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Abstract
A consistent color descriptor of an object is a significant re-
quirement for many applications in computer vision. In the real
world, unfortunately, the color appearances of objects are gen-
erally not consistent. It depends principally on two factors: il-
lumination spectral power distribution (illumination color) and
intrinsic surface properties. Consequently, to obtain objects’
consistent color descriptors, we have to deal with those two fac-
tors. The former is commonly referred to as color constancy:
a capability to estimate and discount the illumination color,
while the latter is identical to the problem of recovering body
color from highlights. This recovery is crucial because high-
lights emitted from opaque inhomogeneous objects can cause
the surface colors to be inconsistent with regard to the change
of viewing and illuminant directions.

We base our color constancy methods on analyzing high-
lights or specularities emitted from opaque inhomogeneous ob-
jects. We have successfully derived a linear correlation be-
tween image chromaticity and illumination chromaticity. This
linear correlation is clearly described in inverse-intensity chro-
maticity space, a novel two-dimensional space we introduce.
Through this space, we become able to effectively estimate illu-
mination chromaticity (illumination color) from both uniformly
colored surfaces and highly textured surfaces in a single in-
tegrated framework, thereby making our method significantly
advanced over the existing methods. By knowing the illumina-
tion chromaticity, we can normalize the input image such that
its illumination color becomes pure white. Meanwhile, for sep-
arating reflection components, we propose an approach that is
based on an iterative framework and a specular-free image. The
specular-free image is an image that is free from specularities
yet has different body color from the input image. In general,
the approach relies principally on image intensity and color.

All methods of color constancy and reflection-components
separation proposed in this paper are analyzed based on phys-
ical phenomena of the real world, making the estimation more
accurate, and have strong basics of analysis. In addition, all
methods require only a single input image. This is not only
practical, but also challenging in term of complexity.

1 Introduction
The color appearance of an object is not the object’s actual
color. Several factors, mainly illumination and object surface’s
intrinsic properties, play significant roles in determining the ob-
ject color appearance. In our daily life, we can easily find the
roles of illumination color in many occasions, for example, an
outdoor scene under a clear sky will look redder in the evening
than in the middle of the day, or an object will look greener if
lit by a green lamp. However, although the color appearance of
an object or a scene changes as a consequence of illumination
change, we are still, at a certain level of accuracy, able to iden-
tify the actual color of the object or the scene. This capability is
called color constancy. It is inherent in human perception and
one of the important aspects of object recognition processes.

Figure 1: The mechanism of reflected light on inhomogeneous
opaque surface

In machine vision, color constancy is also a crucial require-
ment for various applications, e.g., color-based object recogni-
tion, color reproduction, image retrieval, reflection components
separation, image-based rendering, and so on. Unfortunately,
up to now, the mechanism of human perception color constancy
has not been well understood, making it impossible to apply it to
machine vision. For decades, this has motivated researchers in
machine vision to develop various color constancy algorithms,
which do not necessarily correspond to human biological color
constancy.

Generally, color constancy is defined as the capability to re-
cover the actual color of an object. It implies that, although the
illumination color changes, we can obtain a consistent color de-
scriptor of the object. This consistency is the most fundamental
aspect of color constancy. However, while it is correct for dif-
fuse objects, the consistency is still partially correct for certain
types of objects that exhibit highlights. In diffuse objects, if we
have discounted the illumination color and obtained their actual
color, we will have a consistent color descriptor even if either
our viewing position or the illumination direction changes. On
the contrary, for objects exhibiting highlights, although we have
discounted the illumination color, the colors of certain patches
of the objects are still inconsistent w.r.t. the change of viewing
and illumination directions. The reason is, the locations of high-
lights, which are caused by the presence of specular reflection,
are inconsistent w.r.t. the changes of viewing and illumination
directions. As a consequence, color constancy alone is insuffi-
cient to acquire a consistent color descriptor of general types of
objects. For this reason, in this paper, instead of dealing solely
with illumination color, we also deal with object surface intrin-
sic properties.

