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: - Abstract - We propose a randomized method for the detection of'symmetry in polyhedra without
" 4ssuming’ predetermination of the centroids of the objects. Using a voting procedure,  which is the
main concept of thé Hough transform in image processing, we transform the geometric computation
for symmetry detection based on graph theory, to the peak detection problem in an voting space in
the context of Hough transform.
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1 Introduction

In pattern recognition the symmetry of an object is
an important feature because symmetry provides refer-
ences for recognition and measurement of objects. The
symmetry information enables to speed up the recogni-
tion process and also to reduce the space for storage of
the object models. The symmetry properties of the ob-
jects, give valuable information for image understand-
ing. To make use the symmetry property it is necessary
to determine the symmetry axes or shape orientations.
Moreover, many methods have been proposed to de-
termine the object orientation, such as principal axes
[1, 2], mirror-symmetry axes [3, 4], universal principal
axes [5]. However, these methods are not suitable when
the shape is rotationally symmetry.

In this paper, we propose a symmetry detection
method based on random sampling and voting process.
The voting process converts direct geometric and ana-
lytical computation of features from data to the peak
detection problem in a voting space. The method pro-
posed here is an extension of our randomized method
for 3D motion detection which we proposed previously
[16]. There are ambiguities in the solutions obtained
from the 3D motion detection algorithm if the object
has symmetry axes and occlusion is not considered. In
this paper, we use these ambiguities for the determina-
tion of the symmetries of a polyhedron. Although in
related works the origin of the coordinate system is as-
sumed to be at the centroid of the object, our method
does not require such geometric normalization.

An object is said to be rotationally symmetric, if the
object, after being rotated around an axis for ah ap-
propriate angle, becomes identical to the original ob-
ject. Let V' be an n-fold rotationally symmetric object
with 7 > 3, V' will be identical to itself after being ro-
tated through any multiple of 27" Lin {6] proposed a
method for the determination of shape orientations by
the fold-invariant introducing the concepts of fold in-
variant centroid (FIC) and the fold invariant weighted
mean (FIRWM) In this method the rotational symme-
try of a shape is defined as the direction of the unique
half line starting from the centro:d and: through FIC:
and FIRWM. :

The number of folds n of a glven rotatlona.l symme- v

try shape can be determine by string matchmg tech-
nique [7]. Lin, Tsai and Chen [8] proposed a method
to determine the number of folds based on a simple
mathematical property. Recently, Lin [9] have proposed
also a modification of his previous method in which the:

matching procedure is discarded. Additionally, we can *

find others approaches as the proposed for Yip, Lam.

and Leung [10] who use Hough transform method to
determine the rotational symmetry of planar shapes.

Zabrodsky and Weinshall [11] used the symmetry-
mirror of 2D projections for the reconstruction of 3D
objects, using matching graph. They treated the global
symmetry as continous feature, defining a symmetry
distance (SD) of a shape as the minimum mean square
distance required to move a point from the original po-
sition in order to obtain a symmetry one. Minovic,
Ishikawa and Kato [12] presented an algorithm for iden-
tifiying symmetry of a 3D object given by its octree, in
which bilateral, axial, rotational and central symmetry
can be identified. Jiang and Bunke [13, 14] proposed a
method for the determination of rotational polyhedral
objects by graph matching. Alt et. al. [15] presented a
method for symmetry detection of an object by label-
ing. Although, there are many algorithms for symme-
try detection, these algorithms generally are developed
for 2D shape. Moreover, these kind of algorithms must
perform matching process and determine the centroid
of the shape.

2 Symmetry and Transformation

Symmetry means the congruence of an object under
transformations. Here we assume Euclidean transfor-
mations. The presence of an axis of symmetry in an ob-
Jject may be considered as the existence of rotational or
reflectional symmetry. In this paper, we only consider
rotation symmetry and the number of axes of rotation
symmetry. The order of rotation symmetry is called
the folding number for planar figures. Since we deal
with spatial objects, the folding number is the order of

--a rotation with respect to the invariant direction of a

rotation.

The axis of the rotation R is the vector which sat-
isfies the equation Rk = k. Therefore, the axis of the
rotation k is the invariant direction for rotation matrix
R. Let U be a rotation matrix such that U™ = I,

. for an appropriate positive integer m such that m > 2.

Settlng g to be the centroid of V, we define a set of
vectors T = T — g, for zeV. Settmg
(V) zeV}, (1

if V = U¥(V), then V has a symmetry axis with re-
spect to g. Then, V is n-rotation symmetry, and we
call n the folding number of an object V with respect
to the axis of the rotation k.

~These geometric properties conclude that, if we find
the axis of the rotation we can determinr. the folding
number of an object with respect to this axis.

