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SUMMARY We propose using SQP (Sequential Quadratic 
Programming) to directly recover 3D quadratic surface parameters 
from multiple views. A surface equation is used as a constraint. In 
addition to the sum of squared reprojection errors defined in the 
traditional bundle adjustment, a Lagrangian term is  added to force 
recovered points to satisfy the constraint. The minimization is realized 
by SQP. Our algorithm has three advantages. Firstly, given 
corresponding features in multiple views, the SQP implementation can 
directly recover the quadratic surface parameters optimally instead of a 
collection of isolated 3D points coordinates. Secondly, SQP 
guarantees that the constraint is strictly satisfied. Thirdly, the camera 
parameters and 3D coordinates of points can be determined more 
accurately than that by unconstrained methods. Experiments with both 
synthetic and real images show the power of this approach. 
 
Key words: Quadratic surface reconstruction, constrained 
minimization, Sequential Quadratic Programming, bundle adjustment, 
error analysis 
 

1. INTRODUCTION 
Recovering 3D structures and camera intrinsic and extrinsic 
parameters from a given sequence of images usually needs 
bundle adjustment to refine in an optimal way to get a more 
accurate solution. There is an excellent survey of the theory of 
bundle adjustment as well as many implementation strategies in 
[1]. Traditional bundle adjustment aims at recovering isolated 
3D features using nonlinear unconstrained optimization 
methods. Since it does not rely on relations between isolated 
features, a very wide variety of scenarios can be handled. 
However, in practice, scenes often contain some prior 3D 
constraints, such as 3D distances and planar constraints. If 
applied carefully, more accurate 3D scene structure and camera 
parameters can be recovered [2,5]. Furthermore, in many scenes 
such as indoor scenes and man made objects, scenes often 
contain structures with strong geometry regularities such as 
floors, walls and globe. And it is more suitable to use 
parameterized models than isolated features to represent these 
objects [2,3,4,5]. Some previous work has already noted this. 
For example, G. Cross et al proposed recovering quadric 
surfaces from multiple views in [3]. Ying Shan et al utilized the 
point-on-surface constraint in their model-based bundle 
adjustment method to directly recover face model from multiple 
views [2].  

When scene constraints are incorporated into bundle 
adjustment, nonlinear constrained minimization methods are 

needed to minimize the objective cost function while keeping 
the specified constraints strictly satisfied. Previous work has 
given their own nonlinear constrained minimization methods to 
incorporate constraints in bundle adjustment. For example, the 
work in [2] has used a kind of penalty method that converts 
constrained minimization problem into an unconstrained one. 
The work in [4] has described a scheme for incorporating 
surface and other scene constraints into a VSDF filter to directly 
recover the surfaces and camera motion. 

In this paper Sequential Quadratic Programming (SQP) 
[1,6,7,8,9,10] is used to incorporate scene constraints in bundle 
adjustment to directly recover quadratic surface parameters 
from multiple views. SQP is a powerful constrained 
minimization method and has been successfully applied in a 
wide variety of industrial fields. It has a concise mathematical 
formulation and can incorporate a wide variety of constraints. 
Triggs [10] has used it in camera calibration before. However, it 
has seldom been used in 3D scene reconstruction so far. In this 
paper the SQP concept is introduced and a novel 
implementation that aims at solving constrained bundle 
adjustment problem is given. The point-on-surface constraint 
described in [2] is used to directly recover quadratic surfaces 
from multiple views using SQP. The proposed technique is 
different from previous quadratic surface reconstruction work 
[3,11,12,13], where the outlines in multiple views needed to be 
estimated first to recover the corresponding quadratic surface 
parameters. In principle the technique introduced in this paper 
can be used to recover arbitrary parametric models such as lines, 
planes and freeform surfaces from multiple views. In the 
experiment section the power of SQP is verified. It can be seen 
that the specified equality constraints are strictly satisfied. Since 
external geometry constraints are incorporated, the 3D scene 
points coordinates and camera parameters are recovered more 
accurately by SQP than that by unconstrained algorithms.  

The paper is organized as follows. In Section 2, we formulate 
quadratic surface reconstruction problem. In Section 3, we 
describe SQP nonlinear minimization concept and its novel 
implementation. In Section 4, we outline the steps in quadratic 
surface reconstruction. In Section 5, the experimental results 
with both computer simulation data and real images are shown. 
And we conclude the paper in Section 6. 

