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Abstract  We propose a new method for measuring the shape of transparent objects such as glass
or acrylic ornaments. We claim that we can obtain the 3D geometric shape of transparent objects
by analyzing the polarization state of lights reflected on the object surface. Using a CCD camera with
polarizer in front of its lens, we take several pictures of transparent objects illuminated from all directions.
We obtain four possible surface normals at each point. We propose a method for choosing a correct
surface normal from those four by geometrical and topological constraints. We demonstrate that we can

automatically obtain the 3D shape of transparent objects.
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1 Introduction

We propose a new method of measuring the
shape of transparent objects such as glass or acrylic
ornaments. We can obtain the digitized 3D object
data simply by taking a picture of the object using
a CCD camera with a polarizer in front of its lens.

We use the characteristics of the polarization of
the object. Since transparent objects have spec-
ularity, they reflect light on their surfaces. The
light refelcted from the surface of an object polar-
izes, depending on the characteristics of the object
surface. By examining the light reflected from the
object while rotating the polarizer set in front of
a CCD camera, we can observe how the light is
polarized. We can determine surface orientations
of transparent objects by using this method.

The method described in this paper is based on
the research of our previous work[ ]. We proposed
that we could recognize surface orientation from
the polarization of transparent objects. Our im-
proved research was published recently in [2]. We
showed the method using the data regarding the
polarization of infrared light in addition to the in-
formation about the polarization of visible light.

In this paper, we propose a new method from
a different approach, that of using the geometric
characteristic in addition to the information about
the polarization of visible light.

This method allows easy measurement of the
shape of the transparent objects without any con-
tact with it. From multiple images taken by the
CCD camera, the method’s software automatically
calculates the 3D shape of the object.

In section 2, we will show the theory of this
method; the basic theory of light and reflection
and the mechanism of the polarization. We de-
scribe the relationship between polarization and
surface orientation.

In section 3, we will show how we calculate the
surface orientation of the object from a several
pictures. We will show the method of determining
the azimuth angle and the elevation of the surface
normal of the object.

Section 4 shows the experimental setup and ex-

perimental result.
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Figure 1: Reflected and transmitted lights

We will conclude this paper in section 3.

2 Theory of measurement

2.1 Fresnel’s law

We define that the interface surface of medium
1 and 2, each refractive index is n; and n,, is
located in x-y plane as shown in Figure 1. In this
case, a part of light refracts and transmits through
the medium 2 and the rest of light reflects on the
interface surface.

The incident, reflected and transmitted light are
expressed with subscript, a, r or t respectively.
And parallel or perpendicular to the x-z plane is
expressed with subscript || or L respectively.

We denote the light intensity of the incident and
reflected light as I, and I (parallel component)
or I,y and /., (perpendicular component). Re-
flectance of light intensity of the parallel and per-

pendicular component is expressed as:

P = r” tan2(91 —0s)
=7 “ tan2(01 + 62)
sin?(0; — 6) ;
F, = =g 1
+ L;L sin?(6; + 62} (1)
These intensity reflectances are referred to as
the Fresnel reflection coefficients. Equation (1) in-
dicates that there is an angle where Fj; is 0. This
incidence angle is called the Brewster angle fp.
From 61 + 64 = 7r/2 given where Fj = 0 and from
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Snell’s law nj sin @, = n, sin 5, we obtain the fol-
lowing equation:
fp = arctan (ﬁZ) (2)
ny
When the incidence angle is equal to Brewster
angle, reflected light will be the linear polarized
light of the perpendicular component, since all of

the parallel component is transmitted.

2.2 Polarization

Since transparent objects has specularity, we
can observe highlights (light reflected on an ob-
Jject surface) where the angle of the incident light
equals that of the reflected light.

Natural light is unpolarized, i.e., it is a light
that has equal magnitude of polarization compo-
nents in all directions. Suppose that a natural
light reflects on an object we observe the reflected
light through a polarizer. The intensity of the ob-
served light oscillates sinusoidally as a function of
the angular orientation of the polarizer. The light
intensity oscillates between maximum light inten-
sity Imax and minimum light intensity I .

