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Abstract

The registration problem of multiple range images is fundamental for many applications that rely on precise
geometric models. As part of a project to digitally preserve cultural heritages, we propose a robust registration
method that can align multiple range images comprised of a large number of data points. The proposed method
minimizes an error function that is constructed to be global against all range images, providing the ability to
diffusively distribute errors instead of accumulating them. The minimization strategy is designed to be efficient
and robust against outliers by using conjugate gradient search utilizing M-estimator. Also, for “better” point
correspondence search, the laser reflectance strength is used as an additional attribute of each 3D data point. For
robustness against data noise, the framework is designed not to use secondary information, i.e. surface normals,
in its error metric. We describe the details of the proposed method, and present experimental results applying
the proposed method to real data.

Key word: registration, range image, conjugate gradient, M-estimator, k- d tree



1 Introduction

Registration of multiple point cloud range images is an
important and fundamental research topic in both com-
puter vision and computer graphics. Many applications
and algorithms can be (are) developed on top of the as-
sumption that accurate geometric models are obtained a
priori, i.e. recognition, localization, tracking, appearance
analysis, texture-mapping, metamorphis, virutal/mixed
reality systems in general etc. Additionally, projects to
construct precise geometric models based on observation
of real world objects for digital preservation of cultural
heritages have drawn attention recently. Because of its
objective, these projects require very precise registration
of multiple range images.

Recently, we have started a project-to digitally archive
ancestral heritages in Japan. In addition to natural decay,
Japanese cultural heritages are jeopardized to catastophes
such as frequent earth quakes and typhoons that can easily
deconstruct the national treasures we have inhereted from
our anscestors. For these reasons, digitally preserving the
precise geometry of those cultural heritages is an urgent
demand, so that we can safely pass on our social treasures
to the future generations. Also, we plan to acheive de-
tailed analysis of the appearance of those important ob-
jects and buildings, not only for preservation but also for
restoration of the original states of their appearance and
for building multimedia contents that can be shared re-
motely, i.e. virtually visiting temples in Kyoto without
getting on the plane.

In this paper, as'a part of the project mentioned above,
we propose a framework to register multiple range images
robustly. Taking the point cloud images obtained through
a laser range scanner as the input, we simultaneously reg-
ister all range images to sit in one common world coor-
dinate. Considering our purpose, we highly prioritize our
efforts to make the resulting registered geometric model
accurate compared to making the whole procedure com-
putationally fast. For this reason, we design our registra-
tion procedure to be a simultaneous registration method
based on an error metric computed from point-point dis-
tance including additional laser reflectance attribute in its
metric. Also for robustness and efficiency, we adopt a con-
jugate gradient framework utilizing M-estimator to solve
the least-square problem of minimizing the total errors
through registration. Since we target large objects like the
Great Buddha in Kamakura, the data size of each range
image becomes huge. Thus, we employ k-d tree data
structure for efficient point- point correspondence search.

The remainder of this paper consists as follows. In
section 2, we overview related work and represent our
framework. Section 3 describes how point correspon-
dence search will be accomplished efficiently, and we de-
scribe the details of how least- square minimization of the

objective function, the core of our simultaneous registra-
tion framework, will be done in section 4. We show results
of applying our approach to real data in section 5, and sec-
tion 6 concludes the paper.

2  Overview

2.1 Related Work

Past work on range image registration can be roughly clas-
sified with respect to the following three aspects.

Strategy: simultaneous' or sequential The basic
strategy of registering multiple range images can be repre-
sentated by two different approaches. The straightforward
strategy is to focus on only two range images at a time, and
register each range image to another [18]. After one range
image pair is registered, a new pair including either range
image in the former pair, positioned in the resulting co-
ordinate, is registered. This will be repeated till all range
images are used. Since this sequential strategy requires
only two range images for each registration stage, it can
be implemented with less memory and the overall com-
putatinal cost tends to be cheap. Also, the computatinal
cost for each registration stage will not be affected with
the number of range images to be registered consequently.