2. FORMULATION 
The quadratic surface reconstruction problem is formulated in 
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this Section.  
2.1 Quadratic Surface Representation  
A quadratic surface is a second-order algebraic surface given 
by: 

                               0),(h T == QXXQX ,                            (1) 

where Q is a 44× symmetric matrix, X=(x,y,z,1)T is a 
homogeneous 4-vector which represents a point in 3D. Some 
instances of quadratic surfaces are shown in Figure 1.  

 
Figure 1. Some instances of quadratic surfaces. First row: 
ellipsoid, cone, hyperboloid of one sheet and hyperboloid of 
two sheets. Second row: elliptic cylinder, parabolic cylinder, 
paraboloid and hyperbolic paraboloid 
 
A quadratic has nine degrees of freedom corresponding to the 
independent elements of Q up to an overall scale. Equation (1) 
can be rewritten in the form: 

0a =v  ,                                        (2) 
where a is a 101×  matrix which can be decided by point X only, 
v is a homogeneous 10-vector containing the distinct matrix 
elements of Q. Each 3D point provides a similar constraint, so 
that from N points a matrix equation Av=0 can be constructed, 
where A is 10N ×  matrix formed from the stacked matrices a. 
The solution of v corresponds to the one dimension null-space 
of A If 9N ≥  and the N points are in general position then the 
quadratic surface parameters can be uniquely determined.  
 
2.2 3D Reconstruction from Multiple Views  
Suppose we have matched a number of points of interest across 
M images using for example the technique described in [14]. 
Because of occlusion, feature detection failure and other 
reasons, a scene point can only be observed and detected in a 
subset of the M images (c.f. Figure 2).  
Suppose a 3D point X is observed as x=PX, x’=P’X in arbitrary 
two images, where image points x,x’ are represented by 
homogeneous 3-vectors, x=(x,y,1)T, and P,P’ are 43× camera 
projection matrices for the two views. Given the fundamental 
matrix F for the view pair, then from [15,16,17] the camera 
matrices can be chosen as: 

[ ]OIP |= , [ ][ ]e'Fe'P' |×= , 

where 'e  is the epipole in the second image ( 0T =e'F ) and 
[ ]×e'  is the 33×  skew matrix such that [ ] xe'xe' ×=× . The 3D 

point X is then reconstructed from its image correspondence 
x'x ↔  by back-projection (via P,P’) and triangulation[18]. 

After the projective reconstruction is obtained, the technique 
described in [19] can be used to upgrade the projective 
reconstruction to a metric one. 

 
Figure 2. Quadratic surfaces observed by multiple views 
  
2.3 Traditional Unconstrained Bundle Adjustment 
If initial parameters have been estimated by linear method as 
illustrated above, a bundle adjustment step is often used to 
refine initial parameters. A cost function needs to be defined in 
bundle adjustment to quantify the fitting error of the estimated 
parameters. In traditional unconstrained minimization method, 
the cost estimation is often obtained by minimizing the sum of 
squared errors between the observed image points and the 
predicted image points. More formally, it can be represented as: 
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where M is the total number of cameras, N is the total number of 
points. fj is the focal length of jth camera. Xij, Yij and Zij are the 
ith point’s coordinates under jth camera’s coordinate system. uij 
and vij are the coordinates of ith point observed in  jth image.   
Since 3D scene constraints are often not enforced in traditional 
unconstrained bundle adjustment, the optimized isolated 
features do not satisfy geometry constraints. For example, if a 
quadratic surface is recovered using traditional unconstrained 
minimization method, the isolated feature points will not be 
strictly on the same quadratic surface. 

3.  SEQUENTIAL QUADRATIC PROGRAMMING 
In order to impose 3D scene constraints in optimization, 
constrained minimization is often needed in bundle adjustment 
algorithm. Sequential Quadratic Programming is a powerful 
algorithm and has been proved highly effective for solving 
general constrained optimization problems.  
3.1 SQP Concept 
3.1.1 Problem Formulation 
First the basic SQP principle is introduced. Consider the general 
equality constrained minimization problem P: 
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(P)  min   f(x)           nRx ∈  
s.t.    hj(x)=0      j=1,…,m. 

