WEKO3
アイテム
Quadratic Surface Reconstruction from Multiple Views Using SQP
https://ipsj.ixsq.nii.ac.jp/records/52586
https://ipsj.ixsq.nii.ac.jp/records/525868bfef741-5f84-44f4-9e29-36c393bb396d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2003 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2003-07-03 | |||||||
タイトル | ||||||||
タイトル | Quadratic Surface Reconstruction from Multiple Views Using SQP | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Quadratic Surface Reconstruction from Multiple Views Using SQP | |||||||
言語 | ||||||||
言語 | jpn | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
著者所属 | ||||||||
著者所属(英) | ||||||||
en | ||||||||
著者所属(英) | ||||||||
en | ||||||||
著者名 |
Rubin, Gong
× Rubin, Gong
|
|||||||
著者名(英) |
Rubin, Gong
× Rubin, Gong
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We propose using SQP (Sequential Quadratic Programming) to directly recover 3D quadratic surface parameters from multiple views. A surface equation is used as a constraint. In addition to the sum of squared reprojection errors defined in the traditional bundle adjustment a Lagrangian term is added to force recovered points to satisfy the constraint. The minimization is realized by SQP. Our algorithm has three advantages. Firstly given corresponding features in multiple views the SQP implementation can directly recover the quadratic surface parameters optimally instead of a collection of isolated 3D points coordinates. Secondly SQP guarantees that the constraint is strictly satisfied. Thirdly the camera parameters and 3D coordinates of points can be determined more accurately than that by unconstrained methods. Experiments with both synthetic and real images show the power of this approach. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We propose using SQP (Sequential Quadratic Programming) to directly recover 3D quadratic surface parameters from multiple views. A surface equation is used as a constraint. In addition to the sum of squared reprojection errors defined in the traditional bundle adjustment, a Lagrangian term is added to force recovered points to satisfy the constraint. The minimization is realized by SQP. Our algorithm has three advantages. Firstly, given corresponding features in multiple views, the SQP implementation can directly recover the quadratic surface parameters optimally instead of a collection of isolated 3D points coordinates. Secondly, SQP guarantees that the constraint is strictly satisfied. Thirdly, the camera parameters and 3D coordinates of points can be determined more accurately than that by unconstrained methods. Experiments with both synthetic and real images show the power of this approach. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA11131797 | |||||||
書誌情報 |
情報処理学会研究報告コンピュータビジョンとイメージメディア(CVIM) 巻 2003, 号 66(2003-CVIM-139), p. 25-32, 発行日 2003-07-03 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |