An Efficient Computational Scheme for Multitarget Tracking
By Decentralized Cooperative Processing

LIANG CHEN and NAOYUKI TOKUDA!

Exploiting a new cooperative decentralized processing scheme of 9), 11) where multiple
processors cooperate in finding a global minimum, we have developed a new computationally
efficient maximum likelihood (ML)-based relaxation method for mulititarget motion analysis
under a fixed networked multisensor environment. The marked improvement in computational
efficiency and also in stability is achieved by replacing the well known Hungarian type assign-
ment algorithm of 10), 12) with a much simpler sorting algorithm of O(N log N) and fusing
the result with locally minimized average square errors of the relaxation. We have proved a
theorem which asserts that an optimal data assignment matrix can best be given in terms of
sorted bearing measuring vectors of targets. Embedding locally an optimal data association

" algorithm of O(N log N) into each of Gauss-Newton's downhill iteration loops, our numerical
experiments were able to track as many as 8 targets and 12 targets separately within one

. minute by 400MHZ Dell computer with improved accuracy and efficiency, where all targets
are allowed to move in variable directions at varying speeds if 4 and 6 processors are used
respectively. The solution we have developed constitutes a suboptimal solution in the sense
of 3), 12) because an optimal solution is embedded within part of the entire optimization
problem. ‘
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. time dependent motions are entirely indepen-
1. Introduction . .
: dent and are often subject to components of in-

Multitarget tracking from bearings-only mea- dependent noise. In spite of extensive research
surements under a distributed sensor network work on the subject?+?+#) | the problem remains
is a hard inverse problem!?, largely due to un- unsolved because it is shown that the statistic
certainty in data assignment problem of tracks data assigriment problems with more than three

with respect to the multitarget objects whose sensors is an NP hard problem®”. The diffi-
culty increases perhaps beyond an exponential
t EHMERELEEH WRIEH ) complexity if the number of targets, the number

Computer Science Department, Faculty of Engineering, of sensors and the number of sampling scans in-
Utsunomiya University, Utsunomiya, 321-8505 Japan
E-mail: Ichen@alfin.mine.utsunomiya-u.ac.jp,

tokuda@cc.utsunomiya-u.ac.jp studied by Zhou and Bose‘), where targets can
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be properly grouped into clusters so that the as-
sociate problem can be decomposed into smaller
subproblems.

Among all the methods applied to multitarget
tracking analysis, a maximum likelihood princi-
ple (ML)-based relaxation method is most com-
monly used. Yet, as is true with most of NP
hard problems, the ML-based relaxation meth-
ods for the multitarget tracking problem en-
counter severe difficulties firstly by unnecessar-
ily complex algorithms which are most easily
trapped by local minima. Much progress has
been reported in resolving a local minimum en-
trapping problem including methods of simu-
lated annealing, and neural computing to help
obtain a global minimum?»'?.

A decentralized cooperative search® offers a

new approach to obtaining a global minimum -

in multidimensional space having multiple-local
minimal functions. Unlike a centralized pro-
cessing system where all of the sensor measured
data are processed by a single central processor,
in the decentralized cooperative approach®:?),
all bearing measured data are processed by a
multiple of local processors, where each pro-
cessor estimates multitarget tracking by ex-
changing their intermediate estimated results
obtained by other processors when needed. The
centralized single processor processing scheme
encounters not only an instability in computa-
tion due to the presence of widely scattered lo-
cal minima over the solution space but also due
to an additional cost expected in data transfer.
How to find a global minimum without being
trapped by local minima forms the core of the
solution methods of the problem. Under multi-
sensor and multitarget tracking, we do not need
to have everything done by a single, centralized
computer and the concentrated computing may
be costly in the end. The decentralized cooper-
-ative search of this paper on the other hand ex-
ploits the multiple processor scheme as with the
multiple sensor environment where each proces-
sor has its own smaller search space and when
necessary, they cooperatively search for a global
minimum over the multiply branched solution

space in parallel.

