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Abstract In this work, we present a method of quantifying fa01al asymmetry using a
topological face mesh, which is adapted to a measured 3D data, acquired by the
.Cubicfacer rangefinder system. Pre-determined facial actions are measured and the
generic face mesh is adapted to the measured 3D data by extracting feature points in
corresponding color image. The mesh adaptation process approximates a polynomial
curve using least-squares estimation. Variances of identical patches on left and right
sides of the face are analyzed with normal and disordered human subjects to generate an
estimation of facial asymmetry. Quantlﬁcatlon measure is then computed against a
variance distribution of normal subjects.



1. Introduction

Although the early modeling process of
human face largely dealt with animating head
models to generate CG characters [1][2], with
the advent of techniques to generate 3D models
and accurate acquisition of 3D data by
rangefinder systems, the application areas of
human facial modeling have spanned rapidly.
Present day work on facial analysis is directly
applied in numerous areas ranging from face
recognition, morphing, character simulation and
animation, and medical applications. In this
work our attention is primarily focused on
analyzing facial expressions of human subjects
to determine the asymmetry presented in each
individual. The estimation is expected to use in
clinical analysis of facial nerve paralysis
treatments. Some attempts have been made to
estimate facial asymmetry based on video
captured sequences of facial expressions by
employing 2D image processing techniques [3].
Thus they inherently loose ‘true 3D shape
information of facial deformation in
expressions.

Although in practice it is hard to determine
the faces with ideal symmetry, we consider this
property as apparent-symmetry, interpreted by
human observers. Our system measures
individuals of normal as well as expression
disordered with different facial actions and
produce 3D as well as color texture images.
Each measured set of 3D range data is then
adapted to a pre-designed generic face mesh
model. This process involves the extraction of
determined feature points from the color image
and poling those to the identified nodes on the
face mesh. Then the nodal points representing
non-feature  points are mapped  with
interpolating a polynomial function
approximated by a least squares estimator. This
procedure is applied to the each facial action
measured, thus producing a complete wrap of
the generic face mesh on the measured data.
Facial deformation analysis is based on the
adapted mesh patches. Left and right side
patches are compared for their deformation and
a patch variance is calculated for every patch.

There are various approaches of generic
face mesh deformation are proposed in the past
that applied in parameterized and control point
models [4,5,6], spline based model [7] etc. In
most cases, mesh adaptation require

segmentation of underlying 3D surface or
setting up control points on feature boundaries,
generating overheads in processing.

In quantifying facial asymmetry, we need to
have a control set to compare different facial
actions. Therefore we first measure six subjects
with apparent expression symmetry and take
that as the control set of measurement.
Preceding measurements are compared with
respect to this control set to determine the
presence of asymmetry. The regression analysis
is performed on the data sets and the standard
error factor of the control set is calculated. This
factor is used to quantify the degree of
asymmetry in other faces.

2. The Approach

First we measure each individual with pre-
determined facial actions using the Cubicfacer
rangefinder system, which consists of two laser
range scanners mounted laterally with respect to
the face, and a CCD camera facing the
measuring profile (fig.1). The face is scanned
complementary by the two laser scanners and
the complete frontal face model is generated
within a second [8]. The adaptive mesh
generation followed by texture mapping
produces a realistic 3D model of the frontal face
as in fig.2. The characteristics of this measuring
geometry, where a single camera with identical
orientation is used for the measurement of both
range and texture images makes it 1:1
correspond to each other.
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Figl: Face measurement system
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Fig. 2: 3D face model. (a) Median filtered
range image (b) Adaptive mesh result (c)
Texture mapped result

During the texture mapping, adaptive mesh
is generated on the range data. Since the
adaptive mesh generated does not possess
consistent triangle density on both sides of the
face (fig2(b)), it is hardly suitable for
interpretations based on symmetry features of
the face. Therefore, we adopt an arbitrary
generic mesh (fig.3) that is symmetric along the
median plane, which is the vertical plane passes
through the center of the nose, cuts the face into
identical left and right halves. This' generic
mesh is in the 2D from, lies on the XY plane.
Therefore we adopt a method of wrapping the
mesh on to the measured 3D range data with the
use of the corresponding color texture image.