{oly = U*z,

\



For a vector a € R? and a 3 x 3 matrix A, setting
a; to be the i-th row vector of A, we define the matrix
vector product as

axA=[axa;,axasaxaz]. (2)
For a rotation matrix R, setting

trR =
R-RT

1+ 2cosd (3)
= 2sinfk®I) (4)

the matrix R defines the rotation angle 6 around the
vector k.
If we set
Ng Or Gg
R=| ny oy ay |, (5)
’ Ny 0y Ay

we obtain the relations

(ng+oy+a,)—1

cosf = 2 (6)
and
_ ‘ _ /nx — cosf
kz = sgn(o,—ay) 1 _cosd’
_ _ /oy -~ cosf
ky = sgn(az —n2) 1 _—cosd’ (7
a; — cosf
ke = sgnlny — o)\ T oop
for k = (kg, ky, k)7 . Since we detect the rotation angle

6 which is not always zero and 7, we do not need to -

consider the case, cosd = 1.

3 Motion Analysis by Sampling
and Voting ,

Setting {zo}7; and {yp}3_; to be points on an ob-

ject in 3-dimeénsional Euclidean space R3, which are ob-

served at time ¢; and t3, respectively, such that t; < ¢,

we assume that for arbitrary pairs of o and S, zg and
yp are connected by a Euclidean motion, that is

yp= Rz, + t, *' ®)

where R and t are a rotatlon matrxx and a tra.nslatlon
vector; respectively. :

In our previous paper [16} we denved an algonthm
for'3D ‘motion estimation without predetermination of
point corfespondences. ‘We assumed that the edges and
the vertices: of a polyhedron are determined . from two
image frames. using an appropriate method before we

apply the motion analysis algorithm. If we do not know
point correspondences between frames, the motion pa-
rameters R and ¢ are obtained as the solution which
minimizes the criterion

E= min |yﬁ—(R:z:a+t)| 9)
a8 Rt
setting
: Yo(s) = Bzi + 1, (10)

where o (%) is a permutation over 1 <i < n.

The voting procedure is the main idea for the Hough
transform which detects lines and conics from noisy dig-
itized samples. The estimation of parameters for lines
from sampled data is an inverse problem. Therefore, the
Hough transform inferences correct parameters collect-
ing many evidences using the voting procedure. Setting
x to be the valuable in n-dimensional Euclidean space,
the Hough transform is a method for the estimation of
parameters {a;}?; of a collection of equations,

fila;,2) =0, i=1,2,--- )k (11)
from finite many samples {z;}7 such that m > k > 1.
using the voting procedure. An equation f;(x, a;) = 0is
called a model for the parameter estimation. The most
typical and traditional models for the Hough transform
are planar line and conic if the dimension of space is two.
The Euclidean motion equation such that y = Rx + ¢
is expressed in the form,

R t -1 o
ol 1 ol -1

where, I is the identity matrix and o is the null vec-
tor. This description implies that motion anhalysis from
a collection of noisy ‘corresponding points is a model
fitting problem [?] for the model,

=0, (12

=@ - R

F(A,v)=0, (13)
such that
F(A,z) = Av, (14)
R t:—-I o \
4 = ( T 1 o' 71)’
v = (=',L,y", )7
'Therefore, it is obvious that the voting procedure

achieves the estimation of the motion parameters R and
t of a Euclidean motion from finite-many samples.



Assuming that ¢ = 0, motion analysis algorithms
detect rotation of an object. If an object is rotation
symmetry, the results of a rotation derives the set of
points. Therefore, if we apply motion analysis algo-
rithm to an object which has rotation symmetry, it is
possible paremeters which define the symmetry as the
motion paremeters of a rotation.

4 Symmetry Detection by Motion
Analysis

Rotation symmetry and the folding number of an object
define point correspondences with respect to the rota-
tion axes. Therefore, if we detect point corespondences,
we can determine symmetry and the folding number
with respecto to an axis of rotation of an object. Since
the randome sampling and voting method for the mo-
"tion analysis detect both motion parameters and point
correspondences concurently, we apply this method for
the detection of symmetry of an object.

