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複数視点から撮影した海底音響画像を用いた

海底物体の三次元構造の再構成
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概要

本論文では、海底の自然環境を想定し、複数視点から撮影した海底音響画像を用いた海底物体

の三次元構造の再構成する新たな手法を提案する。まず、GPS 測位技術と画像マッチング技術と

の結合することにより、複数視点から撮影した画像の間で、特徴点同士をマッチングする。次に、

海底音響画像から斜距離（slant range）を抽出し、三次元空間にある二点間の位置関係により、

海底物体の三次元情報を求め、三次元構造を再構成する。提案する手法で、米 EdgeTech 社製の

DF1000サィドスキャンソナーと日本ラージ社製の DGPS200を使い、瀬戸内海で異なる視点から

撮影した海底地形の音響画像を選択し、実験を行った。
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Abstract

In this paper we focus on how to reconstruct a 3-D structure of the seabed from a spatial series of the
2-D underwater acoustic images. We developed an original method, which uses a combination of the GPS
positioning and the image matching technology to synthesize two or more different acoustic images taken
from different viewpoints, and then extract the range data from the spatial series of images. According to
the relation of the spatial position we can estimate 3-D structure with these range data. We have carried out
an experiment with EdgeTech’s DF1000 side-scan sonar and JRC’s DGPS200 GPS in Seto inland sea,
Japan, and the result shows the method is valid.
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I. INTRODUCTION

For ocean investigation, it has become an
important technology to use the underwater
acoustic imaging with the side-scan sonar [1-3].
But since typical side-scan sonar is poor for
determining accurate bathymetric positions [4], its
application was limited in 2-D analysis such as
observation, segmentation and classification of
seabed [1, 2, 5]. For 3-D analysis, we usually have
to deploy multi-beam sonar to obtain the
bathymetric measures [6]. This technology, based
on beam-forming, often has less spatial resolution
capability, map smaller sectors, so it leads to
increase the costs of investigation [7, 8]. As we
know, getting the information about 3-D structure
of the seabed is important for safe navigation,
positioning of offshore installations such as oil
platforms or oil and gas pipes, recognition of
topographical features of the seabed etc., so it
becomes necessary to find more efficient method.

At present, several approaches are developed.
Johnson and Herbert applied shape from shading
techniques to reconstruct elevation maps of the
seabed from side-scan sonar backscatter images
and sparse bathymetric points co-registered within
the image [9, 10]. This method depends on a
scattering model, so depth information was not
necessary. But some of the scattering parameters
have to be estimated correctly and some
parameters have to be set up empirically. Zerr and
Stage developed an algorithm to compute the
volume information from the shadow information
obtained from a sequence of sonar images [11].
Dura, Lane, and Bell extended this work to
automatic 3-D reconstruction of mine geometry
[12]. In these approaches, only a few sonar
parameters, such as the altitude and range are
needed and the computational requirements are
lower. But the shadow information couldn’t always
be obtained.

In this paper we focus on how to reconstruct a 3-
D structure of the seabed from a spatial series of
the 2-D underwater acoustic images. We use a
combination of the GPS positioning and the image
matching technology to synthesize two or more
different underwater acoustic images taken from
different viewpoints, and then extract the range
data from the spatial series of underwater acoustic
images. According to the relation of the spatial
position we can estimate 3-D structure with these
range data.

The rest of the paper is organized as follows. In
Section 2 we present our basic idea. We describe
the algorithms for tracking the side-scan sonar and

determining the frames of corresponding sub-
images in Section 3. We detail in Section 4, the
method of multi-step gray-level projective
matching. Then, in Section 5, we report
experimental result. Finally, a discussion and
concluding remarks are given in Section 6.

II. BASIC IDEA

A. Formation of Underwater Acoustic Image
Let us recall how to form the underwater

acoustic image. Side-scan sonar is the sensor that
is generally used for mapping of the seabed. The
sonar array is mounted on a platform (tow fish)
that is towed through the water by a surface ship.
In the emission stage, the sonar array generates
highly directional acoustic waves in the direction
orthogonal to the sonar displacement. For each
impulse, reverberated signals are collected along
with the time they took to get back. In a reception
stage, given that the speed of sound in water is
known, the amplitude of this signal as a function of
range from the sensor is then processed to provide
one pixel line of the final underwater acoustic
image. If the tow fish is towed in a horizontal line,
then a 2-D underwater acoustic image as a function
of range from the sensor and position of the sensor
along the line will be formed (Fig.1). Usually, the
range from the sensor is called “slant range”, and
the image is called “slant range image”.

B. Geometric Model of Underwater Acoustic
Image

Geometrically, there are three coordinate
systems in this work, image coordinate system (i,
j), virtual projective plane coordinate system (u, v),
and object space coordinate system (x, y, z). Image
coordinate system (i, j) is a left hand coordinate
system composed of image number i in the
direction where the image data file is scanned and

Fig. 1. Formation of underwater acoustic image
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image number j (line number) in the direction
where the sensor is moved. Virtual projective plane
coordinate system (u, v) is a right hand coordinate
system where the distance in the range direction
corresponds to u axis and the distance in the
azimuth direction corresponds to v axis. Object
space coordinate system (x, y, z) is a right hand
coordinate system where x axis and y axis are
parallel to u axis and v axis respectively (Fig.2).  