N, 4

Fig.3: Generic face mesh

2.1 Mesh adaptation

The mesh adaptation can be time consuming,
tedious process if it involves segmentation of
range data to extract features. Instead, here we
apply a simple method of extracting features by
using the corresponding color image, since it
possesses the property of 1:1 correspondence
with the range image. We select 42 pre-
determined points manually, on the color image,
which correspond to mapping points on the face
mesh (fig.4), for the adaptation process.

@ (b)
Fig.4: Points selected for mesh adaptation.
(a) Texture points (b) Identical mesh nodes.

Points extracted from the color image are then
mapped with mesh nodes by approximating a
polynomial function using a least squares
estimator. '

2.2 Least squares approximation

An  N™ order polynomial function is
approximated to the range data using a least
squares estimator to adapt the generic mesh to
the measured data. This process consists of two
steps. First we move mesh vertices to the
extracted points of the color image, and then
poll the Z values from the corresponding range
image. '

Let us consider the parametric function given

by,
Z=f(x,y).
Where, f(x,y)represents by a polynomial of
N" degree, given by,
N J o
f(x,y)=ay +ZZ“;—:‘J"‘J’J """ (1)

Jj=1 i=0

When N=2, it takes the form,

1 2
. .
S, y)=ay+ 2 :al-i,ixly ’ +Za2-i,ix,y ’

i=0 i=0

2

Now consider match points Pi and Qi, where

i=1....n, represent points on the color image

and the mesh respectively (Fig.4). Pi’s are
extracted from the color image and Q:’s are.
known with respect to the topological mesh.

Let (x, ,y, ) and (x, , ¥, ) represent 2D
coordinates of Piand Qi respectively.



We can thus calculate the displacement vectors,
dx; = (x, —x,)m and dy, =(y, =y, ),
where m and n are unit vectors along x and y
direction respectively, for all matching points
=1,...,n

Since we extract 42 points for initial matching,
n is set to 42. To calculate displacement vectors
for the entire data set of the mesh, we
approximate the parametric function given in
eq.(1) using the least squares method, polling
dx;and dy,in Z axis as depicted in fig.5.
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Fig.5. Least squares polynomial -
_ approximation.
(a) Displacement vector calculation.
(b) Polynomial approximation.

Thus, coefficients ay,, @y, Qg5 Gy
a,,, dy, can be calculated using displacement

vectors and therefore the nodal displacements
of other points can be calculated by simply
interpolating the polynomial function.

We repeat. this procedure again by
increasing the order of the polynomial to move
the mesh points further closer to the expected
locations by iterative approximation. We then
separate feature points on different regions of
the face, namely eye, nose and mouth regions,
where a high concentration of facial features is
observed.

This local matching is done to ensure a
better mapping for the prominent feature areas
of the face. Finally, Z values are mapped from
the corresponding range values, since both
color and ~ range images - -have = 1:l
correspondence, producing a complete wrap of
the face mesh to the measured 3D data.

Once the 3D mesh is generated, we apply
asymmetry measurements against the measured
facial actions to estimate the difference of
deformation on both sides of the face.

3. Estimation of Facial deformation

Facial deformation . is . estimated by
calculating variances of patches of the adapted
mesh,-on both sides of the face.

Patch variances are estimated with respect
to the sub-meshes representing different regions
of the face. Forehead, eye, nose and mouth
meshes are defined in the generic face mesh
beforehand, and used to estimate the patch
variances, Consider two match patch pairs in a
given. sub-mesh marked as Py and Pg;
representing left and right side patches
respectively (fig.6). Their corresponding edge
lengths are denoted as & and &g, respectively,
where i = 1,2,3.

Left patch Right patch
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Fig. 6: Matching patch pairs.

If the variance of the i patch is o,” and total
path variance of a given sub-mesh with N
patches is O'2 we can define,

‘ZU ZZN‘ff ém

i=1 j=1

Thus, we measure the variance in terms of sub-
mesh patches. ‘
In the applications of asymmetric facial
expression analysis, it is often required to
measure the relative variances of different facial
actions and compare them (Fig.7).