In this paper we formulate the multitarget,
multisensor tracking problem by the decentral-
ized cooperative computational scheme® where
multiple processors cooperate. As in most of
the literature on the subject, we obtain an opti-
mal solution from bearing measurement data of
multiple targets by maximizing the most pop-
ular ML(maximum likelihood) principle-based
conditional probabilities. "Our basic strategy
in computation is the following: We first ob-
serve and then prove the theorem that an opti-
mal minimum error assignment matrix can be
most easily found if the bearings in poéition of
the targets are known and sorted in magnitude.
Encouraged by the theorem , we obtain a sub-
optimal solution in the sense of 3), 12) by fus-
ing the locally 6ptimal data assignment result
with locally valid minimal least square errors
until results from all processors converge. A
solution is called a suboptimal one if an op-
timal solution is embedded within part of the
entire optimization problem®:'?). We develop
a new rapidly converging relaxation algorithm
for each processor in the decentralized process-
ing scheme by embedding the assignment ma-
trices into the loops of Gauss-Newton downhill
iterations without increasing much of the com-
plexity. We have tested the algorithm proposed
by simulating the tracks of as many as 8 and 12
targets separately using 4 and 6 processors re-
spectively.

2. Problem Formulation and ML prin-
ciple

2.1 Problem Formulation

A typical multitarget-multisensor encounter
can be shown in Fig.1, where each sensor con-
sists of a passive array of acoustic sensors and
a front-end direction-of-arrival (DOA) estima-
tor. The positions and velocities of the targets
are estimated by finding the set of targets that
generates bearing histories that best match the
bearing measurements from sensors.

We assume that there are N targets in the
surveillance region covered, and s fixed bearing-
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Fig. 1 Typical Target-Sensor Encounter

only sensors in the plane. The state of a target
t at time index j is described by

CXEG) = (5 (3), ry (), vE (9), W ()
where (v, (j),ry( /)) denote its Cartesmn coor-
dinates and (v} (j),v v () its velocity compo-
nents. The sensor ¢ is located at the positions
(rfs,rie), i = 1,2,---,5. We assume that at
time j, the measurement bearing data from tar-
get ¢ for the sensor i can be written using the
state vector X% as:

byl
ﬂt,i(j) = tan~! [T}:’l(])} + wt‘i(j),
ry" (J)
0 < B%(j) < 2m.

where T’ (.7) = r} (.7) - is: r‘zt/t(]) - ry(]) rys
and wh(5)’s denote noise components of the
ith sensor all of which are assumed to be white,
Gaussian noises with mean zero and variance
o?. |

The measuring bearing data vector of sensor
¢ at time j forms a N-tuple vector as

B(5) = (B, B, -, BN (5))

Because we do not have a priori knowledge

on the origin of each measurement; we asso-

ciate each measurement vector £ (j) with an
N x N data assignment matrix C*(j), whose
components consist of 0-1 elements only with
just one 1 element appearing in each of the rows
and columns. The entry [C*(5)];m = 1 denotes
that the mth element of the measurement vec-
tor B (j) is associated with the tth target.
Our aim is to track the positions of the tracks
(ri(5), v (7)) for all targets ¢, ¢ = 1,2,.--, N,

z
and all the time indexes j, j = 0,1, - ,Ix from

the multisensor measuring data. In our formu-
lation, we allow all the targets to move toward
any directions moving at varying velocities. We
try to estimate the tracks of targets just over a
relatively short period of time, say, p time in-
dexes. During such a short time period, say
from time k; to time k; — 1 +p, we may assume
that the targets can be considered as moving to-
wards fixed directions at a fixed speed. In the
following analysis, the time period during which
we track the targets is in fact overlapped, thus
for each target t, (rz(4), 75 (7)) is always com-
puted for several times and averaged values are
used as the final result.

2.2 ML Principle

To estimate the tracks of targets during a lin-
ear period say from time k; to ks (ke —k1+1=
p), we need in fact to estimate the initial state
for each of the targets X*(j) at time index
J = ky and the assignment matrixes C* () for
:=1,2,---s and J=ki,k+ 1,---,ky. Thus
we seek a ML solution for this problem.