However, this straightforward strategy is well known
to be less accurate. In each range image pair registraion
stage, some error will be introduced due to data noise etc.
Since each range image will be fixed in the resulting po-
sition for each registrion stage, this unavoidable error will
be propageted to the latter registration stage and it will
result in unaffordable error accumulated in the last range
image position. Although the “gap” developed by this er-
ror accumulation can be small enough depending on the
use of the resulting geometric model, it is much prefer-
able to avoid this thoeretically, especially when the geo-
metric model will be used as a basis of texture-mapping
or appearance analysis and so on.

Simultaneous registration solves this error accumula-
tion problem by aligning all range images at once [1, 2, 4,
5,7,11, 15, 16, 17]. This can be accomplished by defining
an error minimization problem by using an error metric
common among all range images. This approach can dif-
fusively distribute the registration error over all overlaps
of each range image. The drawback is its large computati-
nal cost compared to sequential approaches.

Matching unit: features or points On registering
range images, usually the problem is redesigned as a er-
ror (distance) minimization problem. The basis of the er-
ror to be measured can be features derived from the range
images or points consisting the range data. Feature-based

! Commonly refered to as “global registration” and “multi-view reg-
istration”, especially in the graphics community



methods extract some signatures around 3D points, invari-
ant to Euclidean transformation, in each target range im-
age and make correspondences among those features [5,
12, 13]. Based on the assumption that all correspondences
are matched correctly, the transformation for registration
can be computed in a closed form manner. On the other
hand, if the signatures computed from the range images do
not provide enough information and the matching of them
cannot be done correctly, the registration stage can fail ter-
ribly. Point-based methods directly use the 3D points in
an iterative manner. The point mates, the point correspon-
dences to compute the error metric, are dynamically up-
dated and several iterative steps are used to minimize the
total error. One drawback of this point-based approach
is that it requires an initial estimation of the rough trans-
formation between the target range images, which is nor-
mally provided by human hand or interaction, while most
feature-based approaches do not.

Error metric: point-point distance or point-plane
distance Originally, point-based approaches, such as ICP

algorithm [3, 21], set the error metric basis on the Eu- -

clidean distance between two points corresponding each
other [8, 15]. However, since this error metric does not
take the surface information into account, the point-based
approaches based on point-point distance suffer from the
inability to “slide” overlapping range images. An alter-
native to this distance metric is to use point-plane Eu-
clidean distance, which can be computed by evaluating
the distance between the point and its mate’s tangent
plane [5, 16]. By embedding the surface information into
the error metric in this way, point-based approaches utiliz-
ing point-plane distance metric tend to be robust against
local minima and converge fast. However, computing the
point-plane distance is computationally expensive com-
pared with point-point distance computation; thus, meth-
ods using viewing direction to find the correspondence are
also proposed for efficiency [1, 4, 16].

2.2 Our Approach

Based on the consideration described above, we have de-
signed a registration algorithm which is i) based on the
simultaneous strategy, ii) using points as matching units,
iii) with the point-point distance metric. The framework is
inspired by the work of Wheeler et al [19, 20], that applied
similar techniques for object recognition and localization.
Since our aim of the underlying project is to digitally
preserve cultral heritages, we want to construct the geo-
metric model as accurate as possible. Also we would like
, to accomplish appearance analysis making heavy use of
the geometry. For this reason, as a priliminary step, we
attach more importance on robustness and accuracy than
computational expence in the registration method. This
makes us choose a simultaneous. strategy, which is accu-

rate in principle.

We employ points as matching units. Although laser
range scanner we use is quite accurate, still the distance
to the object is large and the measurement condition is
poor in many cases. Because the scanned range images
include noise, the information computed from them will
be corrupted by that noise even more.  Thus, we avoid
using any secondary features derived from raw range data;
instead, we directly use data points as matching units.