Expression A0O
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Fig.7. Variance comparison of two
expressions.

In a similar calculation, as done in the
previous case, suppose patch Pr; of expression
A00 occupies the patch P’ in expression A01.
Let the patch variances of left and right sides

denote o, >and o, respectively.

Thus,
wehoel
B3 - [ e e 0

£, represent the lengths of the same patch
in right and left sides -in different
expressions. N, and N, represent the

number of patches in left and right sides of
the same sub-mesh. Then the comparison is
performed for both sides of the face to
detect the asymmetry.’

4. Quantitative analysis

In the experiment we measure two facial
actions, namely eye closure and grin, of
different human subjects with no .apparent
expression disorders, as well as subjects with
some expression disorders. These actions are
chosen to cover movements of most parts of the
face. We analyze the range data of human
subjects measured by the cubicfacer range
finder system, using above described variance
estimations.

The subJects are first measured at the
relaxed expression and then asked to generate
each action and hold it for about five seconds,
during which the measurement is done. Patch
variances are calculated for the eye closure and
grin - actions with respect to the. relaxed
condition, thus enabling it to compare relative.
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movements in facial parts in respective
deformations. The quantification of measured
variances is carried out by generating a sample
populatlon with six normal subjects. The
regression coefficient and standard error of the
population is computed (fig.8). The measure of
quantification is build upon comparing the
deviation of population of measured subject
with respect to the population of the sample
generated with normal subjects. ’

Relaxed ‘ Eye closure Grin
(a) Sample of six normal subjects

Average patch variance: Eye closure
(sample of six normal)

© w N WA OO~

Avg. variance: right (mm)

Avg. variance: left (mm)

R-square = 0.903; # pts = 184; y = 0.209 + 0.913x

(b) Eye closure with respect to relaxed

Average patch variance: Grin
(sample of six normal)

Avg. variance: right (mm)
- N W A~ o N

Avg. variance: left (mm)

R-équare =0.818;#pts = 110, y = 0.27 + 0,892x

(¢) Grin with respect to relaxed
Fig.8: Relative patch variances of normal
sample.

This distribution with'six normal subjects is
taken as the control set to determine the
deviations in the disordered subjects; Thus, we
measure two disordered subjects and plot thelr
distributions in ﬁg 9and fig.10.



(b Eye closu1’e (¢) Grin

Patch variance: eye closure
(disordered 1)

Variance: right (mm)

Variance: left (mm)

R-square = 0.428; # pts = 184; y = 0.698 + 0.869x

(d) Eye closure with respect to relaxed

Patch variam:e:‘Grin
(disordered 1)

Variance: right (mm)
O =A N WA OO

Varince: left (mm)

R-square = 0.12; # pts = 110; y = 1.87 + 0.401x

(e) Grin with respect to relaxed
Fig.9: Relative patch variances of disordered
subject 1.

The second disordered subject is also measured
with similar actions and depicted in fig.10.

Patch variance: eye closure
(disordered 2)

Variance: right (mm)

Variance: left (mm)

R-square = 0.248; # pts = 184; y = 1.34 + 0.418x

(d) Eye closure with respect to relaxed

Patch variance: Grin
(disordered 2)

Variance: right (mm)
O = N W e o N

Variance: left (mm)

R-square = 0.16; # pts = 110; y = 1.51 + 0.382x

(e) Grin with respect to relaxed
Fig.10: Relative patch variances of
disordered subject 2

In addition these, we measure a subject who
has almost recovered from nerve paralysis
disorders to evaluate the improvement which is
somewhat difficult to interpret in human
observations. Fig.11 shows the near-normal
subject with similar measurements.

(b) Grin
Patch variance: eye closure
{near normal)

(a) Eye closufé
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Variance: right (mm)

e N & O ®

Variance: left (mm)

R-square = 0.451; # pts = 184; y = 0.721 + 0.645x

(c¢) Eye closure with respect to relaxed



Patch variance: Grin
‘(near normaf)

Variance: right {(mm)
O =N WA

Variance: left (mm)

R-square = 0.583; # pts = 110; y = 0.303 + 0.888x

(d) Grin with respect to relaxed
Fig.11: Relative patch variance of near
normal subject. '
The standard error of the populatlons are
computed and depicted in table 1 bellow.