The correspondence of image point P’ (u, v) and
object P (x, y, z) is ideally given by the following
expression.

                                   

where, y = y0.

C. Basic Idea Based on Multi-views Model
　As described above, the range information is
included in the underwater acoustic image. But
using one image we just can obtain the slant range
from the sensor to the object but not synthesize the
position of the object in 3-D space. Because, as we
know, simple sonar consists of one cylindrical
source that creates a conic acoustic beam pattern
that is symmetric around the axis of the source.
This type of sonar will measure the range to the
first surface it encounters within the cone and the
intensity or echo of the return; however, the
position of the surface cannot be localized within
the cone. Since this reason, the range information
was ignored and not considered to reconstruct 3-D
information. In this paper, our basic idea is that,
using a spatial series of underwater acoustic
images overlapped each other, which were taken at
different “viewpoints” when the side-scan sonar
tracked along parallel course (Fig. 3), we can
estimate their positions in 3-D space according to

the formula of spatial relation as following:

ri
2 = (xi - x)2 + ( yi - y)2 + ( zi - z)2 ,         (2.2)

i = 1, 2, …, n.

Here, i is the number of viewpoint, (xi, yi, z i) is
the position of viewpoint i, and (x, y, z) is the
position of the point on the object surface, ri is
slant range from the viewpoint i to the point on the
object surface. Since the side-scan sonar tracked
along parallel course, we can consider the different
(usually two) viewpoints as in same plane, so
formula (2.2) can be rewritten to:

ri
2 = (xi - x)2 + (zi - z)2,                     (2.3)

i = 1, 2, …, n.             

There is a problem remained above how to
synthesize the points between the different images
as same point in the real 3-D space. This is referred
to as the matching problem in computer vision,
which is considered a challlenging task due to its
difficulty. Contributing factors to this difficulty
include the lack of image texture, object occlusion,
and acquisition noise, which yield frequently in
real imaging applications [13]. In order to solve
such problems, there are a lot of methods
developed over the last decades. Generally, they
can be classified to two types, area-based and
feature-based [14-16].

In this work, we developed a new method,
Multi-step Gray-level Projective Matching with
GPS Positioning, which bases on combining the
positioning technology of GPS and the matching

（2.1）= +u
v

u0

v0

(x – x0)
2 + (z– z0)

2

y
√‾‾‾‾‾‾‾

Fig. 3. A spatial series of underwater acoustic
images taken at different viewpoints

Fig.2. Geometric model of underwater acoustic image

,
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technology of the computer vision.

III. SENSOR TRACKING AND FRAME
DETERMINATION OF CORRESPONDING

SUB-IMAGES

A. Sensor Tracking
Sensor tracking is to get a set of position data of

side-scan sonar in the real 3-D space.
For horizontal tracking, a set of synthesized

GPS data are used. As the GPS is not directly
located on the side-scan sonar (Fig. 4), it is
possible that geometric distortions caused by
movement of the sensor that do not rely on
onboard navigation measurements [17]. In this
work, an experiential value is set as initial layback,
and then corrected by the motion estimation
method introduced later.

For vertical tracking, as we know, for each
impulse, the reverberated signals from the seabed
right under side-scan sonar are generally the fastest.
It means first bigger change of gray-level from
centerline to both sides on the image will be
measured. A running mean filter is used to reduce
noise and an average depth is considered as the
plane of seabed (fig. 5).

B. Frame Determination of Corresponding
Sub-images

  In order to match multi-view images, the frame
of corresponding sub-image should be determined.
Under the frame, corresponding sub-image in each
image can be extracted, and all corresponding sub-
images can be registered each other to find
corresponding points.

First, as the maximum slant range of side-scan
sonar should be set up beforehand and the average
depth from side-scan sonar to the bottom has been
known, the maximum ground range that is covered
by the side-scan sonar can be calculated according
to the geometric model of underwater acoustic
image. Next, the slant range image is projected to
the ground range, which the projected image is
called “ground range image”.

Second, as we know, the range direction is
orthogonal to azimuth direction, so that the ground
range image can be registered to a global 2-D map
along the normal direction of the wake of side-scan
sonar (Fig. 6. a). Similarly, another overlapped
underwater acoustic image can be registered too.

Third, the frame of corresponding sub-image
overlapped each other can be determined and the
corresponding sub-images can be extracted (Fig. 6.
b).

IV. MULTI-STEP GRAY-LEVEL PROJECTIVE
MATCHING

  
A. Motion Estimation in Azimuth Direction
  As explained above, the misalignment of
horizontal position exists between the different
images. It is difficult to directly synthesize the
GPS data and the side-scan data. About motion
estimation, a lot of approaches have been
developed over the last decades in the several
relative fields such as stereovision and analysis of
image sequences [18-23]. In many cases the input
underwater acoustic images are strongly corrupted
by speckle noise [1, 2]. Therefore, we study
methods using gray-level projection to reduce the
noise effect.

