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あらまし Multiperspective Imagingによるステレオは，シーンの 3 次元構造復元のための一手法であ
る．現在まで，ステレオパノラマを代表とする構造復元のための種々のアルゴリズムが提案されているが，
ステレオ画像を取得するためのカメラ運動に制約があった．本論文では，6自由度カメラ運動を考慮した
Multiperspective Imagingによるステレオの枠組みを提案する．ステレオ画像の取得をラインカメラによっ
てモデル化し，それに基づき構造復元に必要な幾何拘束およびエピポーラ曲線の式を導出する．その結果
に基づき，提案する枠組みが，従来のMultiperspective Imagingに基づくステレオを特別な場合として包
含していることを示す．導出した式に基づき，いくつかの実験例を示す．
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Abstract Multiperspective imaging has been used to recover the structure of a scene.
Although several algorithms for structure recovery have been developed as typified by stereo
panoramas, there exists no common framework which subsumes various camera motions to
capture stereo images. This paper presents a framework for stereo by multiperspective imaging,
which is general in that it can handle 6 degree–of–freedom (DOF) camera motion. We
derive geometric constraints, equation for structure recovery and that for an epipolar curve
by modeling the acquisition of stereo images using pushbroom cameras (line sensors). We
consider a class of camera motion called a vertical view plane class and demonstrate that
several previous results are really special cases of our results. Experimental results are given
to show the correctness of the equations derived.
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1 Introduction

Multiperspective imaging which uses multiple
view points to construct images has attracted at-
tention as a method to recover structure of a
scene. A typical example is stereo panoramas,
where one-dimensional (1D) images, e.g., columns
extracted from two-dimensional (2D) images, cor-
responding to different view points are concate-
nated to capture stereo images. Recently sev-
eral investigators have used the stereo panoramas
for structure recovery. An approach is to use ro-
tating cameras. Ishiguro et al. [8] were the first
to use stereo panoramas captured by a rotating
camera. Peleg et al. [9] proposed the method to
capture stereo panoramas using a single rotating
camera. Shum et al. [10] presented the approach
called concentric mosaics in which camera motion
is constrained to planar concentric circles. Epipo-
lar geometry of the concentric mosaics was con-
sidered by Huang [11]. Perr et al. [12] and Huang
et al. [13] also used rotation to capture stereo
panoramas. An alternative approach is to use
translating cameras. Gupta et al. [14] investigated
epipolar geometry between images captured by
two pushbroom cameras (also known as line scan-
ners/sensors) moving on a line. Chai et al. [15]
and Zhu et al. [16] proposed stereo reconstruction
based on parallel projections realized by a camera
with 1D, 2D and three-dimensional (3D) trans-
lations. Feldman et. al. [17] showed the epipo-
lar geometry of the stereo by a crossed-slits pro-
jection [18] which includes the linear pushbroom
projection [14] as a special case. It is important
to note that analysis for structure recovery and
epipolar geometry were carried out separately for
rotation and translation in previous work; there
exists no common framework which subsumes var-
ious camera motions to capture stereo panoramas.

This paper presents a general framework for
structure recovery using stereo images captured
by multiperspective imaging. In the framework,
we use a pushbroom camera which is an imaging
system with a 1D array of pixels to model the ac-
quisition of an image. Figure 1(a) shows a scene
being scanned by a moving pushbroom camera.
At each instant of time, the camera produces a
1D image which represents the brightness of the
scene points that intersect the “view plane” of the
camera. By concatenating consecutive 1D images,
we obtain an image (panorama), such as the one in
Fig. 1(b). If we have two cameras, we can compute
the structure of a scene using a parallax between
two acquired images.