Here x is the desired variable vector, f(x) is the objective 
function and hj(x) is the equality constraint. The Lagrangian 
function associated with problem (P) is: 

uxhxux t)()(f),(L += , mRu ∈ ,                                          (3) 

where u is the corresponding Lagrangian multiplier vector and 
h(x) is the vector of equality constraints..  
 
3.1.2 Local Analysis  
Given a current solution (xk,uk) which is sufficiently close to an 
optimal solution (x*, u*), we seek to locally approximate  
problem (P) by a quadratic sub-problem, i.e., an optimization 
problem with a quadratic objective function and linear 
constraints. The from of the quadratic subproblem most often 
found in literature [8],  and the one that will be employed here, is  

 (QP) min
xd

xkkxxk duxddx ),(L)(f 2T
2
1T ∇+∇                        (4) 

s.t. 0xhdxh kxk =+∇ )()(  ,                                              (5) 

where dx=x-xk. From the first order optimality conditions for the 
quadratic subproblem [8], the following equations can be 

obtained to compute the update directions (dx,du): 

0)()()(f),(L T2 =+∇+∇+∇ ukkkxkk duxhxdux  

)()( kxk xhdxh −=∇  

The equations can be rewritten in matrix format as: 
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where du=u-uk. The solution of dx and du can be used to 
generate the new iterate. If we choose a suitable step-size αk, the 
new iterate can be defined as:  
(xk+1,uk+1)=(xk,uk)+αk(dx,du).  
Once the new iterate is constructed, a set of new linear equations 
can be built and solved at point (xk+1,u k+1). In the analysis above 
it has been assumed that the current solution (xk,uk) is 
sufficiently close to the optimal solution and the quadratic 
subproblem is always feasible. For the quadratic sub-problem to 
be solved, four conditions [8] should be satisfied. It has also 
been proved  that if the initial solution is sufficiently close to the 
optimal x*, the algorithm has quadratic local convergence 
property [8]. 
 
3.1.3 Global Analysis 
If the current solution (xk,uk) is not sufficiently close to an 
optimal solution (x*,u*), the questions of whether the 

sequences generated by quadratic programming will converge 
must then be resolved. To ensure global convergence, SQP 
needs to be equipped with a measure of progress, a merit 
function φ , whose reduction implies progress towards an 

optimal solution[7,8]. The merit function used in constrained 
minimization must blend the need to reduce the objective 
function while keeping the constraints satisfied. And it is 
generally different from the unconstrained one.  

One commonly used merit function is called 1�  penalty merit 
function[7,8]. It can be written as: 

�ρ+=ρφ
i

i1 )(h)(f);( xxx ,  

where ρ is a positive constant to be chosen and means the 

absolute value of a function. It is sufficient to note that 1φ  is an 

exact penalty function [7,8]; that is, there exists a positive *ρ  

such that for all *ρ≥ρ , an unconstrained minimum 

of 1φ corresponds to a solution of the constrained nonlinear 

minimization problem. 
 
3.2 New SQP Implementation  
In practical implementation there are some problems need to be 
considered. We have assumed that the quadratic subproblem 
always has a feasible solution in the analysis above. To have a 
feasible solution, it has been illustrated in [7,8] that the system 
of constraints of the quadratic subproblem must have a 
nonempty feasible set and the quadratic objective function 
should be bounded below on that set. If the initial solution xk is 
sufficiently close to the optimized solution, the above 
consistence conditions can be guaranteed.  For nonlocal points, 
it is not necessarily true. An appropriate estimate of 

),(2
kk uxL∇  can assure that a consistent quadratic problem 

will always have a solution. Some implementations have used 
BFGS algorithm to approximate the Hessian matrix. In our 
work, a novel implementation is used to avoid the infeasibilities. 
Consider function (4) in QP, for nonlocal point (xk,uk), it may 
be a poor local approximation to solve the original problem (P). 
In that case, the original problem can only be described as 
below: 
(SP) min

xd
),(L ux                                                                  (7) 

s.t. 0xhdxh kxk =+∇ )()( . 

Since solution (xk,uk) is a remote point, to minimize function (7), 
about all we can do is to take a step down the gradient, as in the  
steepest descent method[20]. It can be formally represented as: 
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0),(L >η∇η−=−+ uxxx k,k1k . 

