
 
 

 
SUMMARY We propose a new method to recover scene points 
from a single calibrated view using some known distances among 
the points. This paper first introduces the problem and its 
relationship with the perspective n point problem. Then the 
minimal number of distances required to uniquely recover scene 
points are derived. The theory has been developed into a practical 
vision algorithm to calculate the initial points’ coordinates using 
distance constraints. Finally SQP (Sequential Quadratic 
Programming) is used to optimize the initial estimations. It can 
minimize a cost function defined as the sum of squared 
reprojection errors while keeping the specified distance 
constraints strictly satisfied. Both simulation data and real scene 
images have been used to test the proposed method, and very good 
results have been obtained. 
 
Key words: single view reconstruction, perspective n point problem, 
constrained minimization, Sequential Quadratic Programming 
 

1. INTRODUCTION 
Traditional image-based 3D reconstruction methods use 
multiple views to extract 3D geometry. However, when 
reconstructing scene structures with only one photograph or 
retrieving dynamic scene properties shot by one video camera, 
only a single view exists. To recover 3D scene structure from a 
single view, 3D scene constraints need to be utilized [1]. A 
variety of 3D scene geometry constraints have been identified 
and used in computer vision algorithms. Traditional constraints 
have used vanishing points, planes and geometric invariants 
constraints [2,3,4]. Some work has used the constraint of 
multiple objects of the same type in the scene separated by a 
simple translation [5]. However, these geometry constraints are 
limited to certain model types, for example, scenes composed of 
planes or other simple primitives.  

The 3D scene distance constraints are used to recover 3D 
models from a single view in this paper. Since 3D scene distance 
constraints exist in almost every kind of scenes, the proposed 
technique can be applied in a wide variety of scenes that contain 
points, lines, and planar or freeform surfaces. In multiple view 
cases, 3D scene distance constraint has been applied in motion 
capture applications to upgrade affine reconstruction to a metric 
one [6]. In single view reconstruction applications, the 3D scene 
distance constraints have not been effectively utilized so far.  

  The closest work to ours is the traditional perspective n 
point problem. For P3P and P4P problems, many algorithms 

[7,8,9,10,11,12] have used the distance constraints only to 
calculate the pose of the camera. For P3P problem, there are 
multiple solutions. For P4P problem, the work done by Hu [16] 
has shown that the effective solution upper bound of the P4P 
problem is 5. The solution is generally unique outside of certain 
critical configurations [1,13,14,15]. In real applications, it is 
difficult to measure all the distances among scene points. 
Usually only a small number of distances are known in real 
uncontrolled environment. And under these circumstances, the 
following questions arise: given a set of correspondences 
between 3D reference points and their projections on one 
photograph and given some distances among the points, can we 
uniquely calculate the 3D coordinates of the points in camera 
coordinate system? If yes, how many distances do we need?  

In the following sections, these questions will be clarified. 
Here are the main contributions of our work:  
1. Given some scene points and some distances among the 

points, the minimal number of distances required to 
uniquely recover the scene points in non-degenerate cases 
are found.  

2. The theory has been developed into a practical algorithm to 
calculate the initial 3D coordinates of the points from a 
single calibrated view. 

3. Given the initial solutions of the 3D coordinates of the 
points, SQP (Sequential Quadratic Programming) has been 
used to optimize the initial solutions while keeping the 
specified distance constraints strictly satisfied. 

The paper is organized as follows. In Section 2, we introduce 
the basic notations that are used in the paper. In Section 3, the 
distance configuration required to solve the problem is explored. 
In Section 4, the initial solutions of each point is calculated and 
determined. In Section 5, SQP is used to optimize the initial 
solutions. In Section 6, the implementation and the 
experimental results are presented. The methods developed in 
this paper are verified both on simulation data and real images. 
Finally we summarize the contributions of the paper. 

2. BASIC NOTATIONS 
Given a calibrated camera at O and n correspondences between 
3D reference points pi and their image projections ui, each pair 
of correspondences pi↔ui and pj↔uj gives an equation on the 
unknown camera-point distances li=|pi-O| and lj=|pj-O|(cf. 
Figure 1):  
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Here Dij=|pi-pj| is the distance between points pi and pj and it is 
also written as D(i,j) below. θij is the 3D viewing angle subtended 
at camera center O by points pi and pj and it is also written as 
θ(i,j) below. 