Fig.4. Relative position between sonar and GPS

Fig.5. Tracking for vertical position of sonar:
(a) First bigger change of gray-level
from centerline to both sides; (b) Depth
and average depth

(a) (b)

Fig.6. Frame determination of corresponding sub-
images: (a) Register to a global 2-D map; (b)
Frame of corresponding sub-images

(a) (b)
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First, all gray-level of the pixels along the range
direction are projected to the azimuth direction
over two images. Let gray-level of the pixel (i, j)
and the range width in image f1 be G1 (i, j) and w1,
respectively. The projective distribution of number
i is defined as

same way for image f2, the projective distribution
of number i is defined as

Next, Getting a center part where larger motion
estimation may be looked for from the projective
distribution for each image, let PY1 be as reference,
shifting PY2, compare these two projective
distributions (Fig. 7). The motion estimation will
be found when the difference between these two
projective distributions is the smallest. The
difference degree DY is defined as

B. Extraction of Feature Points
After the motion is detected and corrected in the

azimuth direction, the search area of corresponding
points over two images can be limited in a smaller
area along the azimuth direction to reduce the
computational burden of matching. So, first, we
separate the sub-images into several zones along
the azimuth direction, and then use the gray-level

projective distribution both along the azimuth
direction and the range direction in the each zone
again. We select the cross points as the feature
points where there are bigger changes of the
projective distribution (Fig. 8).

C. Mutual Matching
After selected the feature points, we match the

feature points over the different images.
Since the occlusion problem exists in underwater
acoustic imaging, we use a mutual matching
between the different images [24]. First, let one
feature point in image f1 is as reference; search the
corresponding point in the image f2. Next, let the
feature point found above step in image f2 is as
reference, search the corresponding point in the
image f1. Just only mutual matching is successful,
the points are considered as confident
correspondent ones (Fig. 9).

V. EXPERIMENT

To validate our method for 3-D reconstruction
of seabed, we have carried out an experiment with
EdgeTech’s DF1000 side-scan sonar and JRC’s
DGPS200 GPS in Seto inland sea, Japan, and the
result shows the method is valid.

Fig.10 is a pair of input underwater acoustic
images taken along a set of parallel courses (see

(4.1)
w1

i=1
PY1 (i) =   ∑ G1 (i, j),

1
w1



(4.2)
w2

i=1
PY2 (i) =   ∑ G2 (i, j).

1
w2



(4.3)DY = ∑ | PY1(i) – PY2(i) |.

Fig.7. Motion estimation using gray-level
projective distribution

Fig. 8. Extraction of feature points

Fig. 9. Mutual matching

w

i=1
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the selected area in Fig.11).

Fig.11 and 12 show the tracking results of side-
scan sonar. In Fig.11, a horizontal tracking is
presented, which a set of synthesized GPS data
was used in processing. In Fig.12, a pair of vertical
tracking is presented using the depth estimation
method described in Section 3 A.

Fig.13 shows a process for extraction of
corresponding sub-images using the method
described in Section 3 B.

Fig.14 shows a result of motion estimation and
correction in azimuth direction using gray-level
projective distribution, which was introduced in
Section 4 A.

 
Fig.15 presents a process for extraction of

feature points, using the method introduced in
Section 4 B. Here, feature point search was limited
a smaller  to improve the effect of gray-level
projective distribution in range direction.

Fig.16 shows a result of feature points matching
over two images, using the method introduced in
Section 4 C.

Fig.10. A pair of input underwater
acoustic images

Image1 Image2

Selected area

Fig.11. Tracking of side-scan sonar

(a)

(b)

Fig.12. Depth estimation of side-scan sonar:
(a) Course 1;  (b) Course 2

Fig. 15. Process for extraction of feature points

Fig. 13. Process for extraction of corresponding
sub-images: (a) Image 1; (b) Image 2

(a) (b)

Fig. 14. Result of motion estimation and
correction in azimuth direction:

(a) Before correction; (b) After correction

(a) (b)
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Finally, the 3-D structure of seabed was
estimated by using a pair of range data sets
obtained by matching feature points over two
images. Fig.17 shows the result.

VI. CONCLUSIONS

In this paper, we have presented an original
approach to the 3-D reconstruction problem from
the underwater acoustic images. It is based on a
multi-view method, which uses a combination of
the GPS positioning and the image matching
technology. The GPS positioning component of the
technique tracks the side-scan sonar and determine
the corresponding sub-image between different
images according to the geometric model of
underwater acoustic image. The image matching
part of the techniques matches the corresponding
points between the each corresponding sub-image
using the method of multi-step gray-level
projective matching.

The proposed scheme appears as an appealing
alternative to the 3-D reconstruction approaches
for underwater acoustic image using shape from
shading or multi-views techniques.
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