We define the degree of polarization as:

Imax - Imin
?= Tonas + Imin ®

We call it a degree of polarization p, which varies
between 0 and 1, inclusively. It represents the pro-
portion of the magnitude of reflected light that is
linearly polarized; that magnitude is relative to
the total magnitude of reflected light. At p = 0,
reflected light is unpolarized. The state where we
observe p = 1 requires the following conditions:
reflected light is completely linearly polarized; the
reflection is a purely specular reflection; the ob-
ject is a dielectric surface; and the incidence angle
is the Brewster angle.

The geometry of our measurement system is
shown in Figure 2. We define the plane of inci-
dence as the one that includes the direction of a
light source, a viewer, and a surface normal. Since
we are measuring the highlight of transparent ob-
Jects, the reflection angle is equal to the incidence

angle. We can obtain the direction of the surface
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Figure 2: Geometrical location of light, object,

camera

normal at each point of the ob ject surface By using
the orientation of the plane of incidence and the
reflection angle. We denote the orientation of the
plane with ¢ measured around the viewer’s line
of sight, and denote the angle of incidence with 8
measured on the plane of incidence.

As seen in equation (1), intensity reflectance de-
pends on a direction of a plane of oscillation; par-
allel or perpendicular. The linear combination of
Inax and Igin is equal to the total light intensity
of the surface component /g.

Fu gl
Inax = =515, Inin=5—5"1 4
F|1+FL$ F“-FFJ.S )

Since Inin is the component parallel to the plane
of incidence, the orientation of the plane of in-
cidence ¢ can be determined when I, appears
while the polarizer is being rotated.

Because of the structure of linear polarizer which
is symmetric in point and line, we unfortunately
obtain two candidates of ¢, ¢; and ¢2; the dif-
ference of the degree of those two are 180°. The
method of choosing the correct ¢ is shown in sec-
tion 3.

Substituting equations (1) and (4) for (3) and
considering the Snell’s law, the degree of polariza-
tion p is given by

2sin@tanfv/n? — sin’ §

n? —sin® 6 + sin? 9 tan? 9

()
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Figure 3: Graph of degree-polarization

The degree of polarization p is a function of the
angle of incidence & under a given refractive index
n. Thus, from the measured degree of polariza-
tion, we can obtain the angle of incidence # from
equation (3) (Figure 3). Though, as seen in the
graph of polarization, we obtain two 6, 6; and 85.
The method of choosing the correct 8 is shown in

section 3.

3 Shape measurement

From the object’s polarization characteristic, we
can calculate the surface normal of the object.
The surface normal is represented by two com-
ponents — azimuth angle and elevation. Suppose
that we put the object on the ground or a table
or anything you like. We define the x-y plane as
the ground (or something) and the z axis as the
upper direction. The azimuth angle is the angle
from the positive direction of x axis to the positive
direction of y axis. The elevation is the angle from
the positive direction of z axis to the negative di-
rection of z axis. We will write the azimuth angle
as angle ¢ and elevation as angle § (Figure 13).

The angle of the incidence plane represents the
azimuth angle and the angle of incidence repre-
sents the elevation in Figure 2 when we locate the
CCD camera right above the object and observe
the object downward.

From the polarization data from the taken pic-
tures, we get two possible azimuth angles and two
possible elevations. So we must choose the cor-
rect surface normal from the possible four surface
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Figure 4: Consider 1D direction of 2D azimuth

angle

normals.

We use geometrical and topological characteris-
tic to choose the correct angle. We assume that
the object we are measuring has a continuous and
smooth surface, and also that the object must has
no areas that are occluded from the observer (here,
‘occlude’ refers to the geometry not the visual).

We took a picture of the object from one di-
rection, thus, we use 2 dimensional information
obtained from the CCD camera. In this paper, we
call this 2D information the ‘angle image’. Each
pixel of angle image has two possible azimuth an-
gles, 1 and ¢3, two possible elevations, 6; and 65,
and a boolean information whether it is an object

or a background.

3.1 Choosing correct azimuth angle

Suppose we bisect the angle image with a straight
line (Figure 4). And we only consider the compo-
nent of the angle parallel to this line; though there
is infinite possible value of 2D orientation, there is
only two possible value of 1D orientation (the pro-
jection of 2D orientation to 1D line), and we ex-
press those orientations as ‘upward direction’ and
‘downward direction’. We examine whether the

angle is in an upward direction or a downward di-
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Figure 5: Detect where azimuth direction changes

rection along the line. We examine through this
line and examine only the object area; we do not
examine the background. If there are several ob-
ject areas along this line, we examine them in turn.