 
Figure 1: The basic geometry for each pair of the 
correspondences pi↔ui and pj↔uj between the 3D reference 
points and their images 
 
The cosine value of the viewing angle is directly computed from 
the image projections and the calibration matrix K [9] as  
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Given a distance between two points pi and pj, the quadratic 
equation can be rewritten as 
f(i,j)(li,lj)=fij=li

2+lj2-2liljcosθij-Dij
2=0.                                   (1) 

If there are m distances known in the scene, we can obtain a 
polynomial system consisting of m equations and n unknown 
variables lik=|pik-c|, where mk ≤≤1 , ik and jk are index 
numbers of the unknown variables. 

�
�

�

�
�

�

�

=

=

=

0),(
......

,0),(

,0),(

)(

)(

)(

jmim,

j2i2,

j1i1,

llf

llf

llf

jmim

j2i2

j1i1

                                                    (2) 

For some points in the scene, if the distance between two 
points is known, an edge can be drawn between them. A graph 
can be obtained from the scene points using the method. There 
is a one-to-one mapping relationship between the graph 
configuration and the polynomial system (2). The relationship 
between the solutions of the polynomial system and the graph 
configuration is explored in the next section. 

3. GRAPH CONFIGURATION AND THE POLYNOMIAL SYSTEM 
SOLUTION 

In this section, we consider the minimal number of distances 
required to solve the problem. Since all unknown variables in 
polynomial system (2) have no odd terms, if {l1,l2,l3..,ln} is one 
solution of the polynomial system, then {-l1,-l2...,-ln} is also a 
solution of the same polynomial system. We only consider the 

real positive solutions (li>0,1<=i<=n) of polynomial system (2) 
below.  
 
3.1 Multiple Solutions 

If the original graph is unconnected, then it can be divided 
into several connected sub-graphs. The connected sub-graphs 
are independent of each other. For the original graph to be 
solved, each connected sub-graph has to be solved. If each 
connected sub-graph is solved, the original graph can then be 
solved. We consider only the connected graph case below. 

If the graph has two vertices Vi and Vj and one edge, we can 
obtain only one quadratic equation fij(li,lj)=0 from the graph 
topology. It is impossible to solve two variables from one 
equation. In order to solve the unknown variables from the 
equations, the number of equations must be equal or greater than 
the number of variables. It means that in the graph, the number 
of edges should be equal or greater than the number of vertices. 
According to basic graph theory, there is at least one cycle in the 
graph. If the graph has only one cycle, the system of equations 
(2) associated with the cycle has equal number of equations and 
variables. According to Bezout theorem [17,18], the polynomial 
system has no more than 2n solutions in general case, where n is 
the number of edges in the cycle. Each vertex in the cycle can 
have no more than 2n-1 positive solutions. For an arbitrary vertex 
V not in the cycle, there is a path P that connects vertex V and 
the cycle. If the length of path P is m, then vertex V has at most 
2n+m-1 positive solutions after solving the polynomial system 
associated with the cycle and the path. As the example shown in 
Figure 2, vertex V has at most 2n+2-1 positive solutions after 
solving the associated polynomial system, where is n is the 
length of cycle. 

 
Figure 2: Vertex V has a finite solution set SLi associated with 
cycle Li and path Pi 
 
3.2 Unique Solution  
In practical applications, we need to find the unique solution 
from a graph configuration.  

If there are two cycles Li and Lj in a graph, then vertex V has 
one solution set SLi associated with cycle Li and path Pi and 
another solution set SLj associated with cycle Lj and path Pj. The 
true solution is in the intersection set of SLi and SLj.  

Consider the graph configuration in Figure 3, for an arbitrary 
vertex, say Wk-1, it may have two positive solutions Sk-1 and Sk-1’. 
Then vertex Wk may have at most four positive solutions by 
solving the equation associated with edge Wk-1Wk. If two out of 
the four positive solutions are equal, we define it as special case 
(a), since it requires the special value of D(k-1,k) and θ(k-1,k). Here 
D(k-1,k)  is the length of edge Wk-1Wk, θ(k-1,k )  is the 3D viewing 
angle subtended at the camera center O by point Wk-1 and Wk. 
One example of special case (a) is shown in Figure 4, if we 
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know the solutions of vertex C, after solving the equation 
associated with edge CD, we obtain two positive solutions of 
vertex D. For the two different solutions SD and SD1 of vertex D, 
after solving the two different equations associated with edge 
DE, the same solution of vertex E is obtained. Most of the 
degenerate examples discussed in literature so far are caused by 
this kind of special case.  