Using random sampling, a quadruplet of points is se-
lected from each frame, x;, ;, s, Tu and Yi, Yj, Ys,
Y, respectively. Three of these points are used to con-
struct an orthogonal frame for each image frame. Fur-
thermore, these orthogonal frames are used as references
to compute the motion parameters. These orthogonal
frames are estimated as follows.

i = Ty = (wjugm)gzu fou = Ljy X Ty
@l Iw]u (wjugm)ﬁzu] |in X ju|
(15)
Tiw = Yiu Niu = ju —”(y};niu)ﬂiu _ Y X Yju .
Yiul | Yju — (Y ) Tl [Yiu X Yju]
(16)
Thus, setting
T = ubins
Tju = a?u&iu + a?u&jw : (17)
Tsy a?u&iu + a?us Ju + agugsm
and
Yiu = .leuniu»
yj'u = :6 i iu + ﬂgz'u"’jw (18)
Ysu = iu"h'u + ﬁgunju + ﬁ?u&juv
for a pair of réal—va.lued hexaplet
o= (aw,’ nu a?u’ ::u) a?u’ ai’u) (19)
and
b (ﬁilw u) :3_11“ ?ur ju B ) (20)

which are determmed from the quadruplets of vectors,
the following theorem holds.

Theorem 1 Ify; = Rxp, o = f.

If a pair of hexplets o and 3 satisfies the relation a = 3,
a pair of quadrplets {z;, ©;, Ts, 2o} and {¥;, Y Yss Yu)
forms coguruent tetrahedrons each other. If V and
V' are conguruent, that is, there exist rotation ma-
trices which hold the relations R(V) = V' for k =
1,2,cdots,n, it is possible to find a pari of quadr-
plets which forms a conguruent tetrahedrons such that
{:B,',mj,xs,(l}u} € V and {yhyj)ysvyu} € V'. How-
ever, even if Gy = Byu, we cannot conclude that yp =
Ruxy, since o = (3 is not a sufficient condition for Eu-
clidean transformation [16]. Therefore, using the idea
of voting, we can define an inverse transformation from
Oy = Byu to yp, = Rxp.

Algorithm for the computation of the rotation

1 Randomly select quadruplets of points {x;,z;,
z5,x,} € V and {9, ¥j, Ys, Yu} € V/, where V
and V7 are the sets of points on edges and vertices.

2 Compute the vectors {@yu, Yyu} Where v =1,7,s.

3 Compute the bases and scalars, {£yu, of,} and
{ s ﬂgu}

4 If ja — Bl < € then set

R = ["h'u MNju 'nsu] [&iu gju gsu]-r where &;,, and 7y,
are obtained using an orthogonalization process.

, 5 If det|R| =~ 1, then increment the accumulation
space of R by one.

6 If a threshold in the accumulation space (R) is
reached, then stop, otherwise go to step 1.

Assuming that the translation vector of the motion is
zero vector, that is £ = o, our algorithm detects all U’ kR
for k=1,2,---,n, where R is the true rotation matrix.
However, all estimated matrices have the same transla-
tion vector. Using this ambiguity we detect symmetry
axes and the folding numbers of spatial objects. After

‘a sufficient number of iterations this algorithm detects
all rotation matrices {U*}7, such that Unv) =

5 Detection of Symmefry
5.1

Since a pair of tetrahedrons determines a rotatxon ma-
trix R, using egs. (3) and (4), we compute the in-
variant axis k of a rotation and the rotation angles 8
with respect to.this axis.. We set these vector and- an-
gles as a pair a = (k,8), where: k = k/|k|.. This pair
implies that our accumulator space is mathematically

Detection of Symmetry Ams



A = 52 x S, where 5% and § are the unit spheres in
R3 and R2, respectively. Furthermore, we express a in
the manner of the binary tree on A, using the dictio-
nary order. of quadruplets. For a = {(a,,7)",6) and
a' = {(,8,7)7,#) the dictionary order is defined as
if a>d then ar>d ‘ '
else if g>4
else if y>+v then a>- a

else if 6> ¢

then a -a

then a > d'.

After an appropna’oe number of iterations, we define
the list of the angles for each k such as
(21)

v ki = (6i1,0i2,- -, ix), 9in <Oin+1

Setting scor(d, k;) to be the number of votes to (k1,0
on the accu.tnulator space, for each i
“ki(8) = scor (8, k) (22)
defines a discrete function which is periodic with respect
to 2 and 27/n if the folding number with respect to the
rotation axis k;is n. These relations derive the following
algorithm for the detection of the folding number and
the rotation axes.
Algorithm for the computatlon of the symmetry

1 For each k; on the accumulator space such that
scor(a) is larger than 1, construct the function

k;(9).
2 Detect the pitch of k;(6) as 2m/n.

3 Return k, and n as the axis of the rotation a,nd the
holding number with respect to thls a.xts respec-
tively.

5.2 . Detection of the Folding Number

If the periodic function f(z) such that f(z) = f(z+27)
satisfies the property that f(z) = f(z + 2n/k) for an
integer k such that k > 2, we derive ‘a method to esti-
mate k from samples of f(z). Since the functxon f(=z)
has two periods 2 and 2n/k, we obtain the followmg
two Founer eXpansmns g ERE

4o

f{x) T = f’: a‘meimé‘nrm .

