-
fore, the recovered Euclidean structure is not necessarily
aprecise Euclidean description of that object, but is use-
ful for many applications such as new image synthesis.
(Note that, the recovered Euclidean structure still con-
tains all exact affine information, even if the Euclidean
one is not correct.)

Section 2 outlines the path from uncalibrated images
to affine structure using affine camera model, then to
Euclidean structure using fuzzy knowledge. A method
is proposed to fix an arbitrary Euclidean coordinate
system. Section 3 formulates different types of fuzzy
knowledge and describes how to use them to recover the
Euclidean structure. Section 4 provides the details of
our system for synthesizing new facial images from two
real images. This has a number of important applications
such as video conferencing and virtual reality. A num-

ber of difficulties have been identified. In particular, we
propose to combine points of interest and edges to deal
with occlusion and apply the technique described in Sec-
tion 3 to recover a quasi-Euclidean structure which con-
siderably facilitates the specification of the desired po-
sition of the new image. Domain knowledge has been
extracted through statistical analysis of 3D range data of
real female and male faces.

2 Overview

Using affine camera model, we can use the technique de-
scribed in [7] to determine the affine fundamental ma-
trix F4 between two images. Once Fj is known, affine
structure of the scene can be reconstructed, i.e., given a
pair of matched image points (m;, m}), we can recon-
struct its corresponding space point x; with respect to an
affine coordinate system. If we denote the Euclidean co-
ordinates of this point by y;, then there exists the follow-
ing relationship:

y1,=AXi+b, (1)

where A is a 3 x 3 non-singular matrix and b is a 3D
vector. There are in total 12 degrees of freedom (DoF) in
an affine transformation. Our objective is to determine
A and b from the given x; and the knowledge of y;.

The first solution is an easy one. If we know the Eu-
clidean coordinates of at least 4 points, A and b can be
solved with a linear least-squares technique. However,
the Euclidean coordinates of points are in general diffi-
cult to obtain.

Alternatively, we can use other form of knowledge
For example, if we have knowledge of at least 3 dis-
tances and 3 angles in general configuration, we can re-
dress the structure in Euclidean space by choosing arbi-
trarily a reference frame, as to be discussed below.

Fixing a
reference

Figure 1:
Y Euclidean
frame by choosing
three points.  Points
/ Yo, Y1 and yz are
/ the chosen points in
Euclidean space.

Yo Y1 z

A Euclidean reference frame has 6 degrees of free-
dom: 3 for the position and 3 for the orientation. We can
fix the Euclidean reference frame by arbitrarily choosing
three non-collinear points in the following way. Let xo,
x; and x5 be the 3 chosen affine points. Refer to Fig. 1.
We can set one point, say Xo, after affine transformation



as the origin 0 = [0, 0,0]7:

Axy+b=0, )

which removes 3 DoF. We can set the vector joining x;
and x; after affine transformation to be parallel to, say,
z-axis, i.e.,

A(x1; — %) = k[1,0,0]T, 3)

where k is an arbitrary non-zero scalar. This removes 2
more DoF. Let vi = A(x; — Xg) = [v11, ¥12, v13]7.
The 2 constraints contained in (3) are:

v12 =0 and vi3=0.

Finally, we can set the plane passing through xg, x; and
x3 after affine transformation as the zy-plane. This is
equivalent to setting the vector joining xg and x; after
affine transformation to be orthogonal to z-axis, i.e.,

[0,0,1]TA(xz — x0) = 0. @

Letva = A(x2 — Xg) = [va1, V22, v23]7. The above
constraint is equivalent to vo3 = 0 . We now completely
specify the Euclidean frame.

In order to recover the Euclidean structure, we need 6
additional constraints. We identify the following 6 types
of knowledge:

. the Euclidean coordinates of a point;

. the distance between two points;

the angle between two vectors;

. a vector should be parallel to a given vector;

. a vector should be equal to a given one;

. the ratio of two distances between non-collinear
points.

LA WN

The knowledge available will not, in general, very pre-
cise. The fuzziness is modeled by a Gaussian variable.
By providing a piece of domain knowledge, the user
should also specify his belief on its precision in terms
of standard deviation. In our case, the knowledge about
faces structure is obtained through statistical analysis of
36 sets of range data for female faces and 31 sets of range
data for males (see Sect. 4.2).