 
Figure 3: The intersection solution set of SLi and SLj has only one 
positive real solution outside of two special cases 

 
Figure 4: Special case (a): two positive solutions of vertex D 
correspond to one solution of vertex E  
 

Assume that the special case (a) has been avoided in the graph 
configuration of Figure 3. Vertex V may have some positive 
solutions in solution set SLi. It may also have some positive 
solutions in solution set SLj. Outside of the true solution Sv of 
vertex V, another positive solution Sv’ of vertex V may exist in 
both solution sets and Sv≠Sv’. We define it as special case (b), 
since it requires some special values of the edges and 3D 
viewing angles. When this kind of special case happens, two 
positive solution sets exist for all vertices. For each vertex, the 
solutions in the two sets are different. For this kind of special 
case, it has seldom been discussed in literature before. 

Outside of the two kinds of special cases, vertex V has only 
one positive solution in the graph configuration of Figure 3. The 
unique solution of each vertex in the graph can thus be 
propagated along the paths and cycles according to the unique 
solution of vertex V. 

In practical applications, we often consider the case where 
two cycles share a common vertex, as illustrated in Figure 5. For 
this kind of configuration, the common vertex V has a unique 
positive solution S0 associated with the two cycles outside of the 
two special cases, and the unique solutions of other vertices 

along cycle L1 and cycle L2 can be uniquely determined by the 
unique solution of vertex V. 

 
Figure 5: Two cycles share a common vertex 
 
3.3 Avoiding Multiple Solutions  
The polynomial system associated with the graph configuration 
of Figure 3 may have multiple solutions. This can be avoided 
using geometric methods and algebraic methods. We first avoid 
multiple solutions using geometric methods. 
 
3.3.1 Geometric Methods 
If the length of the path between two vertices is 2, then we can 
find the geometric configuration corresponding to special case 
(a). One example is shown in Figure 6. It is the side view of the 
example in Figure 4. Since |CD1|=|CD| and | ED1|=| ED|, there is 
a point H on line D1D such that CH ⊥ D1D and EH ⊥ D1D. If the 
camera and graph are carefully configured, this kind of cases 
can be avoided. If the length of the path between two vertices is 
3, the geometric meanings corresponding to special case (a) are 
also found. One example is shown in Figure 7. There is a point 
H1 on line D1D such that CH1 ⊥ D1D. There is another point H2 
on line F1F such that EH2 ⊥ F1F. At the same time |CD1|=|CD|, 
|EF|=|EF1| and  |D1F1|=|DF|. It is difficult to avoid this kind of 
geometric configurations. If the length of the path between two 
vertices is 4 or more, the graph configurations do not have much 
geometric meanings. It is difficult to avoid multiple solutions 
when the graph configurations do not have much geometric 
meanings. 

  
Figure 6: The length of the path between vertex C and E is 2 

 
Figure 7: The length of the path between vertex C and E is 3 
 
3.3.2 Algebraic Methods 
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The graph configuration of special case (b) usually has no 
geometric meanings. Some graph configurations of special case 
(a) do not have much geometric meanings either. Since it is 
difficult to avoid these graph configurations, we hope to avoid 
multiple solutions using algebraic methods. For the graph 
configuration in Figure 3, the polynomial system associated 
with the graph configuration may have multiple effective 
solutions. There is no general method to select the unique true 
solution from multiple solutions. All we can do is to add more 
edges to the graph configuration in Figure 3 to reduce the 
solution space. The step is repeated until a unique positive 
solution is obtained or all the distances in the graph 
configuration are used up. If all the distances are used up and 
multiple solutions still exist, additional vertex and edges should 
be added to the graph. The extreme case seldom happens when 
there are more than 4 points. 

4. INITIAL SOLUTIONS 
The theory declared in Section 3 is developed into a practical 
vision algorithm in this section. We consider the application of 
recovering 3D scene structure from a single calibrated view 
using distance constraints. The numerical problems in solving 
the polynomial system (2) are first considered. 
 