We use the point-point distance metric. Due to the noise
problem, as mentioned above, we have to avoid obtaining
secondary features, surface normals in this case, and thus,
cannot use the point-plane metric that requires us to cal-
culate surface normals. Itis also true that point-point met-
ric is less expensive in computational cost than the point-
plane metric, and is preferable when the data set is very
large.

The overall simultaneous registration framework can be
described as an iteration of the following procedure till it
converges.

Procedure SimultaneousRegistration

Array KDTrees, Scenes, PointMates

foreach rin AllRangelmages
KDTrees[r] = BuildKDTree(r)

foreach rin AllRangelmages

foreach s in AltRangelmage-r
Scenes[s] = s

foreach i in Pointsof(r)
foreach s in Scenes
PointMates([i] += CorrespondenceSearch(i,
KDTree[s])
Transformations[r] = TransformationStep(PointMates)

TransformAll(AllRangeImages, Transformations)

We basically extend the framework of pairwise ICP al-
gorithm to handle multiple range images simultaneously.
This is achieved by setting up an objective function to
minimize globally with respect to each range images.
Defining model as the particular range image in interest
and scene as one of the range images in the rest of range
images set, in one simultaneous registration loop, each
range image becomes a model once. Point mate search
(search for nearest neighbor point) for each point in the
model will be done against all scene range images (M — 1
if we have M range images), and they will be stored in a
global array. Rigid transformation for the current model
will be computed in a conjugate gradient search frame-
work utilizing M-estimator, and will be stored in a global
array. After each range image has become a model once,
all range images are transformed using the transforma-
tion stored in the global array: Note each range image is



Figure 1: K-d tree subdivision of 2D points. The number
indicates which level of the tree at which the split occurs.

not transformed immediately. Considering that each step
transformation evaluated inside one simultaneouse regis-
tration procedure will not be so large, this latency of trans-
formation will not cause a problem. Furthermore, this tim-
ing of transformation saves us a large amount of compu-
tational time, since construction of k-d trees are required
only once per range image in one simultaneous registra-
tion procedure. Details will be discussed in the following
sections.

3 Point Mate Search
3.1 K-D Tree

As we try to register range images that consist of a large
amount of 3D points, finding correspondences for each
point in each range image can -easily dominate a critical
portion of the overall computational time. To obtain point
correspondences efficiently, we employ k-d tree structure
to store the range images [9]. K-d tree’s k-d abbreviates
k-dimensional and it is a generalization of binary-search
tree for efficient search in high dimension space. The k-d
tree is created by recursively splitting a data set down the
middle of its dimension of greatest variance. The split-
ting continues until the leaf nodes contain a small enough
number of data points. For instance, Figure 1 shows how
2D data point set is split and separated into leaf nodes.
The k-d tree constructed will become a tree of depth
O(log N) where N is the number of points stored.
Nearest-neighbor search can be accomplished by follow-
ing the appropriate branches of the tree until a leaf node
is reached. A hyper-sphere centered at the key point with
radius of the distance to the current closest point can be
used to determine which, if any, neighboring leaf nodes in
the k-d tree must be checked for closer points. Once we
tested all the data in leaf nodes which could possibly be
closer, we are guaranteed to have found the closest point
in the tree. Though its worst case complexity is O(NV),
the expected number of operations for nearest-neighbor
search is O(log N'), which will be the case if the data is

point-plane

point-point

Figure 2: Point correspondences using point-point and
point-plane distance metric.

evenly distributed. For the cases of storing surfaces in 3D
space in k-d tree, usually this even distribution assumption
holds. The largest overhead involved in using k-d trees
is that the k-d tree of range-image points must be built
prior to the search. This operation costs O(N log N). To
avoid making this computational expence critical, we up-
date each range image positions only once in one simulta-
neous registration procedure as listed in the psuedo code
in section 2.2, requiring only M times of k-d tree rebuilts
in one global iteration where A is the number of range
images.