Given an estimated initial state vector for
N targets by X (k1) = (X!(ky), X2(ky),-
XN (k1)"), we seek the cumulative bearing estx—
mate measurement vector at time j (k; < j <
k3) denoted by

Bi(j) X/ﬂ) =
(86, %, 874, Ra), -, 575, %))
where

At,i 5 Atyif
B (4, Xx,) = tan™? [%T(.J_)} '

Denote CP*1. = {C*(ky), CH(ky+1), -+,
C2(k1), -+, C%ks), e, C3 (k)
ﬁp'kl = (ﬁl(kl)> ﬁi(kl +1), 'v"’ﬁl(kz)’ ﬂz(kl)’
o B ka), e, B (k) -, B°(ks)), the condi-
tional likelihood of Pt given CP*1 and Xy,
can be given by
A (ﬂp,k’llcp,kl Xk ) —_

—exp{——i S CH 05 G

i=1 j=k;

—B(§, X, )Y R7MC

C(ky),
C*(ky)} and

DB G) - B0, X))



where R; = o?I is the N x N diagonal noise
covariance matrix at the ith sensor, and c is a
constant independent of CP+*: and Xk1~ To ob-
tain a solution, we want to maximize A by min-
imizing the corresponding average square error
ASE given by

ASE

= spN gj_zkl C '3
[CHH B (5) = B3, Xk,)
1 N s ks ‘Bc(i,j,t),'i _ Bt,i 2

satisfying

)=B (3, X, )/ Ry

"integer

PV 2
ﬂ”(]’))

where c(i,4,t) is the
[C*(§)]tei ey = 1. Write

: s c(i,7,t),i
E, = Z }: (ﬂ : (fr),

i=1 j=k,

= o

we have

L

ASE = SN :
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3. Cooperative ComputingkAIgor'ithm

. 3.1 Outline of Existing Methods

Whether centralized or decentralized, the
ML-based relaxation methods proceed along
the following algorithm; For fixed Crki ASE
is minimized with respect to Xj, by a Gauss-
Newton relaxation method. For given X, ,
minimizing ASE with respect to CP*! is equiv-
alent to minimizing each individual term inde-
pendently with respect to C¥(j), and this can
be done by an improved Hungarian algorithm
of 10). The ML-based centralized cooperative
computing relaxation methods always consists
of the two.steps of iteration loops.

3.1.1 Centralized Cooperative Com-

puting

For centralized cooperative computing case,
all the bearing measurements from all sensors
are assumed transmitted to a global tracking
center and processed by one computer. The
flow of computing is shown as Table 1.

Table 1 Centralized Relaxation Method

Procedure (Centralized)

Set a suitable target initial state vector Xy, ;

repeat

(1) Given Xkl , find the minimum error assignment
matrices set CP+*1;

(2) Given CP*1, find the nonlinear least-square es-
timate Xk, ;

until converged.

3.1.2 Decentralized Cooperative Com-
puting

For the decentralized cooperative computing
case, the system exploits several independent
processors but in a cooperative manner; sen-
sors are grouped into several clusters allowing
always the overlapping of some sensor with the
other clusters and each sensor cluster has its
Each processor estimates mul-
titarget tracking using bearing measurement

Oown processor.

data collected from local sensors. The proces-
sors cooperate and exchange intermediate es-
timates of target initial vectors with all other
processors once in an iteration, then choose a
best estimation to provide a least ASE. Sup-
pose that for a sensor grohp G, the indexes of
the sensors in the group forms the set GG, a local
ASE function is defined as
ASEg =

ﬂc(z,] t)z A't,‘i 4 2
|G|p ZZZ( 3 B (J))

t=14i€G j=k,

The procedural flow of decentralized computing
for the processors of each group G is shown as
Table 2.