It can be rewritten as: 

η
=λ−∇=∇+λ 1),,(L)( kku

T
kx uxdxhd .                        (8) 

Here λ  is a suitable value and it should not exhaust the 
downhill direction. Equation (5) and (8) can be combined and 
rewritten in matrix format as: 
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where I is a nn × diagonal matrix. Combine equation (6) and 
(9), we get the following equation (10): 
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where IuL(xB kkk λ+∇= ),2 .  

The new equation has combined the merits of steepest descent 
method and Newton method. When xk is sufficiently close to x*, 
λ can be adjusted to be very small, the modified matrix Bk is 
very close to the Hessian matrix. The Newton direction is used 
to approximate the next QP step. When xk is not sufficiently 
close to x*, λ can be adjusted to be very large, the matrix Bk is 
forced to be diagonally dominant, the steepest descent direction 
is mainly used to approximate the next step. It has been proved 
that add a strictly positive diagonal matrix to Bk can produce 
generally more robust results than by basic SQP implementation 
[8]. Given an initial guess for parameters x, our SQP 
implementation can be described as below: 

SQP Implementation   
1.   Compute );(1 ρφ x . 

2.   Pick a modest value for λ , say λ =0.001. 
3. Solve the linear equations in (10) for (dx,du) and 

evaluate );(1 ρ+φ xdx . 

4.  If );();( 11 ρφ≥ρ+φ xdx x , increase λ by a factor of 10 and 

go back to step 3. 
5. If );();( 11 ρφ<ρ+φ xdx x , decrease λ by a factor of 10, 

update the trial solution (x,u)= (x,u)+(dx,du), and go back to 
step 3. 

For the algorithm to stop, the same strategy employed in 
Levenberg Marquardt algorithm [20] has been used. The loop is 
stopped at the first occasion where );(1 ρφ x decreases by a 

negligible amount. Once the acceptable minimum has been 
found, we set λ =0 and compute the matrix Bk

-1, the upper left 
part of which is the standard covariance matrix of the standard 

errors in the fitted parameters x [20]. 
 
3.3 Application In Quadratic Surface Recovering  
In quadratic surface recovering applications, the quadratic 
surface equation is used as the constraint function. The 
corresponding Lagrangian function associated with our problem 
is: 

),(uCLC
N

1j
j QX jh�

=
+= , 

where uj is the Lagrange multiplier, Xj is jth point coordinate 
vector in the world coordinate system, Q is the quadratic model 
matrix. The objective is to minimize function LC under 
constraints h(Xj,Q)=0. The merit function used in our 
implementation is defined as: 

�
=

+=φ
N

1j
1 ),(C QXjhρ , 

where }Nj1|umax{ j ≤≤>ρ , N is the total number of 

constraints, means the absolute value of a variable or a 
function. 

4. OUTLINE OF THE METHOD 
The algorithm can be outlined as follows: 
1. Data Preparation: Collect matched image points across  

multiple views. 
2. Compute the initial 3D points coordinates, intrinsic and 

extrinsic camera parameters and quadratic surface 
parameters using linear method. 

3. Optimize the initial 3D point coordinates using the SQP 
implementation. 

4. Build corresponding VRML model using the refined 
camera parameters and sphere parameters only.  

5. EXPERIMENTAL RESULTS 
In this section, we provide experimental results of our algorithm 
with both synthetic and real data for globe.   
 
5.1 Synthesized Data 
For the synthetic data, 3 views and total 16 points on a sphere 
surface are used. The 3 images have the same focal length of 
1000 pixels. For each image, 16 image points are generated with 
isotropic uniform Gaussian noise of δ=1.0. In Table 1 eight of 
the sixteen points’ true 3D coordinates are listed. We first 
calculate the initial camera parameters and points coordinates 
using linear methods.  
Comparison between SQP and Levenberg Marquardt 
algorithm 
After we have calculated the initial solutions, SQP and 
Levenberg Marquardt algorithm are used to optimize the initial 
solutions. SQP optimization converges within 10 steps. The 
constraint functions become strictly satisfied after SQP 
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optimization step. The maximum absolute error of the constraint 
function is not more than 5.0E-7. The cost function C has the 
value 8.32247. For each pixel, the mean error is 0.416395 pixels. 
The optimized 3D coordinates of the eight points are listed in 
Table 1. It can be seen that the solutions computed by SQP are 
generally more close to the true ones. The true intrinsic and 
extrinsic camera parameters and the optimized values are listed 
in Table 2. Here the rotation is represented in angle/axis format. 
The translation vector between the first camera and the second 
camera is normalized to 1. So the translation vector has only two 
free parameters. It can also be seen that the camera parameters 
computed by SQP are generally more close to the true ones. The 
true sphere parameters and the optimized values are listed in 
Table 3. Here the sphere parameters of Levenberg Marquardt 
algorithm are estimated from the optimized 3D coordinates 
using the technique described in Section 2. It can also be seen 
that the sphere parameters computed by SQP are more close to 
the true parameters. The differences of the sphere surface 
constraints between SQP and Levenberg Marquardt algorithm 
are shown in Table 4. The solutions computed by SQP strictly 
satisfy the point-on-surface constraint. But the solutions 
computed by Levenberg Marquardt algorithm often deviate 
from the sphere surface. 