The angle of an edge of an object has a direc-
tion toward the outside of an object. Thus, angles
of the two edges of the object area has directly
the opposite direction; this means that, concern-
ing such 1D information, there is a singular point
where the direction reverses and the numbers of
these points are odd numbers.

Now we will describe a practical method for
choosing the correct angle 4. We examine along
y directional lines at each x value. At each line,
we examine object areas. At each object area, we
know the edge direction and we detect the singu-
lar points which reverses the direction; we detect
a singular point if the angles of the adjacent two
pixels ¢, and ¢4y stride across the line parallel
to x axis (Figure 5). As a result, we are able to

determine all directions along this area.

3.2 Choosing correct elevation

Figure 3 shows the relation between polarization
p and elevation § (incidence angle). We can obtain
the polarization from equation (3). From equation
(3) and the obtained polarization p, we obtain two
possible elevations, 6; and §;. We should choose
the correct angle f from those two angles.

Since we assume the object is smooth, if we draw
a contour line of polarization p, the line will be a
closed curve. Suppose we drew all closed contours
of Brewster angle. It is obvious that the value of

all of the angle in the area between two contours

Figure 6: Rotation of object

is either more or less than Brewster angle. For
an easy description, we will call the angle greater
than the Brewster angle the ‘upper angle’ and the
angle less than the Brewster angle the ‘lower an-
gle’.

To get additional constraints for choosing the
correct angle, we rotate the object slightly. We
rotate the object around x axis (from the nega-
tive direction of y axis to the positive direction
of y axis; see Figure 6). We get two polarization
images; the information about a non-rotated ob-
ject and the information about a slightly rotated
object. (We define the phrase ‘polarization im-
age’ as which pixel has polarization and a boolean
information as to whether it is an object or a back-
ground.)

By comparing those two polarization images and
using the azimuth angle image, we can choose the
correct angle §. (The ‘azimuth angle image’ is the
angle image; though the correct angle ¢ is already
chosen.)

We bisect the object with the plane, thereby
transforming the difficult 3D problem into an eas-
ier 2D problem. We cut off the object with some
planes parallel to y-z plane. We compare two cross
sections; one is of a non-rotated object and the
other is of a slightly rotated object.

Section 3.2.1 shows the method of choosing the
correct angle # by using cross sections. Section
3.2.2 shows the proof that this method of manip-
ulating 2D information works consistently even if
the object is 3D. Section 3.2.3 shows the method
of searching identical points of non-rotated object
and slightly rotated object. Section 3.2.4 shows
the summary of the method.



3.2.1 Changes of polarization
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In this section, we will show that we can deter-
mine the angle of the area enclosed with the points
of the Brewster angle.

We will show all 6 patterns of surface shape per-
mitted in the area enclosed with the points of the
Brewster angle (Figure 7 - 11) (recall that we as-
sumed the object surface is smooth).

Pattern 1 is a convex shape (Figure 7). The
direction reverses at the topmost point of the con-
vexity (8 < 6p).

Pattern 2 is a concave shape (Figure 8). The
direction reverses in the bottommost point of the
concavity (6 < 6p). The direction of the azimuth
angle of pattern 2 is the opposite to that of pattern
1.

Pattern 3 is a curve where direction of the sur-
face normal is the same as the positive direction
of y axis (§ < 6p). We compare the polarization p
of the same point through the non-rotated object
and the slightly rotated object. In pattern 3, the
polarization of the same point increases through
rotation.

By rotating the object, the 2 dimentional ap-
pearance of the object from a certain view changes

a little; however, rotation has no effect on the
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shape’s characteristics. If we see the same char-
acteristic between the non-rotated object and the
slightly rotated-object, we can say that those are
the same points. . We recognize that the point
where we can observe a minimum polarization de-
gree between the two Brewster angles could be
identified as the same point through rotation (this
applies only to pattern 3 to 6). More information
are given in section 3.2.3.

Pattern 4 is a curve where direction of the sur-
face normal is the same as that of pattern 3 (6 >
0p) (Figure 9). The polarization degree p of the
point of minimum polarization degree decreases
through rotation.