Based on its reflection components, basically intrinsic sur-
face properties can be divided into two components: diffuse
(body) and specular (interface) reflections. Figure 1 shows a
pictorial mechanism of reflected light rays. Once a bundle of
light rays enters an inhomogeneous opaque surface, some of
the rays will immediately reflect back into the air, while the re-
mainder will penetrate the body of the object. Some of these
penetrating light rays will go through the body; others will re-
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flect back onto the surface and then into the air. The immedi-
ately reflected light rays are called interface or specular reflec-
tion, while those that have penetrated and then reflected back
into the air are called body or diffuse reflection. Note that, be-
sides those two reflections, physically there is another compo-
nent called specular spike [3, 32]. However, since its presence
is very minor in inhomogeneous object, we can ignore it. Thus,
highlights emitted from inhomogeneous objects are the com-
bination of diffuse and specular reflections. Unlike diffuse re-
flection, the location of specular reflection depends on viewing
and illumination directions, causing its appearance to be incon-
sistent. On the contrary, diffuse reflection is independent from
viewing position, and dependent only on illumination direction
in term of its intensity magnitude. This means that the color
descriptor of diffuse reflection, which is usually a normalized
value, is independent of both viewing position and illumination
directions. As a consequence, to be able to obtain a consistent
color descriptor, we have to decompose or separate the reflec-
tion components and then acquire diffuse only reflection. More-
over, once we acquire diffuse only reflection, we become able
to observe the body color beneath highlights.

Goals Considering the importance in various machine vision
applications, therefore, the ultimate purpose of this paper is to
describe how to extract the actual color of diffuse reflection
components. Basically, two processes are required to achieve
our purpose, namely, color constancy and reflection compo-
nents separation. We base our color constancy methods on ana-
lyzing highlights or specularities emitted from opaque inhomo-
geneous objects. We have successfully derived a linear correla-
tion between image chromaticity and illumination chromaticity.
This linear correlation is clearly described in inverse-intensity
chromaticity space, a novel two-dimensional space which we
introduce. Through this space, we become able to effectively
estimate illumination chromaticity (illumination color) from
both uniformly colored surfaces and highly textured surfaces
in a single integrated framework, thereby making our method
significantly more advanced than the existing methods. More-
over, unlike the existing methods based on specularities, thanks
to the linear correlation, we do not need to segment surface col-
ors beneath the highlights. Meanwhile, for separating reflection
components, we propose an approach based on intensity and
color differences between highlights and diffuse reflections.

In general, the flow of our framework can be depicted in Fig-
ure 2. Top of the figure (2.a) shows an opaque inhomogeneous
object lit by an incandescent lamp. By using our proposed color
constancy method, we estimate the illumination color and then
normalize the image, making the illumination color becomes
pure-white as shown in Figure 2.b. Then, after normalizing the
image, we decompose it into its reflection components. Figure
2.c-d shows the decomposition results: diffuse reflection com-
ponent and specular reflection component, respectively. All ap-
proaches of color constancy and reflection-components separa-
tion in this paper are analyzed based on physical phenomena of
the real world, making the computation more accurate and have
strong basics of analysis. In addition, for all approaches, we
require only a single image as input.

1.1 Previous Work
Color Constancy Finlayson et al. [11] categorized color con-
stancy methods into two classes: statistics-based and physics-
based methods. Statistics-based methods utilize the relation-
ship between color distributions and statistical knowledge of
common lights and surfaces [4, 7, 9, 34, 43, 45]. One draw-
back of these methods is that they require many colors to be
observed on the target surfaces. On the other hand, physics-
based methods [6, 8, 14, 23, 24], which base their algorithms on
understanding the physical process of reflected light, can suc-
cessfully deal with fewer surface colors, even to the extreme of
a single surface color [11, 12]. In addition, based on the surface