 X  Y Z 
1 1.41421 -1.41421 8.48528 
2 -1.41421 -1.41421 8.48528 

3 -1.41421 1.41421 8.48528 
4 1.41421 1.41421 8.48528 
5 1.41421 -1.41421 5.65685 
6 -1.41421 -1.41421 5.65685 
7 -1.41421 1.41421 5.65685 

True Coordinates 

8 1.41421 1.41421 5.65685 
1 1.40814 -1.41648 8.52811 
2 -1.40798 -1.4096 8.52583 
3 -1.41873 1.39237 8.52222 
4 1.39431 1.41909 8.52914 
5 1.40114 -1.42392 5.70297 
6 -1.42115 -1.41615 5.72465 
7 -1.41586 1.40802  5.72112 

SQP Optimized 
Coordinates 

8 1.40422 1.39093 5.68323 
1 1.40811 -1.41665 8.54785 
2 -1.40574 -1.40838 8.53672 
3 -1.41823  1.39036 8.53317 
4 1.38928 1.41385  8.53411 
5 1.40048 -1.42255 5.72538 
6 -1.42194  -1.41778 5.73604 
7 -1.41282 1.40503 5.73891 

LM method 

8 1.41259 1.39568 5.68705 
Table 1. True coordinates of 8 points and the optimized 
coordinates calculated by SQP and Levenberg Marquardt 
algorithm 
 
Standard Deviation Comparison between SQP and 
Levenberg Marquardt algorithm 
The square roots of the diagonal items of the upper left part of 
the inversed optimized gradient matrix Bk

-1 represent the 
standard deviations of the fitted parameters [20]. If any diagonal 
item is negative, it means that the corresponding parameter has 

 
 First 

Camera 
Second Camera Third Camera 

True  
Value 

1000 1000 1000 

SQP  1011.45 1001.88 990.836 

Focal 
Length 

(pixel) 
LM 
Method

1014.226 997.807 985.468 

True  
Value 

NULL 0 , 
1.5708, 
 0 

0.,  
3.14159, 
 0. 

SQP  NULL 0.00673965, 
1.56541, 
-0.000108669 

-0.00706039, 
3.14312, 
-0.00467069 

Rotation 
Vector 
(Angle/A
xis  
Represen
tation) 

LM 
Method

NULL 0.00701384, 
1.56397, 
0.000972825 

-0.00718367, 
3.14376, 
-0.00434953 

True  
Value 

NULL -0.707107, 
0.00000188, 
0.707107 

0.,  
0.,  
 1.41421 

SQP  NULL -0.711301, 
0.00238217, 
0.702883 

0.00107775, 
0.0025828, 
1.41158 

Translati
on vector

LM 
Method

NULL -0.712693, 
0.00304105, 
0.701469 

0.00159841, 
0.00259099, 
1.40893 

Table 2. True camera parameters and the optimized solutions 
calculated by SQP and Levenberg Marquardt algorithm 
 

 Sphere center Sphere radius 

True  
Sphere parameters 

0. , 
0., 
 7.07107  

2.44949 

SQP Optimized 
sphere parameters 

0.00465979,  
-0.0049935, 
 7.11528 

2.44093 

LM method Sphere 
parameters  

0.00236943, 
-0.00711532, 
 7.12735 

2.43807 

Table 3. True sphere parameters and the optimized solutions 
calculated by SQP and Levenberg Marquardt algorithm 
 