Stereo using pushbroom cameras has been used
for photogrammetry and remote sensing. Since
cameras are mounted on satellites or airplanes,

motion

pushbroom
camera view plane

scene

(a)

(b)

Figure 1: The acquisition of an image by a pushbroom
camera. (a) A moving pushbroom camera sweeps a
scene with the “view plane”. A 1D image, which rep-
resents the brightness of the scene points that intersect
the view plane, is produced at each instant of time. (b)
An example of an image created by concatenating the
1D images.

camera motion could be complex. Simplified cam-
era motion model with a small number of degree-
of-freedom (DOF), however, can be used because
of the assumptions of the large distance between
the cameras and the ground and smooth motion
of the cameras [14, 19, 20]. Since we cannot use
the assumption of the large distance in the field of
computer vision, consideration for 6 DOF motion
is necessary. Recently Seitz et. al. [21] presented a
framework for stereo by multiperspective imaging
which includes stereo using pushbroom cameras,
but camera motion was restricted because they
considered “rectified” stereo pairs.

We should consider imaging geometry, struc-
ture recovery and epipolar geometry to make the
framework of stereo by multiperspective imaging.
First we derive geometric constraints including a
view plane equation using the imaging geometry
of a pushbroom camera. Then we show explicit
representation of equation for structure recovery
and that for an epipolar curve based on the con-
straints. The framework is general in that it can
handle 6 DOF motion of the camera. We consider
a class of camera motion called a vertical view
plane class and demonstrate that several previous
results are really special cases of our results. We
conclude with examples of epipolar curves to show
the correctness of the equations derived.
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Figure 2: Imaging geometry of a pushbroom camera.
The world coordinate system is denoted by the �w,
� w and �w axes. The camera coordinate system at
the instant of time kTs is denoted by the �k, � k and
�k axes. The relationship between the world and cam-
era coordinate systems is given by the rotation matrix
�k and translation vector �k. The world and camera
coordinates of a 3D point P are �w = (xw,yw, zw)t

and �k = (xk ,yk, zk)t, respectively. The 1D detector
(and hence the view plane) lies on the � k–�k plane.
An image with coordinates (uk, vk) is created by con-
catenating 1D images.

2 General Framework for Structure
Recovery

In this section, we derive geometric constraints
imposed by a pushbroom camera with 6 DOF mo-
tion. Then, we present equations for structure
recovery and an epipolar curve based on the geo-
metric constraints.

2.1 Imaging Geometry
Figure 2 depicts the imaging geometry of a

pushbroom camera. The world coordinate sys-
tem is denoted by Xw, Y w and Zw. The camera
captures a scene at discrete instants of time repre-
sented by kTs, where k (k = 0, 1, 2, . . .) is the time
index and Ts is the sampling interval. The camera
motion at the time instant kTs is represented by
the rotation matrix Rk and translation vector tk,
which define the camera coordinate system given
by Xk, Y k and Zk.

The 1D detector of the camera lies on the Y k–
Zk plane and it produces a 1D image at every
time instant. By concatenating successive 1D im-
ages, we can produce an image with coordinates
(uk, vk). The u coordinate represents the discrete
time. That is:

uk = kTs . (1)

The v coordinate represents spatial information.
Consider a 3D scene point P whose camera coor-

dinates are pk = (xk, yk, zk)t. Its v coordinate is
determined by a 1D perspective projection as:

vk =
fyk

zk
+ pv , (2)

where, f and pv are the focal length and the image
center, respectively.

2.2 Deriving Geometric Constraints
We denote the world coordinates of the 3D point

P as pw = (xw, yw, zw)t. We know that the camera
and world coordinates are related to each other as:

pk =
(
Rt

k | − Rt
ktk

)( pw

1

)
, (3)

where,

Rt
k = (ik, jk,kk)t

, tk = (txk , tyk, tzk)t
. (4)

The rows of the rotation matrix, ik, jk and kk,
define the directions of the axes of the camera co-
ordinate system, Xk, Y k and Zk.