3.2 Distance Metric

To utilize nearest-neighbor search based on k-d tree struc-
ture, we need a measure of dissimilarity between a pair of
points. The dissimilarity, A, between k-d points x and y
must have the form

k
Alx,y) = F(Z fi(xi, i) _ )

where the functions f; are symmetric functions over a sin-
gle dimension and functions f; and F' are monotonic. All
distances satisfy these conditions including the Euclidean
distance ||x — y||. As mentioned in section 2.1, using
point-plane distance as the error metric provides faster
convergence . However, the point-plane distance, which
can be computed by ’

Alx,y)=(x-y)-Ny @

does not satisfy the monotonic condition. To take advan-
tage of the efficiency of k-d tree structure, we use the
point-point Euclidean distance as the dissmilarity mea-
sure. Also, we prefer point-point distance for the sake
of robustness; avoiding the usage of secondary informa-
tion derived from raw data, such as surface normals in
point-plane, which can be sensitive to noise in the raw
data points.

Figure 2 depicts an example of point correspondences
in the case of using point-point distance metric and point-



Figure 3: Images using laser reflectance strength as pixel
values.

plane distance metric. While the point-point distance met-
ric searches for the nearest neighboring point, meaning
estabilishing a discrete mapping of one surface to another,
the point-plane distance metric can be considered as a way
to find the continuous mapping of one surface to another.
In cases like Figure 2, where the model surface has to
be “slided” to fit the scene surface, the point-plane ap-
proach succeeds to find the correspondencs that enables
us to compute the rigid transformation close to the slid-
ing direction, while the point-point approach tends to get
stuck in a local minima because of the inability to find
point mates in the sliding direction. This sliding ablity of
point-plane approaches provides faster convergence com-
pared to using point-point distance metric.

To compensate the inablity of sliding in point-point
based distance measurement, we need some information
to be attached to the 3D points that suggest better matches.
For this purpose, we use the laser reflectance strength
value (refered to as RSV in the rest of this paper) as an
attribute of each 3D point. Most laser range finders return
the strength of the laser reflected at each surface point that
it measured as an additional output value. Figure 3 shows
two images with RSVs used as the pixel values. For bet-
ter visualization the images are histogram equalized. As
it can be seen, the RSVs are mostly invariant against Eu-
clidean transformation, since the dominant factor of the
power of laser reflected at an object surface is its surface
material. One common method to utilize two different
sources of information in distance measurement, in this
case the position distance and RSV distance, is to set up a
combined metric, such as

Alx,y) =

[(zx “xy)2 + (e — Uy )* + (2x “Zy)2 +A(rx _‘Ty)2]% 3
3)

where 7 is RSV and X is a constant scalar. However, this
scalar introduces a.tedious and ad hoc effort in finding
the “best” A. Instead, we use the reflectance to determine
the best pair among candidates of closest points. Namely,

Figure 4: Point mates using point-point distance metric
with reflectance strength values. Different shape marks
indicate different reflectance strength values.

we first search for multiple (m) closest points in the k-d
tree, and then evaluate the RSV distance for each of them
to get the closest point with respect to laser reflectance
strength value. We gradually reduce the number of the
candidates m along the iteration so as to make it inversely
proportional to the number of iterations. This utilization
of the laser reflectance is similar to [14], which uses color
attribute to narrow down the closest point candidates. Fig-
ure 4 depicts how the point-point distance metric utilizing
RSV as addtional attribute works in the example case de-
picted in Figure 2 (m = 4 in this example).

3.3 Random Sampling

Even we employ k-d tree structure for efficient point cor-
respondence search, when the number of points in the
target range images get large, the computational cost be-
comes massive. In early stages of the simultaneous regis-
tration, when the range images are distributed apart, it is

more important to get them close to each other than accu-

rately computing the rigid transformation for each regis-

tration step. To provide a way to speed up the registration,

we subsample each range image to reduce the number of
points used in the registration process. The points in each

range images are given a sequential identification num-

ber m = 0,.., M — 1 and a uniformly distributed random

number within the interval [0, M — 1] is generated to pick

up the points to be used. The seed number to generate

the random numbers are common for all range images in
one simultaneous registration procedure and updated once

per-one global registration step. In current implementa-

tion, we let the user determine the percentile of points

to be used in each range image intaractively. In future
implementation, this can be done automatically; first us-

ing small percentage and gradually increased to reach one’
hundred percent. - :