3 Fuzzy Knowledge

This section will formulate the 6 types of constraints in
terms of Mahalanobis distances and explain how to use
them in order to recover the Euclidean structure.

In the following, we use x; to denote the affine coor-
dinates of a given point, y; to denote its expected Eu-
clidean coordinates, and z; to denote its estimated Eu-
clidean coordinates:

z; = AX; +b.

3.1 Constraints

Euclidean coordinates of a point. The Euclidean coor-
dinates of a point x; should be y; with covariance matrix
A;. This constraint can be expressed as a squared Maha-
lanobis distance as

= (zi —yi) AT (2 — i) -
This knowledge provides three constraints.

&)

Distance between two points. The distance between x;
and x; should be equal to d;; with standard deviation
g4,;. The Mahalanobis distance is

ra = (dij — dij) /o4, , (6)

where d;; = ||z; — z;|| = ||A(x; ~ x;)]||. This knowl-
edge provides one constraint,

Angle between two vectors. Let¥; and V; be two affine
vectors. The angle between them in Euclidean space is
required to be § with standard deviation oy. Let the cor-
responding Euclidean vectors be v; = Av; and v; =
Av;. There are two ways to express the angle:

cosf = ViV l[vi x v,

[vill [lv;ll [vill llvsll
Let = 6 + 60. Assume 60 is small, we can use ei-
ther cosine or sine function to do linearization. If cosine
function is used, then

and sinf =

cos 8 = cos(f + 66) ~ cos — sin 6 56 ,
and the Mahalanobis distance is given by

ro= 2 _ 088 —vlvi/vill lvil)
gy ogsind
If sine function is used, then
sinf = sin(f + 80) ~ sind + cos § 68 ,
and the Mahalanobis distance is given by
Y] P X v il llv;]!) —siné
o= 8 _ v Xl (vl Ivgl) —sind
o9 opcosé

When —7/4 < § < /4, sine function should be used:
otherwise, cosine function should be used. This knowl-
edge provides one constraint.

Orientation of a vector. Let ¥; be the affine vector, and
v; = A¥; be the Euclidean vector. v; is required to be
parallel to ¥ with standard deviation of angle o,,. Note
that the fuzziness of this knowledge is expressed in terms
of that on angle, because the angle between v; and V is
expected to be 0.

Letu; = vi/|jvi|l and & = ¥/||¥|| be unit vec-
tors. Let the error vector e = u; — i is on the unit
sphere. For a given error angle 8, r is on a circle around
@ (see Fig.2a). Let us consider the projection of e on



w
e u |
/
\
/(9/,”\ \I €
1
\ u
/
o 7
~N e

(a) ®

Figure 2: Knowledge about the orientation of a vector.

the plane perpendicular to i (Fig.2b shows an orthog-
onal section). The projection, denoted by r, is simply
givenby r = u; — (u7d)d . If 6 follows Gaussian
distribution with standard deviation o, then r follows
2D Gaussian distribution on the plane around i with co-
variance matrix diag (sin® og,sin? 0). In 3D, if i =
[0,0,1]7, then the covariance matrix of r, Ay, is given
by diag (sin? og,sin? gy, 0). For a general 41, we can al-
ways find a rotation matrix R such that@ = R [0, 0, 1]7,
then the covariance matrix of r is
A: =R diag (sin? 04, sin® g4, 0) RT.

There are many ways to define R. We can choose any
vector perpendicularto i = [a, b, ¢]7, for example ity =
(1/v/2a2 + 82 + ¢ + 2bc)[b+c, —a, —a]7T, then the ro-
tation matrix canbe R = [fig x it 1@y 1] . There-
fore, the Mahalanobis distance can then be formulated
as follows

r2=rTA]r
=rTR diag (1/ sin® 04,1/ sin? 65,0) R7r . (9)

As A, is not invertible, pseudo-inverse has been used.
This knowledge provides two constraints.

A given vector. An affine vector is required to be equal
to a given vector. This is equivalent to two pieces of
knowledge: the length of the vector (distance) (6) and
its orientation (9).