—_.- i a,me"‘"‘"" IR (23)
flz) =" f: 0, - (24)
L n=-oo B

Since _ . :
o= o /_',1r f(z)e ™ dz, (25)
‘setting
é(n, km) = S~——————1:E:fn_ k::)n) (26)
we obtain the ralations
| n = 8(n, Em)am. @7)

Furthermore, considering (26), we have the relation,

n=km

n # km. (28)
If we assume that we.measure g(z) which is the results
of the covolution between a degrading system h(x) and
the true signal f (z)

. o
i@ =5 [ fe-vho)d, @)
LA S
setting
g(z) = ) bpe™ (30)
n=-00
C ® ‘ .
hz) = Y, cme™ (31)
) n=-00
we have the relation,
 Bhm = GkmCkm (32)

for the Fourier ooefﬁcents "For ‘the power spectrum of
three functlons, we have the relation.

In| b |* = 10| G [* + 1| g 2. (33)
Therefore, if | ckm | < 1, then we have the inequality
In| cgm |? < 0. These relations imply the relation.

wibl={ 25 EEm

"These properties of the periodic function derive the fol-

lowing algorithms for the estimation of the folding num-

“ber with’ fespect to the rotation axis since it is possi-

ble to compute the Fourier coefﬁcxent usmg the dxscrete

‘Fourier tra.nsform .

Algorithm for thé detectlon of the foldmg num-

‘ber

.1 Compute. the DFT( the Discrete Fourier Trans-
form) of k‘(9) using . the FFT(the Fast’ Founer
Transformy). o



2 Compute power spectrum of k;(#) from the result
of Step 1, and set it Kj(n)

3 Compute the logarithm of the power spectrum-of
ki(6) from the result of Step 2.

4 Detect the positive peak of K;(n) for the smallest
n and set it n

5 Adopt n} as the folding number with respect to the
rotation axis k;.

6 Numerical Examples
Assuming that there exist k axes of rotation, we set

Rik; =k, i=1,2,--- k. - (35)

Furthermere if the fol&lhg number of the object with
respect to the axis k; is (), then each matrix R; satis-

fies the equality .
RO=1. (36)

Setting the total number of sample-points of object to
be m, we assume that m satisfies the equality m =
k x l(i)timesn(i). This relation means that for each
axis of rotation, there exist I(Z) x n(i) sample points.
Furthermore, we assume.that [(¢) x n(i) sample points
consist from (i) collections of n(i) points and assume
that each collection of sample points has no common
point each other. Moreover, we assume that the average
of {I)}fisland m=k x1xn.
+ Using these notations, the total number of point se-
lection for the pair of quadruplets is M =m C4 Xm Cs.
Furthermore, the number of the selectlons of an axis is
1C1. Moreover, for each axis, the number of selection
of points which define a pair of congruent triangle with
respect to an axis is ‘

K= C3n01 + Cz (nc2 +n C1)Hi ClnCS @7
These numbers conclude that the possxbﬂlty which de-
termines a true rotation matnx is -

K
P:—Q—M-, L ey
where e is the probablhty that a quadruplet iorms a
tetrahedron Therefore setting N and p to be the to-
tal number of iterations and the height of pea.ks in the
accumulator space, we, have the equa,hty

- (39)

(39)
This equatiorf concludés that N & O(m)if p = o m.

For the numerical examples; we set m = aX 10, for
2 < @ < 10. This condition leads that N &108."

PN 2 p.

. ;[6

Figures show results of symmetry analysis for a tetra-
hedrott, a cube and a quint-pipedon: Our algorithm de:
tects all ‘axes of rotation for these objects. In-figures,
‘small squares express sample ‘points on edges a.nd ver-
tices: ‘and the axes of rotation are expressed as lines:
These lines show the axes of rotation for the folding
numbers which are larger than 2. =

7 Conclusions

In this work, we developed a randomized algorithm for
detection of rotational symmetry in polyhedra without
assuming the predetermination of the centroids of the
objects. Our algorithm is simple because we converted
‘the matching problem for detection of symmetry to the
.peak detection in a voting space. This result showed
that the voting process is a suitable approach to sim-
plify matching problems. In our numerical examples,
we adopted sampl points on the edges and the vertices
as feature points. Our algorlthm detects all symmetry
axes of a cube. . k :
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Figure 1: Symmetry axes of a tetrahedron.



Figure 2: Symmetry axes of a cube. Figure 3: Symmetry axes of a quintpipdon.
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