4.1 Solving Polynomial Equations 
Many methods exist to solve a polynomial system of equations. 
For example, one can use Grobner basis [19,20] to reduce 
variables and get one univariate polynomial equation. The 
univariate polynomial equation can then be solved using 
Laguerre’s method [8]. Certain system of quadratic equations 
can even be solved using linear methods [9]. In real applications, 
the solutions of polynomial system (2) are often affected by 
image noise. So the common solutions of two cycles are not 
exactly same. Sometimes some false solutions may be very 
close to the true one. Sensitivity analysis of the polynomial 
system solutions with respect to the polynomial system 
coefficients should be studied [8,21]. The sensitivity analysis 
result in [21] shows, if the polynomial system associated with 
the graph configuration of Figure 3 has a unique solution, then 
the errors in the solution is bounded by the error in the 
polynomial system coefficients. In the implementation, 
Mathematica is used to solve the polynomial system. It is a kind 
of numerical Grobner basis technique. We are mainly 
concerned with the sensitivity of the solutions with respect to 
the input coefficients. A large sensitivity of the solution with 
respect to the noises may lead to a large error in the final result. 
 
4.2 Sensitivity Analysis 
The sensitivity analysis method used in [8] for polynomials is 
generalized to polynomial systems in our work. Consider the 
polynomial system (2), if we denote all the variables as x, all the 
coefficients as a and all the equations as F, the polynomial 
system can be rewritten as: 
F(x,a)=0.                                                                                (3) 

The sensitivity of the solutions of a polynomial system with 
respect to a change in the coefficients can be derived by 
assuming that the zero location is a function of the coefficients. 
For a solution z of equation (3), we have 

0aaxF zx ==|)),(( .                                                                (4) 
Differentiating (4) with respect to a gives  
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The matrix in (6) gives the sensitivity of each variable with 
respect to each coefficient. It is referred to as stability matrix 

later. If matrix
x
F

∂
∂  is near singular or singular, the solution is 

unstable. The elements in the corresponding sensitivity matrix 
are very large [14].  

If vector a consists of all points projections and distances, the 
sensitivity matrix of each solution with respect to each point 
projection and each distance can be obtained using equation (6). 
For small perturbations of image projections and 3D distances 
near solution z, the variation in the solution can be 
approximated in first order as 

a
a
xx ∆≈∆

d
d .                                                                         (7) 

The covariance matrix of x can be calculated as 
T)

d
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d
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a
xx ≈ .                                            (8) 

Here COV(a) is a diagonal matrix, the first 2n diagonal 
elements are Gaussian image noise parameter 2σ and the last n 
diagonal elements are squares of 3D distance standard 
deviations, n is the number of equations. The square root of the 
diagonal items of the covariance matrix COV(x) gives the 
standard deviations of each element in x. For each solution 
vector z of equation (3), the standard deviations of each element 
around solution z can be computed.  

For the common vertex V in Figure 5, assume the true 
solution is rtrue, it has one approximate solutions r1 from cycle L1 
and another approximate solution r2 from cycle L2. We have the 
following inequality: 
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where ir∆  is the variance of ri(i=1,2). The distribution of 

ir∆ can be approximated by Gaussian distribution ),0(N 2
iσ , 

iσ  is the standard deviation of variable ri. From inequality (9) 
we have 
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of the approximated solution.  
 
4.3 Stable Solutions  
If the upper bound in inequality (10) is too large, the false 
solutions may also satisfy the inequalities. It will be difficult to 
differentiate the false solutions from the true one. The value of 
the upper bound may be caused by several factors. 

From equation (8), we can see that the standard deviations of 
the solutions can be calculated from gaussian image noise, 
distance error and the sensitivity matrix. As the image noises 
and distance errors increase, the standard deviations of the 
solutions will increase. If the value of certain element in the 
sensitivity matrix increases, it will also increase the standard 
deviations of some elements.  