We can express the camera coordinate xk by
expanding Eq.(3) as follows:

xk = ik · pw − ik · tk . (5)

Note that, since the view plane (1D detector) lies
on the Y k–Zk plane, we have xk = 0. Therefore,
we have:

ik · pw = ik · tk . (6)

The above expression which represents the view
plane passing through the 3D point is called the
view plane equation. It imposes a geometric con-
straint on the world coordinates pw to recover
scene structure.

Another constraint is obtained from the per-
spective projection of the 3D point to the 1D
detector given by Eq.(2). Using yk and zk from
Eq.(3), we have:

rk · pw = rk · tk , (7)
rk = (vk − pv) kk − fjk . (8)

In summary, we have two geometric constraints
(Eqs. (6) and (7)) on the world coordinates of a
scene point from one pushbroom camera.

2.3 Recovering Structure
We need three constraints to recover the three

coordinates pw = (xw, yw, zw)t of a scene point.
As one camera yields only two constraints, we
need one more camera. The view plane equations
for the two cameras can be written as:

ik1 ·pw = ik1 · tk1 and ik2 ·pw = ik2 · tk2 ,(9)

where, the time indices k1 and k2 represent the in-
stants at which the cameras observe the 3D point.
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The constraints obtained from the 1D projections
are:

rk1·pw = rk1·tk1 and rk2·pw = rk2·tk2 .(10)

Using the above expressions, we can recover the
coordinates of the 3D point, because we have four
constraints and only three unknowns. For exam-
ple, a matrix equation which has the following
form can be constructed from Eq.(9) and the first
expression in Eq.(10):

Apw = b , (11)

A = (ik1, ik2, rk1, )
t
, (12)

b = (ik1 · tk1, ik2 · tk2, rk1 · tk1)
t
. (13)

The matrix A must satisfy RankA=3 to have a
solution. When the camera motions are linear de-
pendent then we have a degeneracy as RankA <3
in that case.

We derive an explicit solution of structure by
specifying the representation of the rotation, i.e.,
rotation angles around each axis of the camera
coordinate system (θk, φk, ψk), as shown in Ap-
pendix A. Using the rotation angles and the trans-
lation in Eq.(4), we denote camera motion by
(θk, φk, ψk, txk, tyk, tzk) hereafter.

2.4 Deriving Epipolar Curve Equation
To compute the structure using Eq.(11), we

have to find out the time indices k1 and k2 rep-
resenting the instants at which the cameras ob-
serve the same 3D point. Since k1 and k2 are col-
umn numbers in stereo images (Eq.(1)), they can
be determined by finding correspondences (fea-
ture matching) between two images. An epipo-
lar constraint is used to find the correspondences.
This constraint appears as an epipolar curve in
an image, which can be represented by a func-
tion vk2 = f (uk2;uk1, vk1), where (uk1, vk1) and
(uk2, vk2) represent the coordinates in two images.
A concrete expression of the function is obtained
by backprojecting a view ray of the first camera
into the image plane of the second camera. In
stereo using pushbroom cameras, the backprojec-
tion of a view ray is equivalent to the following
backprojection of a 3D point because a 1D detec-
tor is used:

v
′
k2 = vk2 − pv2 =

f2yk2

zk2
, (14)

where, yk2 and zk2 are the camera coordinates
computed from Eq.(3) as follows:

yk2 = jk2 · pw − jk2 · tk2 , (15)
zk2 = kk2 · pw − kk2 · tk2 . (16)

Since we have explicit expression of the structure
pw, we can derive the explicit expression of the
epipolar curve as shown in Appendix B.

Xw

Zw

��

Zk1

R1
�k1

Yw

( , , )x y zw w w

R2

Zk2

��

�k2

tc

Figure 3: The camera configuration for polycentric
panoramas [13]. Two cameras can have the different
centers of rotation represented by the translation �c =
(tcx, tcy , tcz)t, radii, R1 and R2, and directions, τ1 and
τ2.