4 Least-square Minimization Strat-
cgy

4.1 Representing Transformation

Given a set of corresponding points (x;,y;) where i =
0,..., N — 1, the registration problem is to compute the
rigid transformation which registers the model points x;
with their corresponding scene points y ;. The rigid trans-
formation can be specified by a pair of a 3 x 3 rotation
matrix R and a 3D translation vector t. When the corre-
sponding points are aligned each other y; can be written
as

yi=Rx; +t @

Since range data points will be contaminated by noise, the
range image registration problem can be described as a
error minimization problem with the error funtion as fol-
lows

F(R,t) = Z [Rx; +t — yi|? )

to minimize with regards to (R t). As mentioned in sec-
tion 2.2, ¢ will stand for all point mates established from
all pairs of range images (if there is M range images, ¢ will
include all point mates from A x (M — 1) range image
pairs). Although it is convenient for vector computation
to represent the rotation as a 3 x '3 matrix R, R will be
constrained in a non-linear way as follows (T" stands for
transpose).

RRT =1
R| = 1

It is difficult to take advantage of the linear matrix rep-
resentation of rotation while satisfying these constraints.
For this reason, we will use the quaternion representation
for rotation, which is a well known solution to this rota-
tion problem. The benefits of using quaternion will be de-
scribed later. Thus, the position parameters of each range
image and the rigid transformation to register all of them
will be represented with seven element vectors as follows.

[a” 7" ©
[wvws]T

P
where q =

4.2 M-Estimator

As seen in section 4.1, the registration problem can be de-
scribed as a least-square minimization problem with the
objective function equation (5). Point correspondences
are acquired using the techniques described in section 3.
On solving this error minimization problem, we will have
to deal with two problems,

Poor initial correspondences: We must assume that the
point correspondences established in the beginning
will include a lot of mismatches.

Outliers Even when most of the point correspondences
are correct, we still have to deal with outliers result-
ing from mismatches and noise corrupted data points.

The underlying problem here is how to robustly reject out-
liers. The following three representative classes of so-
lutions can be found in the field of robust statics. The
first class of solutions, outlier thresholding, is the simplest
and most computationaly cheap technique thus the most
prominent techinque used in vision applications. The ba-
sic idea is to estimate the standard deviation ¢ of the er-
rors in the data and eliminate data points which have er-
rors larger than |ko| where k is typically greater than or
equal to 3. The problem of outlier thresholding is that
a hard threshold is determined to eliminate the outliers.
This means regardless of where the threshold is chosen,
some number of valid data points will be classified as out-
liers and some number of true outliers will be classified
as valid. In this sense, it is unlikely that a perfect method
for selecting the threshold exists unless the outliers are all
known a priori. The second class of robust estimators is
the median/rank estimation methods. The basic idea is
10 select the median or kth value (for some percentile k)
with respect to the errors for each observation and use that
value as our error estimate. The logic behind this is that
the median is almost guaranteed not to be an outlier as
long as half of the data is valid. An example of median es-
timators is the least-median-of-squares method (LMedS).
LMedS computes the parameters of interest which min-
imizes the median of the squared error computed from
all data pairs using that parameter. Essentially, this re-
quires an exhaustive search of possible values of the pa-
rameters by testing least-squares estimates using that pa-
rameter for all possible combinations of point correspon-
dences. While these median-based techniques can be very
robust, this exhaustive search remains a large drawback.

The third class of robust techniques is M-estimation;
the one we use. The general form of M-estimators allows
us to define a probability distribution which can be maxi-
mized by minimizing a funtion of the form

E(z) = me) )

where p(z) is an arbitrary function of the errors z; in the
data set. The M-estimate is the maximum-likelihood esti-
mate of the probability distribution P equivalent to E(z).
Least-squares estimation, such as minimizing (5), corre-

sponds to M- estimation with p(z) = 22.