For a relatively small error in the input coefficients, we 
expect a relatively small drift of the approximate solutions. 
More formally, this can be written as 

εε i ≤ ,                                                                                   (11) 
where iε is the relative drift of an approximate solution, ε is 
some tolerable value, usually it is between 2%~4% for practical 
applications. If the standard deviation of one solution satisfies 
inequality (11), the solution is considered as a stable one. If the 
calculated relative drift is larger than ε , we think that the 
solution is unstable and may contain large errors. The difference 
between the two solutions can be approximated as 

).()(|| 21221121 rrεrεrεrr +≤+≤−                                   (12) 
Some factors that may contribute to the value of ε  are 

studied and verified in the experiments. First the noise in the 
image and the error in the distances should be as small as 
possible, as can be verified in section 6. The depth of the graph 
configuration is also considered. The experiments in section 6 
show that if the depth of the graph configuration is large, a small 
perturbation in the distance will result in a large variation in the 
depth. So if the graph configuration is far from the camera, the 
false candidate solutions and the true candidate one may all 
satisfy inequality (9). It is difficult to obtain an absolute accurate 
solution. But it is shown in the experiment that the relative drift 
of the solutions does not vary much when the depth of the graph 
configuration changes. The corresponding false solutions and 
the true one may all satisfy inequality (12). If only a relatively 
accurate solution is wanted, one of them can be selected as the 
candidate solution. We do not find apparent relationship 
between the standard deviations of the solutions and the cycle 
length from the experiments. Since it is slow to solve a quadratic 
polynomial system with more than 6 equations, the cycle length 
is limited under 6 in this implementation. 
 
4.4 Determination of Common Solutions 
The unique geometric solutions of the common vertices are 

calculated in this section. Only the solutions that satisfy 
inequality (11) are considered in this subsection. For two 
positive solutions r1 and r2 of one common vertex connected 
with two different cycles, if the inequality (12) is satisfied, then 
the two solutions are then considered to be sufficiently close. 

The following algorithm has been used in the implementation 
to decide the common solutions. Assume vertex V is a common 
vertex connected with several different cycles as in Figure 3. It 
has a series of positive solutions associated each cycle. Since 
the true candidate solutions of the polynomial system do not 
drift far from the true value when inequality (12) is satisfied, the 
property can be utilized to determine the common solutions of 
different cycles. The detailed algorithm is described below. 
Step 1. For each common vertex, collect the solutions of the 
vertex associated with different cycles. For each solution, a set 
is built with the solution as the element.  
Step 2. If all the elements in one set are sufficiently close to all 
the elements in another set (inequality (12) is satisfied), the two 
sets are combined together. The combing operation is repeated 
until no sets are available to be combined.  
Step 3. The set with the largest number of elements is chosen to 
be the set contains the common solutions of the vertex. The 
mean of the set is calculated and used as the unique solution of 
the vertex. 
Step 4. If two or more sets have equal largest number of 
elements, additional cycles should be added and attached to the 
common vertex. Go back to step 1. 

If geometrically two solutions exist for the graph in Figure 3, 
then it is difficult to differentiate the true solution from the false 
solutions of certain common vertex. Under these circumstances, 
usually three or more cycles are needed in the above algorithm 
to determine the unique solution of the common vertex.  
 
4.5 Propagating Unique Solutions Along Cycles 
Once the solutions of the common vertices have been 
determined. The solutions can be used to propagate the unique 
solution of vertices along the cycles and paths attached to the 
common vertices. The detailed algorithm is described below. 
Step 1. For each cycle, the common vertex may have one or 
more candidate solutions that are very close to each other 
(inequality (12) is satisfied). 
Step 2. If the common vertex has only one candidate solution in 
the cycle, then the unique solution of each vertex along the cycle 
can be determined. 
Step 3. If the common vertex has two or more candidate 
solutions in the cycle, the solutions of the vertices along the 
paths and cycle are uncertain.  

Step 3.1 If the different solution sets of one cycle are close 
enough (each pair of solutions satisfy inequality (12)), then 
arbitrary one set can be selected as the unique solution. 
Step 3.2 The different solution sets of one cycle are not close 

enough. In order to differentiate the true candidate solution set 
from the false solution sets, additional cycles should be added to 
the graph and attached to one uncertain vertex in the cycle. Once 
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the correct solution of the uncertain vertex has been determined 
in the cycle using the algorithm described in subsection 4.4. Go 
back to step1. 

One example is shown in the simulation experiment. For the 
common vertex, it may have two or more candidate common 
solutions in one cycle. This may be caused by geometric 
configurations or numerical problems. Under these 
circumstances, other vertex should be used instead to find the 
unique solutions of the vertices in the cycle. 

5. OPTIMIZATION BY SQP 
The unique solution of the points can be successfully calculated 
if the failure cases discussed above are avoided. If more 
accurate results are desired, we need to optimize the initial 
solutions using redundant distances in the graph.  
 