The equations for structure recovery and the
epipolar curve we derive are general in that it can
be applied to 6 DOF camera motion. In the next
section, we will demonstrate the generality of the
results by analyzing a class of camera motion using
the equations in Appendices A and B.

3 Special Cases: Vertical View
Plane Class

We consider special cases with lower DOF cam-
era motions, which are important to make a
link between our framework and practical camera
setup. This situation is quite similar to that of
image-based rendering (IBR). In IBR, sampling
of every light rays based on the original plenop-
tic function is very difficult because its dimen-
sion is 7 [22]. The methods using the plenoptic
functions with lower dimensions, e.g., the light
field [23] and concentric mosaic [24], were pro-
posed to simplify camera motions to sample light
rays. In our case, there are

∑6
n=1 6Cn = 63 (n

is DOF of motion) classes of camera motion. We
select a class of camera motion with 5 DOF, i.e.,
(θk, φk, 0, txk, tyk, tzk), which we call vertical view
plane class since the view plane of the camera
with this motion is always vertical to the X–Z
plane of the world and camera coordinate sys-
tems due to elimination of the rotation around
the Z axis. Especially we consider a subclass of
the vertical view plane class with 4 DOF motion,
(0, φk, 0, txk, tyk, tzk), to show the relationship be-
tween our framework and previous results.

The equations for structure recovery and the
epipolar curve of the subclass are obtained by just
setting the rotation angles θk1, ψk1, θk2 and ψk2
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Table 1: Equations for the depth and epipolar curve of the camera configurations in the vertical view plane class
with 4 DOF motion. In this table, ∆φk = φk2 − φk1, ∆txk = txk2 − txk1, ∆tyk = tyk2 − tyk1, ∆tzk = tzk2 − tzk1,

v
′
k1 = vk1 − pv1 and v

′
k2 = vk2 − pv2.

Camera
depth epipolar curveconfiguration

Vertical view zw={−∆txk cos φk1 cos φk2 v
′
k2 =

f2
f1

· v
′
k1Tv2+f1∆tyk sin (∆φk)

Tv1

plane class −tzk1 sin φk1 cosφk2 Tv1 = ∆txk cos φk1 − ∆tzk sinφk1

(4 DOF) +tzk2 cosφk1 sinφk2} / sin (∆φk) Tv2 = ∆txk cos φk2 − ∆tzk sinφk2

Polycentric zw = (−R1 cos φk2 sin τk1 +R2 cos φk1 sin τk2 v
′
k2 =

f2
f1

· v
′
k1Tr2+f1tcy sin (∆φk)

Tr1

panoramas [13] −tcx cos φk1 cos φk2 Tr1 = R1 sin τk1 +R2 sin δ1 + tcx cosφk1

+tcz cos φk1 sinφk2) /sin (∆φk) −tcz sinφk1

Tr2 = R1 sin δ2 −R2 sin τk2 + tcx cosφk2

−tcz sinφk2

δ1 = ∆φk − τk2, δ2 = ∆φk + τk1

Concentric

mosaics [8, 9] zw =
−R sin τk1

sin (∆φk)/(cosφk1+cosφk2)
v
′
k2 =

f2
f1
·v′

k1

[10, 11, 12]

Parallel v
′
k2 =

f2
f1

· v
′
k1
Tt2−f1∆tyk sin (2φk1)

Tt1

perspective zw =
∆txk

2 tanφk1
+ tzk1+tzk2

2
Tt1 = ∆txk cos φk1 − ∆tzk sin φk1

[14, 15, 16, 21] Tt2 = ∆txk cos φk1 + ∆tzk sin φk1

in Eqs.(22),(23),(24) and (35) to zero. We show
the equations of the depth and epipolar curve in
the first row of Tab.1.