Standard Error
Eye-closure | Grin
Sample (6) 0.305 0.357
Near normal 0.856 0.817
Disordered 1 1.850 1.264
Disordered 2 1.026 1.119

Table 1: Standard error of the distributions

The asymmetry of a measured subject is
quantified with respect to the similar variation
in the normal distribution. The consideration is
that, normal distribution fairly indicates the
possible variations of expressions about the
normal subjects, which can ‘be used as a
yardstick to evaluate the asymmetry presented
in disordered subjects. Thus we compute the
data distribution around the least squares
regression line shown in each distribution with
the percentage of points lying within multiples
of standard error factor. Then taking  the
standard error of the sample (Es) as a measuring
unit, we compute the relative percentage of data
lie within the multiples of it in  disordered

distributions. This phenomenon is depicted in
fig.12.
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(b) Disordered distribution
Fig.12: Distribution of points in sample and
disordered distributions.

Table 2 'shows the percentage of points lied
within the multiples of standard error of the
normal distribution in all measured distributions
for the eye closure action. The same is deplcted
in Table 3 for the grin action.

Eye closure

Within | Within | Within | Within | Within
'Es |11.5"Es| 12"Es |!12.5"Es| 13*Es
Sample 69.56 | 86.41 95.10 | 97.28 100

Near 30.43 | 42.93 | 56.52 | 65.76 75
normal

Dis.sub.1 | 22.28 | 32.06 | 4184 | 48.36 | 58.15
Dis.sub.2 | 28.80 | 4239 | 53.26 | 64.13 71.73

Table 2: Point distribution in eye closure

Grin

Within | Within | Within | Within | Within
'Es 11.5"Es | 12*Es | 12.5"Es | !3'Es

Sample 71.81 86.36 97.27 98.18 99.09

Near
normal 38.18 48.18 59.09 76.36 83.63

Dis.sub.1| 26.36 41.81 56.36 65.45 67.27

Dis.subj.2| 27.27 39.09 52.72 63.63 71.81

Table 3: Point distribution in grin
5. Discussion

In this work we have demonstrated a
technique of estimating asymmetry of a
measured- facial action with respect to a
possible variation of a distribution drawn at
normal subjects. We have taken a sample of six
apparent-normal subjects and eye closure and
grin actions are measured respectively. The
average values obtained in this distribution
(fig.8(b), 8(c)) are satisfactorily agree with the
ideal situation and proved by the small
standard error, as depicted in table 1.

In the disordered subjects, the subject 1
shows much asymmetry in both expressions




compared to the subject 2. This is more evident
with the high standard error values in its
population, compared to the subject 2, which
indicates the amount of scatter points presented
around its least square regression line. The near
normal subject we measured also indicates its
improvements compared to the disordered
subjects with relatively low standard error
(<1.0) factor.

The quantification approach we have
proposed, rely on the accuracy of the normal
samples measured. It can be seen from table 1,
that our normal sample has a low standard error
thus, contributing to robust evaluation. The idea
behind quantifying disordered distribution with
respect to the normal sample is that, it should
give a estimate to the evaluators how much the
disordered distribution has improved with

respect to the similar actions of normal subjects.

This is very useful in designing strategies to
estimate the amount of facial paralysis in
ongoing treatments.

Therefore we = quantify the disordered
distributions with dividing its regions according
to the standard error obtained in the normal
samples. According to the tables 2 and 3, we
can design .a scale to show the amount of
asymmetry presented in each measured facial
action, with respect to a normal sample.

6. Future work

. Our method first adapt a generic face mesh
to the measured range data of each subject, and
then perform calculations on the generated 3D
mesh model. Thus the accuracy of mesh fitting
to the measured range data contributes a vital
factor for the accuracy of interpretations.
Therefore we intend to embed the mesh fitting
error factor to the computations by using
control subjects with markers attached to the
face. The fitting error is then computed by
tracking down the marker locations and actual
mesh movements in the fitting process.

Further we intend to design a robust scale to
represent the asymmetry in each measured
action that would be used in clinical practices.
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