5.1 Objective Function and Constraints  
The optimization procedure must minimize the sum of the 
distances between the observed pixels and the projections of the 
3D scene points while keeping the distance constraints satisfied. 
Formally it can be represented as: 
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subject to the following constraints: 
hjk=(xk-xj)2+(yk-yj)2+(zk-zj)2-Djk

2=0. nkjnj ≤≤≤≤ ,1 . 
Here n is the total points in the connected graph G, (xk,yk,zk) and 
(xj,yj,zj) are coordinates of point pk and point pj. The objective is 
to minimize function M(X) under the constraints hjk=0 where X 
is the vector of the 3D coordinates of the points. 
 
5.2 Constrained minimization 
For each 3D point, it has 3 degree of freedom. For two 3D points, 
they have 6 degree of freedom. If there is a distance between 
them, the degree of freedom can be reduced to 5. If there are m 
distances among n points, the degree of freedom can be reduced 
to mn3 −× . In theory, the redundant variables can be reduced 
and unconstrained optimization algorithm can be used to solve 
the problem. However, the constraints are all quadratic 
equations and it is difficult to solve the quadratic system of 
equations to reduce the redundant variables. To avoid this 
problem, constrained minimization algorithm is used here.  

The basic strategy we take is to use the Sequential Quadratic 
Programming (SQP) method [22,23,24]. It has been proved 
highly effective for solving constrained optimization problems 
with smooth nonlinear functions in the objective and constraints. 
The basic principle of sequential approximations is to replace 
the given nonlinear problem by a sequence of quadratic 
sub-problems that are easier to solve. Detailed procedure is 
described below. Consider the equality constraint problem: 
min f(x)  
subject to h(x)=0. 
Here x is the desired variable vector, f(x) is the objective 
function and h(x) is the vector of equality constraints. Using a 
Lagrange-Newton method [25], at the kth iteration, we have  
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where fW 2∇= , hA ∇= , and λ is the vector of Lagrange 
multipliers. Solving the above equations iteratively, we obtain 
the iterates xk+1=xk+sk and λk+1, which should eventually 
approach xf and λf , the optimal values. 

Proper convergence properties are achieved with some 
modifications on the basic SQP algorithm. We may view sk as a 
search direction and define the iteration as xk+1=xk+θksk, where 
θk is introduced and computed by minimizing an appropriate 
merit function along the search direction. Given an initial 
estimate X sufficiently close to the solution, we try to improve 
this by using SQP. At each step the step size sk and the new 
Lagrange multiplier vector λ are recalculated. At the optimum 
point sk vanishes and the specified constraints are all strictly 
satisfied. We can use this as an indication flag to stop the 
iteration.  

6. IMPLEMENTAION AND EXPERIMENTAL RESULTS 
We first outline the implementation of the method. Then we 
study the sensitivity of the polynomial equations. Finally we do 
experiments on both simulation data and real images.  
 
6.1 Implementation 
The implementation can be outlined as below: 
1. Data Processing: Collect the image points (ui,vi), the 

inter-point distances Dij and the camera intrinsic 
parameters. Compute the cosines of angle θij from the 
image points. 

2. Collect and select different cycles in the graph, use 
polynomial system solver to solve the system of equations 
and find the common solutions from different cycles.  

3. For each cycle, the solutions of the common vertex are 
used to find the unique solutions of other vertices along the 
cycle.  

4. Calculate the initial 3D point coordinates. 
5. Optimize the initial 3D point coordinates using SQP.  
The above steps can be iterated until the recovered 3D model 
satisfies the demands.  
 
6.2 Sensitivity Analysis 
We have studied the sensitivity of the polynomial solutions with 
respect to image noises. The camera and graph configuration are 
fixed. We find that the standard deviations and relative drift of 
the solution increase as the Gaussian noise parameter σ 
increases. One example is shown in Figure 8 and in Figure 9.  

We have studied the sensitivity of the polynomial solutions 
with respect to the distance errors. The camera and graph 
configuration are fixed. We find that the standard deviations of 
the solutions increase as the distance error increases. One 
example is shown in Figure 10.  