We can directly apply the results to ana-
lyze previous work, e.g., polycentric panora-
mas [13]. Figure 3 shows the camera con-
figuration for polycentric panoramas. Let
the two cameras have the following mo-
tions: (0, φk1, 0, R1 sin ξk1, 0, R1 cos ξk1) and
(0, φk2, 0, tcx +R2 sin ξk2, tcy, tcz + R2 cos ξk2).
The rotation angles of the camera coordinate
systems φk1 and φk2 have the following rela-
tionship between the angles ξk1 and ξk2 which
determine the position of the cameras and the
angles τk1 and τk2

1 which show the direction of
the cameras with respect to the normal to the
circle: φk1 = ξk1 + τk1 and φk2 = ξk2 + τk2.
By substituting these camera motions into the
equations of the vertical view plane class, we have
the equations of the depth and epipolar curve for
polycentric panoramas as shown in the second
row of Tab.1.

For the case of stereo panoramas which have the
same center of rotation and radii, and symmetric
slits [8, 9, 10, 11, 12], i.e., t c = 0, R1 = R2 = R
and τk1 = −τk2, we have the equations shown in

1In the rotation case, the angles τ k1 and τk2 determine
the position of slits in images used to create stereo images
at the time k1 and k2 in the case where we use the camera
with 2D CCD.

the third row of Tab.1.
We also have the equations for parallel perspec-

tive stereo mosaic [14, 15, 16, 21] by just assuming
the symmetric slits, i.e., φk1 = −φk2. The result
is shown in the fourth row of Tab.1.

Although our notations for camera motion are
different from those used in the previous work, the
equations shown in Tab.1 are equivalent to the
depth and epipolar curve equations derived in the
previous work. In summary, we demonstrate that
several previous results are really special cases of
our approach to stereo by multiperspective imag-
ing.

4 Experimental Results

We show examples of the epipolar curves to ver-
ify the correctness of the equations derived in Ap-
pendices A and B. Figure 4 shows the epipolar
curves for the images created by cameras with 6
and 5 DOF motions2. The small rectangles in the
left images in the pairs show the feature points cor-
responding to the curves in the right images which
pass through the matching points. These epipolar
curves show the correctness of structure recovery
because the epipolar curves which are the results
of backprojection of the structure pass through

2We made the images using the 3D rendering software,
POVRay [25].
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(a)

(b)
Figure 4: Epipolar curves for stereo images obtained from cameras with (a) 6 DOF (θk, φk, ψk, txk, tyk, tzk) and
(b) 5 DOF (θk, φk, 0, txk, tyk, tzk) motions. The small rectangles in the left images in the pairs show the feature
points corresponding to the curves in the right images which pass through the matching points. These results
show that our results can be applied to general camera motion. Note that the distortion of the images are not
uniform because the camera motions varied with time.

the correct matching points3.

5 Summary

In this paper, we have presented a framework
for stereo by multiperspective imaging. We de-
rived the geometric constraints, the explicit rep-
resentation of the equation for structure recovery
and that for the epipolar curve for pushbroom
cameras with 6 DOF motion. We showed that the
several previous results for stereo panoramas can
be viewed as special cases of our approach. The
experiments were performed to show the correct-
ness of the equations derived. We believe that the
framework presented here will facilitate the design
of stereo systems based on multiperspective imag-
ing because it can be applied to arbitrary camera
configurations.

A Equation for Structure Recovery
We use the following representation of the rotation

matrix of Eq.(4) which shows the rotation around each
axis of the camera coordinate system in Fig. 2:

�
t
k = �

t
x(θk)�t

y(φk)�t
z(ψk) , (17)

3Some of the epipolar curves have singularity. A typical
example is the curve corresponding to the feature “3” of the
5 DOF case. The singularity is produced by the solutions
of Eq.(11) corresponding to “fake” structures in the back
of cameras; the portion of the curves which do not pass
through the correct matching point in Fig.4 are produced
by the fake 3D structures.

where,

�
t
x(θ) =

(
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

)
,

�
t
y(φ) =

(
cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

)
,

�
t
z(ψ) =

(
cosψ sinψ 0
− sinψ cosψ 0

0 0 1

)
.