Ratio of two distances. Affine transformation con-
serves the ratio of lengths of two vectors if they are paral-
lel to each other. If they are not parallel, then the ratio of
lengths provides one constraint in recovering Euclidean
structure. Let ¥; and ¥; be two affine vectors. The ra-
tio of their lengths in Euclidean space is required to be
7 with standard deviation o,. The Mahalanobis distance
is given by

Or

(10

3.2 Euclidean Recovery

If we are given a sufficient number of constraints in the
above form, we can estimate the affine transformation

(A, b) which brings the affine structure into a Euclidean
space by minimizing the sum of Mahalanobis distances:

SN 4 g+ i+ d o an

This is a nonlinear least-squares problem. For our
applications, we just start with initial guess A =
diag (1,1,1) and b = [0, 0, 0]7, and it works very well.
If no constraints (Euclidean coordinates of points and
orientation of vectors) are provided to specify the Eu-
clidean coordinate system, we have to use the technique
described in Sect. 2 to fix it. The 6 constraints contained
in (2), (3) and (4) are added to (11). The standard devi-
ation for each constraint is set to a small value, because
these constraints are required to be satisfied exactly.

4 Application to Facial Images
Synthesis

Synthesizing new facial images from a small number of
real images is important for many applications such as
video conferencing and virtual reality. Previous work
includes that of Mukaigawa et al. {4] and that of Seitz
and Dyer [6]. Mukaigawa et al. assume orthographic
projection and generate new images through linear com-
bination of the original images. The coefficients of the
linear combination are determined by specifying the de-
sired position of a few points in the new image. Seitz and
Dyer use a technique called view morphing to generate
an image sequence corresponding to a camera moving
along a line joining the optical centers of the two origi-
nal images.

4.1 General Principle

Image synthesis from real images works as follows.
First, point correspondences are established between
images, from which the epipolar geometry is deter-
mined. Using points as vertices, we can divide each im-
age into a set of triangular patches. Second, points are
transfered into a new image. Finally, textures (colors)
from the original images are mapped to the triangular
patches in the new image.

There are a few difficulties which one should solve
in synthesizing new views from real images, which are
briefly described below.

4.1.1 Establishing point correspondences between
images
Since we assume affine camera model, we combine the
robust matching technique described in [10] and the
technique described in {7] to establish point correspon-
dences and determine the affine fundamental matrix be-
tween two images. It works reasonably well for facial
images differed by a rotation in depth of up to 30 de-
grees. Psychological studies also show that recognition
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rate by human decreases rapidly with the rotation angle
in depth. Figure 3 shows an example of matched points
between 2 facial images differed by a rotation in depth
of about 20 degrees.

(a) first image (b) second image
Figure 3: Matched points (indicated by crosses) between
two facial images with four corresponding epipolarlines
overlaid

4.1.2 Dealing with changes in visibility

However, using points obtained above alone, we do not
generate images of good quality, especially for regions
containing significant changes in visibility, for example
a part is only visible in one image. One example of syn-
thesized image without taking into account visibility is
shown in Fig. 4. The synthesized image (Fig. 4c) corre-
sponds to the intermediate position (10 degrees of rota-
tion in depth) between the two original images. The tex-
ture of the first image is mapped to the generated image.
We can see that the right cheek and ear are not very good
and that the left ear appears too big. If the texture of the
second image is used, the result is even worse because
the left ear is not visible in the second image.

We found that combining edges and feature points im-
proves considerable the quality of synthesized images.
In order to deal with occlusion, we assign the occluded
edges to the closest visible ones. Refer to Fig. 5a and b.
The two edge chains of the first image cbrresponding to
the left cheek and the lower part of the left ear are as-
signed to the same edge chain of the second image cor-
responding to the left cheek. Of course, the 3D informa-
tion about these edges will not be correct (actually, there
is no geometric way to recover 3D information from a
single image), but the rendering in the new image looks
very realistic. The synthesized image (Fig. Sc) should be
compared with that shown in Fig. 4c.

4.1.3 Dealing with photometric variation in differ-
ent images

A patch in the new image has two corresponding patches
in the original images, except for those which are only
visible in one image. During texture mapping, we have
to decide which color to use. The difficulty lies in the

(a) 1st image & points (b) 2 image & points

Figure 4: A poor synthe-
sized image without tak-
ing properly the visibility
into account.