Point number SQP method LM method 

1 8.32667E-7 0.00380352 
2 -8.32667E-7 -0.0011578 
3 1.80411E-7 0.000314387 
4 1.38778E-7 -0.00225693 
5 -2.77556E-7 -0.00205238 
6 1.387778E-7 0.00101718 
7 5.55112E-7  -0.00195141 
8 4.16334E-7 0.00868387 

Table 4. The comparison of the sphere surface constraints 
between SQP and Levenberg Marquardt algorithm 
 
low confidence. The standard deviations of the 3D coordinates 
of the points are listed in Table 5. It can be seen that the standard 
deviation values of the coordinates of the points computed by 
SQP are generally smaller than that by Levenberg Marquardt 
algorithm. The standard deviations of the camera intrinsic and 
extrinsic parameters are listed in Table 6. It can also be seen that 
the standard deviations of the camera parameters computed by 
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SQP are generally smaller that that by Levenberg Marquardt 
algorithm. It means that the camera parameters computed by 
SQP generally have higher confidence than that by Levenberg 
Marquardt algorithm. The standard deviations of the sphere 
parameters computed by SQP are listed in Table 7. 
 

Point 
No. 

 
 

X  std. Y std. Z std. 

1 0.00681054 0.00607517 0.0260046 
2 0.00650413 0.00660919 0.0287544 

3 0.00653493 0.0065542 0.0287934 
4 0.00673846 0.00608316 0.0260732 
5 0.00549643 0.00512055 0.0261408 
6 0.00567624 0.00584895 0.0251242 
7 0.00566292 0.00582977 0.0251111 
8 

SQP 
Algorithm 

0.00551058 0.00503517 0.0261631 
1 0.00850022 0.00860365 0.027719 
2 0.00919474 0.00856876 0.0324558 

3 0.00925611 0.00848638 0.0325092 
4 0.00836699 0.00857979 0.0277633 
5 0.00641225 0.0063829 0.0283795 
6 0.00752631 0.00723495 0.0268025 
7 0.00749629 0.00719085 0.0268104 
8 

LM 
Method 

0.00641929 0.00625313 0.0284283 
Table 5. The standard deviations of the eight points computed 
by SQP algorithm (std means standard deviations) 
 

  First 
Camera std. 

Second 
Camera std. 

Third Camera 
std. 

Focal Length 
(pixel) 

5.38256 5.58726 5.20935 

Rotation 
Vector 
 

NULL 0.0133593 
0.0148237 
0.0131113 

0.0162009 
0.0109167 
0.0171487 

Translation 
vector 

SQP 
Algori
thm 

NULL 0.0361276 
0.00973273 

0.00796632 
0.0079622 
0.0502892 

Focal Length 
(pixel) 

6.406 5.96666 6.1163 

Rotation 
Vector 

 

NULL 0.0139427 
0.0374338 
0.0134927 

0.0162192 
0.0111792 
0.0174623 

Translation 
vector 

LM 
algori
thm 

NULL 0.038479 
0.0104745 

0.00834412 
0.00813186 
0.0700069 

Table 6. The standard deviations of the camera parameters 
computed by SQP algorithm (std means standard deviations) 
 

Sphere Center std. 
X Y Z 

Sphere Radius std. 

0.0026145 0.00195009 0.0244212 0.0854269 

Table 7. The standard deviations of the sphere parameters of 
SQP method (std means standard deviations) 
 
Relationship between constraints number and standard 
deviation 
We have also done experiments to verify the impact of the 
number of constraints on the final standard deviations. Some 
results are shown in Table 8. When there are no constraints, 

SQP degenerates into Levenberg Marquardt algorithm. By 
experiment we find that at least 4 points are needed in our 
experiment. When the constraints number is less than 4, SQP 
will not be able to calculate the sphere parameters correctly. In 
theory the sphere surface has 4 degrees of freedom and at least 4 
points are needed, it is compatible to the experiment. We have 
also found that when the number of constraints increases, the 
standard deviations of the parameters decrease. This means that 
the optimized parameters become more accurate as the number 
of constraints increases. The standard deviations of the four 
sample points computed by SQP are listed in Table 8. 
 

Point 
No. 

Constraint 
Number 

X  std. Y std. Z std. 