The rows of the rotation matrix are given as follows:

�k = (cos φk cosψk, cos φk sinψk,− sinφk)t , (18)

�k = (− cos θk sinψk + sin θk sin φk cosψk,

cos θk cosψk + sin θk sinφk sinψk, sin θk cos φk)t , (19)

	k = (sin θk sinψk + cos θk sin φk cosψk,

− sin θk cosψk + cos θk sin φk sinψk, cos θk cos φk)t .(20)

From Eq.(11), the structure �w can be written as:

|
|�w = 
̃� , (21)

where, 
̃ is the cofactor matrix of 
. Using the repre-
sentation of the rotation matrix and the above equa-
tion, we have the following explicit representation of
the equation for structure recovery from 6 DOF cam-
era motion:

|
|xw = s11 + s12 + s13 , (22)

|
|yw = s21 + s22 + s23 , (23)
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|
| zw = s31 + s32 + s33 , (24)

|
| = −v′
k1 sin θk1 cos φk1 sin φk2

−f1 cos θk1 cos φk1 sin φk2

+v
′
k1 sin θk1 sinφk1 cos φk2 cos (∆ψk)

+f1 cos θk1 sin φk1 cos φk2 cos (∆ψk)

+v
′
k1 cos θk1 cos φk2 sin (∆ψk)

−f1 sin θk1 cos φk2 sin (∆ψk) , (25)

s11 = −v′
k1txk1 sin θk1 cos φk1 sin φk2

− f1txk1 cos θk1 cosφk1 sinφk2

+ v
′
k1txk1 cos θk1 cosφk2 cosψk1 sinψk2

− f1txk1 sin θk1 cos φk2 cosψk1 sinψk2

+ v
′
k1txk1 sin θk1 sin φk1 cos φk2 sinψk1 sinψk2

+ f1txk1 cos θk1 sinφk1 cosφk2 sinψk1 sinψk2

− v
′
k1txk2 cos θk1 cosφk2 sinψk1 cosψk2

+ f1txk2 sin θk1 cos φk2 sinψk1 cosψk2

+ v
′
k1txk2 sin θk1 sin φk1 cos φk2 cosψk1 cosψk2

+ f1txk2 cos θk1 sinφk1 cosφk2 cosψk1 cosψk2 , (26)

s12 = −v′
k1∆tyk cos θk1 cos φk2 sinψk1 sinψk2

+ f1∆tyk sin θk1 cos φk2 sinψk1 sinψk2

+ v
′
k1∆tyk sin θk1 sin φk1 cos φk2 cosψk1 sinψk2

+ f1∆tyk cos θk1 sinφk1 cosφk2 cosψk1 sinψk2 , (27)

s13 = v
′
k1∆tzk cos θk1 sinφk2 sinψk1

− f1∆tzk sin θk1 sin φk2 sinψk1

− v
′
k1∆tzk sin θk1 sin φk1 sinφk2 cosψk1

− f1∆tzk cos θk1 sinφk1 sinφk2 cosψk1 , (28)

s21 = v
′
k1∆txk cos θk1 cos φk2 cosψk1 cosψk2

− f1∆txk sin θk1 cos φk2 cosψk1 cosψk2

+ v
′
k1∆txk sin θk1 sin φk1 cos φk2 sinψk1 cosψk2

+ f1∆txk cos θk1 sin φk1 cos φk2 sinψk1 cosψk2 , (29)