(c) synthesized image

(a) 1 set of points & edges (b) 2™ set of points & edges

Figure 5: A good syn-
thesized image while tak-
ing properly the visibil-
ity into account. Edge
points provide very use-
ful information. The syn-
thesized image (c) should
be compared with that
shown in Fig. 4c.

(c) synthesized image

fact that two images usually do not have the same color
and that the corresponding texture patches do not have
the same resolution. If we only use texture from one im-
age, then the quality of rendering is poor for small tri-
angular patches. Figure 6a shows a synthesized image
using the first image as texture, and we can see that the
quality on the right part of the face (i.e., the left part of
the image) is poor. Figure 6b shows a synthesized im-
age using the second image as texture, and we can see
that the left ear is not visible.

We therefore choose to use both images by weighting
them according to the areas of the triangles. Let A; and
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A, be two corresponding triangles of the original im-
ages, and A3 be the corresponding triangle in the new
image. Their areas are denoted by S1, Sz and Sj, re-
spectively. Let p1, p2 and p3 be a pixel in correspon-
dence inside the triangles A, Ag and Az. Let I(p) be
the intensity of pixel p. We use the following formula to
compute the intensity of ps in the new image:

51 + SoI
I(ps) = 1 (Pg‘z +SZ (p2) .

Thus, the patch having a larger area contribute more to
the texture in the new image. An extreme case is: when
a patch is occluded in one image, its area is 0 and the
texture from the other image is then taken. An example
using both images as texture is shown in Fig. 6c.

®

Figure 6: Comparison
of two texture mapping
techniques. (a) texture
from the first image; (b)
texture from the second
image; (c) texture from
two images.

(©)

4.1.4 Specifying desired position of the new image

We must supply information of the desired position of
the new image. This can be done by specifying the po-
sition of at least four feature points in the new image.
This is tricky because we do not know in general where
these points should be. We have to try different posi-
tions before obtaining the desired result. Figure 7 shows
a synthesized image which is not visually realistic. If we
have a reference image of what the new image should
look like, then we can use it as an indicator to specify the
position of the feature points. Figure 8 is the reference
image used to generate the images shown in Fig.6. In
the next section, we propose to build a Euclidean model
of the face using domain knowledge, which facilitates
enormously the specification of the desired position of
the new image.

Figure 7: An unrealis-
tic synthesized image be-
cause the position of the
feature points is not well

Figure 8: The reference
image (of a different per-
son) used to generate the
images shown in Fig. 6

specified.

4.2 Recovering the Euclidean Structure
Using Fuzzy Knowledge

If we have the Euclidean model of the face, then it is ex-
tremely easy to specify the desired position of the new
image: front view, side view to the left by 10 degrees,
etc.

4.2.1 Fuzzy domain knowledge

We have a rich knowledge of our face shape, for ex-
ample, the line joining two eyes is almost perpendicular
to the vertical symmetric line of the head. The domain
knowledge for our application is obtained through statis-
tical analysis of 36 sets of 3D range data of female heads
and 31 sets of male heads. Seven points on the face are

-selected, which are used to express the domain knowl-

edge of the faces. These points are indicated by number
0 through 6 in Fig. 9, corresponding to the comers of the
eyes, the tip of the nose, the corners of the mouth, and
the middle points of the ears. Point 7 and 8 are virtual
ones: they are the middle point between point 0 and 1
and that between point 3 and 4. Table 1 lists a subset of
the fuzzy knowledge base we have built for faces. InTa-
ble 1a, distances between two feature points are shown.
For example, the first row shows that the average dis-
tance between point 0 and 1 is 122 mm with sample de-
viation 5 mm for female faces and 125 mm with sam-
ple deviation 6 mm for male faces. In Table 1b, angles
between two vectors are shown. For example, the first
row shows that the average angle between vector from
point 0 to point 1 and vector from point 0 to point 2 is
equal to 44° with sample deviation 2° for female faces
and to 46° with sample deviation 2° for male faces. Ta-
ble 1c shows ratios of distances and sample deviations
for doz/d;;z and dso/dsa.

4.2.2 Recovered Euclidean Shape

In order to recover the Euclidean shape of the face from
two images shown in Fig. 3, we first select manually 6

-_80_



affine structure to Euclidean space. Points 0, 1 and 3 are
chosen to fix the Euclidean coordinate system. The Eu-
clidean coordinates of the 6 points are shown in Table 2a.
The distances, angles and ratios are shown in Table 2b,
c and d, respectively, which should be compared to the
values given in Table 1.