3.2 New Decentralized Computing

The following theorem shows that the Hun-
garian assignment algorithm can be replaced
by an optimal O(N log N) complexity of the
sorting algorithm as along as local analyses
The-
orem Suppose that the cumulative bear-
ing estimate measurement vectors for sen-

of some given sensor are concerned.

sor ¢ at time j (k1 < j < ko) is given
bAy 'ﬂl(j)AXlﬁ) = (ﬂlyl(j)Xkl)aﬂz’i(jyxlﬂ))'")
B85, Xk,)), and that the real bearing
data of sensor i is given by B(j) =

(BY(3), B2 (5), -+, BN(4)). Given two 0 —



Table 2 Decentralized Relaxation Method
Procedure (Decentralized)
Set a suitable target initial state vector Xy ;
repeat
(1) Given Xkl, find a set of minimum error assign-
ment matrices CP+%1
(2) Given [ k1 find a nonlinear least-square esti-

mate Xy, ;

(3) Send the target initial state vectors to all other
Processors;

(4) Receive target initial state vectors sent from all
other processors;

(5) With all the target initial state vector of each
sensor s, calculate and choose a best estimate
having a minimal E; together with all the best
initial state vectors for each sensor combining
the initial state vectors of all the sensors;

until converged.

1 distinct matrices C; and Cy, each hav-
ing just only one 1 element in every row
and column of the matrices, such that C; -

B§) = (a1,a2, - an), Co - Bk, X)) =
(b1,bg, - -,bn), where a; < a3 <---< an and
by < by < -+ < by, then the C¥(j) = C4C1 is a

best data assignment matrix for minimizing F
for fixed Xk,‘

Proof Writing E(C'(j)) = [C'(j)B'(j) ~
B, Xk )V RTNCHG)BG) = B G Xny)], we

have

ASE = ——E Z E(C'(j

. (t=1 =k,
Notlng that C = C;!, we have the following
relation:
E(C'(7) = (G018 (§) = B, Xkl)] R
) [Clclﬂz(]) (.7>Xk1)]
= [ () — Coff (G, R, VB

To show that C¥(j) = C4C} is the best matrix
possible, consider any other assignment matrix,
say, Ci(j), where m is the smallest integer such
that [C4C4(i)lmm # 1, with [C)C(D)mes = 1
and [C4CE(7)lm = 1. It is now easy to con-
struct a new assignment matrix Ci(7) such that

[C3CT()se =

1 if j=t=m
or {(j =ty and t = ty),
0 if (j=tyandt=m)
cor (t =1t and j = m),
[C4Ci(7)]j¢ otherwise.

Noting that (am — bm )%+ (as, ~ b,)? < (am —
bi,)? + (az, — by)? for ¢, > m and t > m, we
immediately have E(Ci(j)) < E(Ci(j). The
theorem follows immediately by mathematical
induction.

The theorem shows that an optimal local ma-
trix C? ()) can be obtained by sorting 3 (j) and
i (4, X,) for fixed Xj, which requires a re-
markably efficient O(N log N} computing time,
offering a new procedural flow of table 3. The
complexity of computing the present assign-
ment matrix C*(j) is far more efficient than the
improved Hungarian Algorithm of 10), whose
computational complexity is O(N3).

Table 3 The Algorithm for Finding A Best
Assignment Matrix

Procedure (Find A Best Assignment Matrix)

Set a suitable target initial state vector Xkys

(1) Sort the terms in §¢(j) into increasing order as
BeH(5), Be2E(4), - BEN(3))

(2) Sort the terms in ﬁ’(],Xk into . increas-
ing order as B ‘(J»Xkl) ﬁfﬁ’ (y,Xkl) ,
BIni(5, Xiy)

(3) Construct Cy for (1) such that [C)]e,i = 1 for
each 1 <t < N;

(4) Construct Cy for (2) such that [Cilfi = 1 for
each 1 <t < N;

(5) C'(4) = C40

This leads to the new cooperative computing
algorithm given in table 4.

Note that, in step 2.1, the Guass-Newton’s
downhill algorithm can be found in the Ap-
pendix A of 12). The step 2.2, could be done
by the procedure described in table 3.

The procedure in table 4 computes the tracks
of targets in one linear period, i.e. from time
k1 to ky. A complete algorithm computing the
multitarget motion analysis over the entire time
period, from time index 0 to K, will be de-
scribed in table 5.