s22 = −v′
k1tyk1 cos θk1 cosφk2 sinψk1 cosψk2

+ f1tyk1 sin θk1 cosφk2 sinψk1 cosψk2

− v
′
k1tyk1 sin θk1 cosφk1 sinφk2

− f1tyk1 cos θk1 cos φk1 sin φk2

+ v
′
k1tyk1 sin θk1 sinφk1 cosφk2 cosψk1 cosψk2

+ f1tyk1 cos θk1 sinφk1 cos φk2 cosψk1 cosψk2

+ v
′
k1tyk2 cos θk1 cos φk2 cosψk1 sinψk2

− f1tyk2 sin θk1 cosφk2 cosψk1 sinψk2

+ v
′
k1tyk2 sin θk1 sinφk1 cosφk2 sinψk1 sinψk2

+ f1tyk2 cos θk1 sinφk1 cos φk2 sinψk1 sinψk2 , (30)

s23 = −v′
k1∆tzk cos θk1 sin φk2 cosψk1

+ f1∆tzk sin θk1 sin φk2 cosψk1

− v
′
k1∆tzk sin θk1 sin φk1 sinφk2 sinψk1

− f1∆tzk cos θk1 sinφk1 sinφk2 sinψk1 , (31)

s31 = v
′
k1∆txk sin θk1 cos φk1 cos φk2 cosψk2

+ f1∆txk cos θk1 cos φk1 cosφk2 cosψk2 , (32)

s32 = v
′
k1∆tyk sin θk1 cos φk1 cosφk2 sinψk2

+ f1∆tyk cos θk1 cos φk1 cos φk2 sinψk2 , (33)

s33 = v
′
k1tzk1 sin θk1 sinφk1 cos φk2 cos (∆ψk)

+ f1tzk1 cos θk1 sin φk1 cos φk2 cos (∆ψk)

+ v
′
k1tzk1 cos θk1 cos φk2 cosψk1 sinψk2

− f1tzk1 sin θk1 cos φk2 cosψk1 sinψk2

− v
′
k1tzk1 cos θk1 cos φk2 sinψk1 cosψk2

+ f1tzk1 sin θk1 cos φk2 sinψk1 cosψk2

− v
′
k1tzk2 sin θk1 cos φk1 sin φk2

− f1tzk2 cos θk1 cos φk1 sin φk2 . (34)

where, v
′
k1 = vk1 − pv1, ∆ψk = ψk2 − ψk1, ∆txk =

txk2 − txk1, ∆tyk = tyk2 − tyk1 and ∆tzk = tzk2 − tzk1.

B Equation for an Epipolar Curve
We can derive equation for the epipolar curve be-

tween two images captured by cameras with 6 DOF
motions using the backprojection given by Eq.(14) and
the structure given by the equations in Appendix A
as follows:

v
′
k2 =

f2yk2

zk2
=
f2 · |
|yk2

|
| zk2
, (35)

|
|yk2 = e11 + e12 + e13 , (36)

|
| zk2 = e21 + e22 + e23 , (37)

e11 = v
′
k1∆txk sin θk1 sin θk2 cos φk1 cosψk2

+ f1∆txk cos θk1 sin θk2 cosφk1 cosψk2

+ v
′
k1∆txk cos θk1 cos θk2 cos φk2 cosψk1

− f1∆txk sin θk1 cos θk2 cosφk2 cosψk1

+ v
′
k1∆txk sin θk1 cos θk2 sinφk1 cos φk2 sinψk1

+ f1∆txk cos θk1 cos θk2 sinφk1 cos φk2 sinψk1

− v
′
k1∆txk sin θk1 cos θk2 cosφk1 sin φk2 sinψk2

− f1∆txk cos θk1 cos θk2 cos φk1 sin φk2 sinψk2 , (38)

e12 = v
′
k1∆tyk cos θk1 cos θk2 cos φk2 sinψk1

− f1∆tyk sin θk1 cos θk2 cos φk2 sinψk1

− v
′
k1∆tyk sin θk1 cos θk2 sinφk1 cos φk2 cosψk1

− f1∆tyk cos θk1 cos θk2 sin φk1 cos φk2 cosψk1

+ v
′
k1∆tyk sin θk1 cos θk2 cos φk1 sin φk2 cosψk2

+ f1∆tyk cos θk1 cos θk2 cos φk1 sinφk2 cosψk2

+ v
′
k1∆tyk sin θk1 sin θk2 cosφk1 sinψk2

+ f1∆tyk cos θk1 sin θk2 cos φk1 sinψk2 , (39)