Pattern 5 is a curve where direction of the sur-
face normal is the same as the negative direction
of y axis (§ > 8p) (Figure 10). The polarization
degree p of the point of minimum polarization de-
gree increases through rotation.

Last, pattern 6 is a curve where direction of the
surface normal is the same as that of pattern 5
(8 < 8p) (Figure 11). The polarization degree p
of the point of minimum polarization degree de-

creases through rotation.

3.2.2 Proof of method

Now we have to prove that we can determine
the elevation of the entire object surface by exam-
ining through the y-directional cross sections at
each column one by one instead of examining the
whole 3 dimensional information at once. In this
section, we will prove that we can use the previous
section’s method even if the azimuth angle is not
parallel to y axis (Figure 13).

Using. the azimuth angle ¢ and elevation 6, we
can calculate y-directional 8 (imagine the surface
normal projected to y-z plane). We write this an-
gle as 6. 6, can be calculated from 6 and ¢ (Fig-
ure 13).

Now we define the rotation value as df,. Con-
sider the point X and write the polarization of X
as p¥, the true elevation of X as 6%, and the az-
imuth angle of X as ¢X. We define d6% as the
rotation value along the direction of ¢% so that
6% + d6X represents the value of the elevation af-
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Figure 14: Changes of polarization through rota-

tion

ter the slight rotation. d6* is calculated from df,
and ¢X. One will notice that the signs of df, and
d6% are the same, signifying that the change of
the 8, and 6 has similar behavior.

See Figure 14. We define that 67 and 85 satisfy
8% < 0p < 6. The differences of the polariza-
tion of 8 and 6 + d9* and the polarization of
90X and 65 + d9* have different signs. The po-
larization of one increases, while that of the other
decreases. As a result, we know the correct 8 from
the difference of the polarization through the ro-
tation.

The arguement in this section indicates that
if we only examine the changes of polarization
through the rotation, we can know the angle 6
as well as 6,. We only need to acquire the value
of the difference of p instead of the value of p. We



do not need to worry that actual § is not equal to
By .

3.2.3 Correspondent points

The previous section explained that we could
determine 6 by comparing two p of non-rotated ob-
ject and slightly rotated object. The fact indictes
that there is no necessity of detecting Brewster
angles for just comparing the polarization degree.

But, we must compare two polarization degrees
at the identical point of the object. To detect the
same point through the non-rotated object and
the slightly rotated object, we identify the points
of those objects as the same point where we de-
tect the minimum value of the polarization degree
enclosed by two Brewster angle. The reason why
we can identify these points as the smame point
is that the point where we observe the minimum
value of the polarization degree enclosed by two
Brewster angle is an inflection point (see Figure 8
- 11). Even if we rotate the object slightly, we can
observe the locally minimum value at the inflec-
tion point.

The inflection point is detected not only within
two Brewster angle points but also within two lo-
cally maximum polarization points. Please read
the section 3.2.1 by replacing the phrase ‘the area
enclosed with the points of the Brewster angle’
with ‘the area enclosed with the points of the lo-
cally maximum polarization’.

Though we give a proof in section 3.2.2, there
exist two cases which the proof does not really
work. One is the case that 6 is close to the Brew-
ster angle and the other is the case that ¢ is close
to 0° or 180°.

This paragraph is about the former case: the
case that 8 is close to the Brewster angle. We
define 6; and 6, as 6; < 0p < 8. If p is not close
to 1, 0 < g and 6, +df < 0g, 6, > g and
0> + df > 6p, since we rotate the object slightly
(df is a little value). But if p is close to 1, the
situation of 6; + df > 0p or 8, + df < 8p might
probably occurs. We use the points of minimum
polarization between the Brewster angle to avoid

the point where p is close to 1.

This paragraph is about the latter case: the case
that ¢ is close to 0° or 180°. We cannot compare
two p at this case. Reason 1: If the feature of the
point is pattern 1 or 2, the minimum polarization
points is not identical between non-rotated object
and slightly rotated object. Watching the change
of p makes no sense (theoritically p equals to 0 in
both object). Reason 2: If the feature of the point
is not pattern 1 or 2, the direction of azimuth an-
gle (whether it is upward direction or downward
direction) might probably changes through rota-
tion. Thus, we cannot apply the above-mentioned
method. Reason 3. Whether the feature of the
point is pattern 1/2 or not, the point is not an
inflection point.