P(z) = e B = ¢~ T ot ®)
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Figure 5: Weight values corresponding to several M- ‘

estimation functions.

We can find the parameters p that minimize E by taking
the derivative of £ with respect to p and setting it to 0.

OF dp Oz 0%

where w(z) = %%f

As can be seen in (9), M-estimation can be interpreted
as weighted-least square minimization with the weight
function w being a function of data points z;. Figure 5
shows the plots of the respective weight functions corre-
sponding to several M-estimation functions. In our current
implementation, we use the Lorentz’s function as the M-
estimator, which we found to work best with our range
image data.

4.3 Putting It Together

Now, we can redefine our registration problem as follows.
Given a set of corresponding points (x;, ;) (i=0,...,N-1),
we will minimize

N
1
E(p) = %> plz(p) (10)
where z(p) = |R{q)x;+t—yl 1D
and p(z;) = log(l+ %zf) (12)

The minimization of function E can be accomplished in
a conjugate gradient search framework. Conjugate gradi-
ent search is a variation of gradient descent search, which
constrains each gradient step to be conjugated to the for-
mer gradient step. This constraint avoids much of the zig-
zagging that pure gradient descent will often suffer from,
and consequently provides faster convergence.

On applying conjugate gradient search to our minimiza-
tion problem, we need to compute the gradient of func-
tion E with respect to pose parameter p which can be de-
scribed as equation (9). For the following deriviations, we
redefine z; to be

zi(p) = [[R(ax;) + t — y;||? (13)

A priori to the computation of the gradient, we pre-rotate
the model points, so that the current quaternion is q; =
[0 0 6 1] which has the property that R(q;) = I. This
allows us to take advantage of the fact that the gradient of
R(q)x can easily be evaluated at q = q;:

8—(,;%)—)( =2C(x)T (14)

where C(x) is the 3 x 3 skew-symmetric matrix of the
vector x which has the useful characteristic as follows.

Cx)y=xxv (15)

where x is the cross product. With these facts, Z—;‘ in

equation (9) can be derived as

B = 2Rl ey ARy
2()(Z +t — yz‘)
4C(x)T(x; +'t ~ i)
2(x; +t —y;)
P4
5 Results

We have applied the proposed method to register real data,
the Great Buddha in Kamakura. The Great Buddha was
scanned from fourteen different directions using Cyrax
20002, a time-of-flight laser range scanner that can scan
up to 100m with £6mm error at 50m distance. Each point
cloud image consists of approximately three to four mil-
lion vertices. Since registering all range images with full
resolution requires massive computational resource and
time, we registered only eight of those range images in
1/25 resolution as a priliminary experiment. Figure 6
shows the resulting registered Great Buddha. First the
input range images were registered in a pairwise man-
ner with occasional human interaction for initial align-
ment, and then registered simultaneously. The variance
of Lorentz’s function was set large in the beginning and
then gradually decreased each time the registration pro-
cedure converged with a particular variance value. Each
stage took about five to ten iterations for convergence.

2Cyra Technologies Inc.



Figure 6: Registered Great Buddha. Different color indi-
cates different range image.

6 Conclusion and Future Work

We have proposed a framework to simultaneously reg-
ister multiple range images. The simultaneous registra-
tion problem is redefined as a least- square problem with
an objective function globally constructed with respect to
each range image. For efficiency, we employ k-d tree
structure for fast point correspondence search and apply
conjugate gradient search in minimizing the least-square
problem for faster convergence. For robustness, we em-
ploy the laser reflectance strength as an additional attribute
of the 3D points and search for “better” point mates based
on their distance. Also, M-estimator is used for robust
outlier rejection.

For future work, we definitely have to compare our
methods quantatitavely with other existing range image
registration methods. Also we plan to automate initial es-
timation of the rigid transformations to pass to the simul-
taneous registration program, which is currently done by
human interaction.
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