e13 = v
′
k1∆tzk cos θk1 sin θk2 sinψk1 cosψk2

− f1∆tzk sin θk1 sin θk2 sinψk1 cosψk2

− v
′
k1∆tzk sin θk1 sin θk2 sinφk1 cosψk1 cosψk2

− f1∆tzk cos θk1 sin θk2 sin φk1 cosψk1 cosψk2

− v
′
k1∆tzk sin θk1 sin θk2 sinφk1 sinψk1 sinψk2

− f1∆tzk cos θk1 sin θk2 sin φk1 sinψk1 sinψk2

− v
′
k1∆tzk cos θk1 sin θk2 cosψk1 sinψk2

+ f1∆tzk sin θk1 sin θk2 cosψk1 sinψk2

− v
′
k1∆tzk cos θk1 cos θk2 sin φk2 cos (∆ψk)
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+ f1∆tzk sin θk1 cos θk2 sinφk2 cos (∆ψk)

+ v
′
k1∆tzk sin θk1 cos θk2 sinφk1 sin φk2 sin (∆ψk)

+f1∆tzk cos θk1 cos θk2 sin φk1 sin φk2 sin (∆ψk) , (40)

e21 = v
′
k1∆txk sin θk1 cos θk2 cos φk1 cosψk2

+ f1∆txk cos θk1 cos θk2 cos φk1 cosψk2

+ v
′
k1∆txk sin θk1 sin θk2 cos φk1 sinφk2 sinψk2

+ f1∆txk cos θk1 sin θk2 cosφk1 sinφk2 sinψk2

− v
′
k1∆txk cos θk1 sin θk2 cosφk2 cosψk1

+ f1∆txk sin θk1 sin θk2 cos φk2 cosψk1

− v
′
k1∆txk sin θk1 sin θk2 sin φk1 cos φk2 sinψk1

− f1∆txk cos θk1 sin θk2 sinφk1 cosφk2 sinψk1 , (41)

e22 = v
′
k1∆tyk sin θk1 cos θk2 cosφk1 sinψk2

+ f1∆tyk cos θk1 cos θk2 cos φk1 sinψk2

− v
′
k1∆tyk cos θk1 sin θk2 cos φk2 sinψk1

+ f1∆tyk sin θk1 sin θk2 cosφk2 sinψk1

− v
′
k1∆tyk sin θk1 sin θk2 cosφk1 sinφk2 cosψk2

− f1∆tyk cos θk1 sin θk2 cos φk1 sin φk2 cosψk2

+ v
′
k1∆tyk sin θk1 sin θk2 sinφk1 cosφk2 cosψk1

+ f1∆tyk cos θk1 sin θk2 sinφk1 cos φk2 cosψk1 , (42)

e23 = −v′
k1∆tzk sin θk1 cos θk2 sinφk1 cos (∆ψk)

− f1∆tzk cos θk1 cos θk2 sin φk1 cos (∆ψk)

− v
′
k1∆tzk cos θk1 cos θk2 sin (∆ψk)

+ f1∆tzk sin θk1 cos θk2 sin (∆ψk)

+ v
′
k1∆tzk cos θk1 sin θk2 sinφk2 cos (∆ψk)

− f1∆tzk sin θk1 sin θk2 sinφk2 cos (∆ψk)

− v
′
k1∆tzk sin θk1 sin θk2 sinφk1 sinφk2 sin (∆ψk)

− f1∆tzk cos θk1 sin θk2 sinφk1 sin φk2 sin (∆ψk) .(43)
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