Table 4 New Decentralized Relaxation Method
Procedure (New Decentralized)

Set up a suitable initial state vector X}, for targets;

repeat

1. Given Xku find a set of minimum error assign-
ment matrices CP¥1;

2. Repeat

2.1. Fix Cpk1, according to Gaus-Newton
downbhill principle, go one step with respect
to Xh H
2.2. Fix Xk, , find a set of minimum error as-
signment matrices CP-51;
Until converged

3. Send the initial state vectors of all targets to all
other processors;

4. Receive initial state vectors of all targets sent
by all other processors;

5.  With initial state vectors of all the targets from
each sensor s, calculate and choose a best vector
giving minimal E; together with all the best ini-
tial state vectors of each sensor from the initial
state vectors of all the sensors;

until converged.

Table 5 Algorithm for Tracking Targets

1. Given a suitable initial target state vector X;;
2. Forky=1toky =K —p+1do
2.1.  Use Decentralized Computing Procedure to
find a best solution with respect toASEg
" for a time period from k; to k;
2.2. For each target ¢, let 9% (ki +'1) = 0L (k;)
and ’D;(kl + 1) = "A/;(kl)
3. For each k and t, calculate the position of each
object as follows:

rt() = -

min{K —p+ 1,k} + min{k + 1,p} — k
min{K—p+1,k}
Do Gs)+ k- pea,

J=k—min{k+1,p}+1
1

ry(i) = —— .
min{K ~p+1,k} + min{k + 1,p} — k
min{K—p+1,k}
> (Fy(9) + (k ~ Doy,
j=k—min{k+1,p}+1
where A is the sampling period.

4. Experimental Results

We have employed the algorithm described in
the previous section to estimate the tracks of 8
targets and 12 targets separately which we al-
low to move in any directions at varying speed.
We have used 4 and 6 sensors for 8 and 12 tar-
gets respectively. For both cases, sensors. form
a cluster(group) of 2 sensors and 1 processor
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Fig. 2 The Real Tracks and The Estimated Tracks
for 8 Targets ‘

with at least one sensor being overlapped with
other groups. We have allowed each sensor to
belong to 2 groups. So, for the 8 targets prob-
lem, we have 4 groups, while for the 12 targets
problem, we have 6 groups. We use 200 data
samples where each of the continuous 4 data
samples are regarded as a linear portion so that
p of the above algorithm is set to 4. The stan-
dard deviations of white Gaussian noises are
0.2° for each sensor. In the simulation, we in
fact only use one Dell computer driven by Pen-
tiumlII 400MHz machine. The entire algorithm
have converged within 25 and 42 seconds for 8
and 12 target. problem respectively. The result
of simulations is shown as figure 2 and figure 3.
The agreement by simulation is excellent.

As far as we know, multitarget, multisensor
simulations exceeding 4 targets have never been
reported including the widely used annealing
methods, except that of a special case when the
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Fig. 3 The Real Tracks and The Estimated Tracks
for 12 Targets

sensors are uniformly spaced in line and some
hundreads of snapshots of sensor data is avail-
able within the time interval that the fixed data
associate assigment can be maintained®.

This is apparently due to the fact that it is ex-
tremely difficult to find a global minimum due
to the presence of too many local minima in the
solution space.

5. Conclusion

In the previous sections, we have presented a
distributed cooperative computational method
for the multi-target tracking problem.

Compared with the traditional centralized
computing scheme which makes use of the stan-
dard or improved Hungarian assignment algo-
rithm in data assignment problem, our simu-
lations show that our computational method
could reduce the computational complexity
quite drastically in agreement with the predic-

tion of 12).The key is the theorem we have
proved in this paper which says that the sorted
bearing measurement data provide an optimal
data assignment matrix requiring only the sort-
ing complexity of O(N log N).

As in all other existing works on the sub-
ject®#:9)12) we have formulated the ML-based
relaxation method exploiting a minimal value
in the square errors between estimated and ob-
served bearing measurements. Taking full ad-
vantage of distributed -cooperative computing
scheme where multiple processors cooperate to
obtain a global minimum, we are able to com-
pute 12 target motion analysis with variable di-
rections and speeds within 1 minute of single
400MHZ Dell computer time. The solution we
found seems to be suboptimal in the sense of
Ting & Iltis 12).

Part of the papei‘ has been presented in ISI-
MADE’99'®),
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