The standard deviations of the polynomial solutions with 
respect to the depth of the graph are also analyzed. We find that 
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when the depth of the graph configuration becomes larger, the 
standard deviations increase very fast. One example is shown in 
Figure 11. The graph configuration is kept fixed, while the 
depth is pushed 2 units farther every time. We can also see that 
the relative drift of the solutions does not have much 
relationship with the depth of the graph. One example is shown 
in Figure 12. We find that there is no apparent relationship 
between the cycle length and the variances of the solutions. One 
example is shown in Figure 13. Here cycle length changes from 
3 to 6. The standard deviations of 3 common vertices of these 
cycles are compared in the graph. 

 
Figure 8: Relationship between the standard deviations and the 
gaussian noise parameter σ=0.5,1,2,3,4 pixels. 

 
Figure 9: Relationship between the relative solution drift and the 
gaussian noise parameter σ=0.5,1,2,3,4 pixels.  

Figure 10: Relationship between the standard deviations and the 
distance error (the standard deviations of the distance error 
changes from 0.01 to 0.05). 

 
Figure 11: Relationship between the standard deviations of the 
solutions and the depth of the graph (dk,k=1,2,3,4 represents for 
the 4 different depths of the graph configuration) 

 
Figure 12: The relative drift of the solutions does not have much 
relationship with the depth of the graph(dk,k=1,2,3,4 represents 
for 4 different depths of the graph configuration) 

 
Figure 13: No apparent relationship between the standard 
deviations of the solutions and the cycle length(ck,k=3,4,5,6 
represents for cycles with k edges) 
 
6.3 Simulatation 
The simulation data are shown in Figure 14, the image size is 
500*500 pixels, focal length f is 1000 pixels, and the principle 
point value u0 is 250 pixels, v0 is 250 pixels. 6 image points are 
generated with isotropic Gaussian noise of σ=0.5 pixel. 9 
distances are used in the experiment and they are (1 2), (1 3), (2 
3), (1 4), (4 5), (5 6), (1 6), (3 5) (3 6). Three cycles are used to 
calculate the initial solution. They are cycle1 (1 2 3), cycle2 (1 4 
5 6) and cycle3 (3 5 6). 
 
Determining Initial Solutions 
It can be seen from Figure 15 that vertex 1 has total 6 solutions. 
The first solution and the sixth solution are very close to each 
other (inequality (12) is satisfied). The two solutions are 
considered as the common solutions. It can also be seen that 
there are 4 solutions of vertex 3. The first solution and the 
second and the eighth solution are very close to each other 
(inequality (12) is satisfied). The three solutions are considered 
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as the common solutions. 
After the solutions of the common vertices have been decided, 

we need to find the unique solutions of other vertices along the 
cycles. Vertex 1 is the common vertex of cycle 1 and cycle 2. 
The two common solutions of vertex 1 come from the two 
cycles. So we can find the unique solutions of other vertices in 
cycle 1 and cycle 2 without difficulty. Vertex 3 is the common 
vertex of cycle 1 and cycle 3. Two solutions come from cycle 1 
and one solution comes from cycle 3. So we can find the unique 
solutions of vertices in cycle 3 without difficulty. But it is 
difficult to find the unique solutions of vertices in cycle 1. A 
new cycle should be added and attached to an uncertain vertex 
in cycle 1. Here cycle 2 is added and attached to vertex 1. The 
unique solution of each vertex in cycle 1 can then be decided by 
using the unique solution of vertex 1. 
 

 
Figure 14: Graph configuration of simulation points 
 

 
 

 
Figure 15: Determination of the common solutions   
 
Optimization 
We then feed the initial 3D coordinates into the SQP 
optimization step. The SQP optimization step converges in 10 
steps. The specified distance constraints are all satisfied. The 

maximum error of the specified distances is no more than 
0.000004. This shows that SQP can keep the specified 
constraints strictly satisfied. The total residual error 
M0=0.477884(c.f. formula (5)). The total number of points n0=6. 
The square root of mean residual error 

0

0
n
M is 0.282219 pixels. 

The error of the initialized coordinates and the optimized 
coordinates are illustrated in Figure 16. The error is computed 
as ║X-XTrue║. X is the calculated coordinates of the points and 
XTrue is the true coordinates of the points. It can be seen that the 
optimized coordinates are more close to the true coordinates 
than the initialized coordinates. 

 
Figure 16: Initial and optimized error of the points 
 
6.4 Real Images 
For experiments on real images, two examples are given here. 
The camera is Power Shot Pro 70, a digital camera 
manufactured by Canon. It is calibrated using 3DM Calibrator 
of 3D Media Co., Ltd.  