Table 2: Results on the recovered Euclidean structure

Figure 9: Feature
f ’::: m;mizl;“egwﬁf (a) Euclidean coordinates (in mm)
edge base point d y d
0 00 0.0 0.0
1 1226 00 0.0
Table 1: A subset of the fuzzy knowledge base for faces 2 627 471 —371
. N 3 314 883 0.0
(a) distances (in millimeters) 4 915 928 .—39
female faces male faces 5 -264 194 913
points | distance s.d. (o4) | distance s.d. (og)
0e1 122 5 125 6 (b) distances (in mm) (c) Angles (in degrees)
062 84 4 89 3 points distance vectors _ angle
063 95 4 102 6 01 1226 Z(01,02) 437
32 63 3 66 4 0e2 86.8 £(01,34) 57
304 58 4 59 5 063 93.7 £(02,03) 41.1
540 99 5 106 5 362 63.7 £(32,34) 614
521 159 6 171 6 304 60.4 £(50,03) 95.6
53] 132 6 144 7 560 97.0 £(53,03) 489
. 562 158.7
(b) angles (in degrees) 573 128.2
felmale za(:z(as ) 1:1a1e fz:;:e? ) (d) Ratios of distances
vectors | angle s.d. (og) | angle s.d. (o9 B o —
£(01,02) 4 2 46 2 %
£(01,34) | 3 2 3 2 dalde 076
£(01,78) | 90 2 89 2 0088 —
£(02,03) 41 3 40 3 .
£(32, 34) 63 2 65 4 Once we have the Euclidean structure of the face,
£(50,03) 94 4 93 3 we can specify the desired position in Euclidean space,
A( 50’ 78) | 100 4 99 3 which is trivial. Figure 10 show six synthesized images
/ (53: 03) 4 3 44 2 corresponding to different rotation angles.
(¢) ratio of distances 5§ Conclusion
d&i ft_:male gaces _male f:ces In this paper, we have described a technique to build
stances rag;) 5 0 3‘8”‘) ragg §: 5 éa,) a Euclidean structure from uncalibrated images using
302/ 332 (1)-75 0'04 (1)‘74 0' Og fuzzy domain knowledge. We usually have rich knowl-
50/ ds3 : d . : edge of what surrounding us such as the angles between

point matches on the original images (shown in Fig. 3)
corresponding to feature points O to 5 shown in Fig. 9.
Feature point 6 is not visible in the second image and
is thus not selected. Because we have already estimated
the affine epipolar geometry between the two images, we
can compute the affine coordinates of these points. Then
using the technique described in Sect. 3 with our knowl-
edge base on female faces given in the previous section,
we estimate an affine transformation which brings the

two sides of a window, the size of a door, the distance
between two eyes, etc. In the work described in this pa-
per, affine camera projection model is used. We have
formulated 6 types of domain knowledge: location of a
point, distance between two points, angle between two
vectors, orientation of a vector, a given vector including
the length, and ratio of two distances. The knowledge
we have is usually about an object category, but not a
particular object being considered. The variation (fuzzi-
ness) between one object to another is modeled in our



(10°, =10°)

(0°,0°)

(10°,0°)

(0°,10°)

(10°, 10°)

Figure 10: Synthesized images from recovered Euclidean shape. Rotation angles (6, ¢) are equal to (0°, —10°),
(0°,0°), (0°,10°), (10°, —10°), (10°,0°), and (10°,10°), respectively, where 0 is the rotation angle around the

horizontal axis and ¢, around the vertical axis.

work as a Gaussian variable. The proposed technique
can be actually used to calibrate a camera using domain
knowledge if the imaged scene contains objects familiar
to us.

The proposed technique has been applied to synthesis
of new facial images from uncalibrated images. We have
described a number of difficulties existing in image syn-
thesis, one of which is the specification of desired posi-
tion of the new image. Since we can obtain a Euclidean
description of a face using fuzzy domain knowledge, the
task to specify the desired potion in Euclidean space be-
comes trivial. We have also proposed to combine points
of interest and edges to deal with occlusion, and much
better results have been obtained.
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