Thus, we cannot compare two p where ¢ is close
to 0° or 180°. We think of the middle point within
the locally maximum point and the locally mini-
mum point. Only in this case, we assume that
the slight rotation does not cause a change of the
appearance and we are able to identify the points
as the same point if those points are in the same
position. We divide the area enclosed within two
locally maximum polarization points into two ar-
eas: each enclosed within the locally maximum
polarization point and the locally minimum po-
lariztion point. We calculate the middle point of
each divided area and used these points for com-

parison.

3.2.4 Summary of algorithm

The following summarizes the algorithm of choos-
ing the correct angle § from two possible angles 6;
and 8.

We examine along y directional lines at each x
value. At each line, we examine object areas. At
each object area, we detect entire points where the
polarization degree locally maximizes.

We detect the minimum polarization point be-
tween two locally maximum polarization points.
We describe the detected minimum polarization
point as ‘comparing point’ except the case where
¢ 1s close to 0° or 180° near the minimum po-
larization point. In such 'case, we divide the zone

enclosed within two locally maximum polarization
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point into two zones by the minimum polarization
point. We detect two middle points of such two
zones; zone that is enclosed within locally maxi-
mum polarization points and minimum polariza-
tion point and we describe these two middle points
as ‘comparing points’.

We also calculate the middle point within the lo-
cally maximum polarization points and the bound-
ary point of the area and also describe as ‘compar-
ing point’.

At each comparing point, we check the follow-
ing.

If the direction of azimuth angle (upward or
downward) is the same as positive direction of
y axis: if polarization increases through rotation,
then 8 < fp (pattern 3) else § > 6p (pattern 4);
or, if polarization increases through rotation, then

6 > 0p (pattern 3) else 8 < fp (pattern 6).

4 Experimental measurement

4.1 Experimental setup

The experimental apparatus is depicted in Fig-
ure 15. An optical diffuser of a white translu-
cent plastic sphere is used to light an object from
all directions. The diffuser is illuminated using
three incandescent electric lamps placed at inter-
vals of 120 degrees. This makes a spherical ex-
tended light source, which will contribute to de-
tecting the highlight of the entire surface of the
object. An object is placed in the center of this

sphere. Using a CCD camera, images of the ob-
ject are taken through a hole located at the north
pole of the sphere.

We rotate the polarizer from 0 degrees to 180
degrees by intervals of 5 degrees and take 36 im-
ages with a CCD camera. Since the sampling
point is not continuous, we matched the light in-
tensity of each 3 degrees to sine curve by using
the least squares method (LSM) and detected the
maximum and minimum of the light intensity. We
obtained the polarization by using maximum and
minimum of the light intensity from the equation
(3).

We did the same thing with the slightly rotated
object. As a result, the input data sums up to 76

image data.

4.2 Experimental result

Using all the knowledge described in all the pre-
vious sections, we can get the surface normal of
the object surface. We calculate the surface shape
from surface normal by using a relaxation method

(9.

Original
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height
height

Figure 16: Simulation actual object (left) and sim-
ulation result object (right)

Before measuring actual objects, we calculate
several simulation objects to check whether the
method runs succesfully (Figure 16).

Transparent objects transmit and refract lights
as well as reflect lights. Many kind of lights from
many directions complexly transmit, refract, and
reflect on any part of the object surface and also
other objects nearby. Thus, we observe the light



Figure 17: Actual hemisphere ornament

Figure 18: Result hemisphere

of the complex mixture of those lights transmit-
ted, refractted, and reflectted here and there, i
addition to the desired data. We infer those error

is little enough to calculate using this method.

The result of the shape of the actual hemisphere

Reference

object is shown in Figure 18. The 3D geometric

shape 1s automatically calculated with the method’s

software. Our method is useful for obtaining the

3D geometric shape of transparent objects.

5 Conclusion

In this paper, we proposed a method for measur-
ing transparent objects automatically. The exper-
imental setup is simple, and we can measure the
object without any contact with it. We showed
the measured virtual 3D object and demonstrated
that this method was useful for measuring trans-

parent objects. This paper explained the theory of

measuring transparent objects using the polariza-

tion characteristics and explained the algorithm of

determining shape surface automatically by using

the geometrical characteristics.
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