The first example is shown in Figure 17. The image size is 
1525*1021 pixels. The focal length f is 2095.1772 pixels, and 
the principle point value u0 is 718.1390 pixels, v0 is 527.2681 
pixels. There are 10 points and 14 known distances. The 14 
distances are (1 2), (1 3), (2 3), (2 4), (2 5), (2 6), (3 4), (4 6), (5 
6), (7 8), (7 9), (7 10), (8 10), (9 10). Six cycles are used to 
calculate the initial solution. They are cycle1 (1 2 3), cycle2 (2 3 
4), cycle3 (2 4 6), cycle4 (2 5 6), cycle5 (7 8 10) and cycle6 (7 9 
10). 

 
Figure 17: A real image with some known distances  
 

 
Figure 18: Textured VRML model and the wireframe view of 
the recovered 3D structure 
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Edges Calculated dist.(cm) Measured dist(cm) 
(1,5) 25.3249 25.31 
(1,4) 33.2165 33.22 
(3,6) 25.4925 25.50 
(4,5) 27.9465 27.95 

Table 1: Calculated and measured distances of the first example 
 
The unique common solution of different cycles can be selected. 
The unique solutions of all vertices in the graph are then 
determined. Finally we feed the initial 3D coordinates into SQP. 
SQP converges within 10 steps. The total residual error 
M1=17.0017(c.f. formula (5)). The total number of points n1=10. 
The square root of mean residual error

1

1
n
M is 1.3039 pixels. The 

recovered 3D structure is shown in Figure 18. The specified 
distance constraints are all satisfied and the maximum error is 
no more than 0.000004(cm). This shows that SQP can keep the 
specified constraints strictly satisfied even for real images. The 
optimized 3D coordinates have been used to calculate the 
distances of several points. They are compared with the 
measured distances in Table 1.  

A more complex object is shown in Figure 19. The image size 
is 1499*995 pixels. The focal length f is 1613.1632 pixels, and 
the principle point value u0 is 671.284 pixels, v0 is 594.9705 
pixels. There are 30 points and 48 known distances. 21 cycles 
are used to calculate the initial solution. The initial coordinates 
of the points in the graph can be calculated using the described 
method. Finally we feed the initial 3D coordinates into SQP. 
SQP converges within 20 steps. The total residual error 
M1=75.2903(c.f. formula (5)). The total number of points n1=30. 
The square root of mean residual error

1

1
n
M is 1.5842 pixels. The 

recovered 3D structure and the wireframe view are shown in 
Figure 20. The specified distance constraints are all satisfied 
and the maximum error is no more than 0.000005(cm). Some 
distances have been measured and they are compared with the 
estimated value in Table 2. The error in Table 2 is larger than 
that in Table 1. The main reason is that the object is not a rigid 
model and the measured distances are not as accurate as the 
previous example. So the unspecified distances have larger 
error. For a curved surface, a large number of polygons are 
required to approximate it. Due to the number of polygons is 
small, the edges between the polygons can be seen in the 
recovered model. And the recovered model looks a little 
unnatural. From the wireframe view, we can see that the 
recovered polygons approximate the shape well. 

7. CONCLUSIONS 
In this paper, we have proposed a new technique to recover 3D 
scene information from one calibrated image. It is simple and 
easy to use. It can recover 3D information by some known 
distances in the scene with a single calibrated view and can be 
adapted to a wide variety of scenes. The proposed algorithm 
consists of solving systems of quadratic polynomial equations 

followed by a SQP constrained minimization refinement. Both 
computer simulation and real scene have been used to test the 
proposed technique. The results are good and all the specified 
constraints are strictly satisfied.  

Future work will examine several topics. More powerful 
technique is needed to solve quadratic polynomial equations. 
Only static scene is recovered in the current work, in the future 
work, dynamic scene can also be modeled. 
 

 
Figure 19: A toy image with some known distances 

 
Figure 20: The VRML model of the toy and the wireframe view 
of the recovered 3D structure 
 

Edges Calculated dist.(cm) Measured dist(cm) 
(1,13) 8.8777 9.00 
(16,21) 14.0889 14.10 
(13,23) 10.5020 10.32 
(16,17) 12.0150 12.20 

Table 2: Calculated and measured distances of the toy example 
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