1 0.000851589 0.000860086 0.00278381
2 0.000924755 0.000857985 0.00326882

3 0.000926656 0.000852813 0.00327364
4 

5 

0.000839189 0.00086563 0.0027939 
1 0.000723202 0.000658131 0.00276766
2 0.00068708 0.000688759 0.00302997

3 0.000689652 0.000683205 0.00303401
4 

8 

0.000713429 0.000659267 0.00277507
1 0.000686748 0.000615457 0.0026474 
2 0.000656274 0.000666276 0.002901 

3 0.000659328 0.000660684 0.00290518
4 

12 

0.000679311 0.000616335 0.00265428
1 0.000681054 0.000607517 0.00260046
2 0.000650413 0.000660919 0.00287544

3 0.000653493  0.00065542 0.00287934
4 

16 

0.000673846 0.000608316 0.00260732
Table 8. The standard deviations of the four points computed by 
SQP algorithm with different constraint numbers 
 
Relationship between cost function and gaussian noise 

 
Figure 3. Relation between optimized cost function C and 
gaussian noise 
 
We have also done experiments with different Gaussian noise 
parameter δ. The constraint functions are strictly satisfied in 
SQP optimization, the maximum absolute error of the constraint 
function is not more than 1.0E-5. The SQP implementation 
converges within 10 steps. The relationship between cost 
function C and Gaussian noise δ is shown in Figure 3. It can be 
seen from the figure that the value of the cost function C 
increases when the image Gaussian noise increases. 
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5.2 Real Images 
For experiments on real images, 17 pictures have been taken 
around a globe. The camera is Power Shot Pro 70, a digital 
camera manufactured by Canon. The images have the same size. 
The size is 1525*1021 pixels. Four of them are shown in Figure 
4. And the initial 3D points coordinates, camera intrinsic and 
extrinsic parameters are calculated using the linear methods. 
The sphere parameters can then be calculated using the 
technique described in Section 2. 
 
SQP optimization 
We first feed the initial 3D coordinates into SQP optimization 
loop. The SQP implementation converges within 20 steps. For 
the real images, the constraints are all strictly satisfied. The 
maximum absolute error of the constraint function is not more 
than 1.0E-6. But the points computed by Levenberg Marquardt 
algorithm deviates from sphere surface by 4.5% or so. Once the 
refined camera parameters and sphere parameters are computed, 
the small number of parameters can be used to build the globe 
VRML model. 
 

 
Figure 4. Four pictures of sequence of pictures 

 
Figure 5. Automatically generated sphere points  
 
Automatic texture generation 
Instead of using traditional methods to match the feature points 
among different pictures, the sphere parameters are used to 
generate the arbitrary number of points located on the surface as 
shown in Figure 5. The triangle patches and quadrilateral 
patches are then generated and projected onto different images. 
The normal of the 3D triangle/quadrilateral patches are then 
calculated. The vectors between sphere center and camera 
center are also calculated. Then we calculate the smallest angle 
between the normal of the 3D patch and sphere-camera vectors, 

the smallest angle of each 3D patch is found and the 
corresponding 2D image patch is selected as the texture. Figure 
6 shows the selected patches on one picture. By combining the 
selected texture patches and the automatically generated 3D 
points coordinates, we then build the VRML model as shown in 
Figure 7. The model that we built here is fine except some 
neighbor patches coming from different images have different 
brightness, and some lines and characters coming from two 
images cannot connect smoothly. We need another step to blend 
the texture patches to generate a better surface map around the 
globe [21]. So that the thin lines and characters can connect 
smoothly even the corresponding texture patches coming from 
different source images. 
 

 
Figure 6. Most suitable texture patch 
 

6. CONCLUSIONS 
In this paper, we have proposed using SQP to incorporate model 
knowledge into traditional bundle adjustment step. A novel 
SQP implementation is used to directly recover quadratic 
surface models. Our experiment results reveal that sequential 
quadratic programming can generally generate more accurate 
results than that by unconstrained minimization methods while 
keeping the specified equality constraints strictly satisfied. 
Furthermore, SQP can incorporate arbitrary constraints that can 
be written in smooth function format. It can be applied in a wide 
variety of applications, ranging from camera calibration to 3D 
shape reconstruction. There are some limitations in our work. 
The major computation cost of our current implementation is 
the approximated Hessian matrix computation. We are planning 
to use the sparseness matrix properties to speed up its 
computation. And we also need to do the texture blending part 
to have a visually smooth surface map. We would like to apply 
SQP to model more free form parametric surfaces such as face 
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modeling, human body and arms. 
 

 
Figure 7. VRML model of the virtual globe 
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