Figure 2: The flow of our framework to extract actual body
color of an object. (a) Input image lit with unknown illumi-
nation. (b) Color constancy result, transforming unknown il-
lumination color into pure-white illumination. (c) Diffuse only
reflection, which is able to produce a consistent color descriptor
of the object. (d) Specular only reflection, conceiving important
properties such as surface roughness.

type of the input image, physics-based methods can be divided
into two groups: diffuse-based and dichromatic-based methods.
Diffuse-based methods assume that input images have only dif-
fuse reflection, while dichromatic-based methods assume both
diffuse and specular reflections occur in the images. Geuse-
broek et al. [17, 16] proposed a physical basis of color con-
stancy by considering the spectral and spatial derivatives of the
Lambertian image formation model. Andersen et al. [1] pro-
vided an analysis on image chromaticity under two illumination
colors for dichromatic surfaces. Since our aim is to develop an
algorithm that is able to handle both a single and multiple sur-
face colors, in this section, we will concentrate our discussion
on existing physics-based methods, particularly dichromatic-
based methods.

Methods in dichromatic-based color constancy rely on the
dichromatic reflection model proposed by Shafer [36]. Klinker
et al. [21] introduced a method to estimate illumination color
from a uniformly colored surface, by extracting a T-shaped
color distribution in the RGB space. However, in real images,
it becomes quite difficult to extract the T-shape due to noise,
making the final estimate unreliable.

Lee [23] introduced a method to estimate illumination chro-
maticity using highlights of at least two surface colors. The
estimation is accomplished by finding an intersection of two or
more dichromatic lines in the chromaticity space. While this
simple approach based on the physics of reflected light pro-
vides a handy method for color constancy, it suffers from a few
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drawbacks. First, to create the dichromatic line for each surface
color from highlights, one needs to segment the surface colors
underneath the highlights. This color segmentation is difficult
when the target object is highly textured. Second, nearly paral-
lel dichromatic lines caused by similar surface colors can make
the intersection sensitive to noise. Consequently, for real im-
ages, which usually suffered from noise, the estimation for sim-
ilar surface colors becomes unstable. Third, the method does
not deal with uniformly colored surfaces. Parallel to this, sev-
eral methods have been proposed in the literature [6, 42, 44].

Recently, three methods have been proposed which extend
Lee’s algorithm [23]: Lehmann et al. [28] developed a more
robust technique to identify the dichromatic lines in the chro-
maticity space. The success of this technique depends on an
assumption that, in each highlight region, the surface color is
uniform. As a consequence, the technique fails when deal-
ing with complex textured surfaces, which usually have more
than one surface color in their highlight regions. Finlayson et
al. [10], proposed imposing a constraint on the colors of il-
lumination. This constraint is based on the statistics of natu-
ral illumination colors, and improves the stability in obtaining
the intersection, i.e., it addresses the second drawback of Lee’s
method. Furthermore, Finlayson et al. [11] proposed the use of
the Planckian locus as a constraint to accomplish illumination
estimation from uniformly colored surfaces. This Planckian
constraint on the illumination chromaticity makes the estima-
tion more robust, especially for natural scene images. However,
the method still has a few drawbacks. First, the position and the
shape of the Planckian locus in the chromaticity space make the
estimation error prone for certain surface colors, such as blue
or yellow color. Second, as they include diffuse regions in ob-
taining dichromatic lines, the result could become inaccurate.
While the fact that their method does not require reflection sep-
aration is one of the advantages, the diffuse cluster, due to noise,
usually has a different direction from the specular cluster; as a
result, the dichromatic line can be shifted from the correct one.
Third, like other previous methods, for multicolored surfaces,
color segmentation is required.

Reflection Components Separation Many works also have
been developed for separating reflection components. Wolff et
al. [47] used a polarizing filter to separate reflection compo-
nents from gray images. The main idea of their method is that,
for most incident angles, diffuse reflections tend to be less po-
larized than the specular reflections. Nayar et al. [31] extended
this work by considering colors instead of using the polariz-
ing filters alone. They identified specular pixels and the illu-
mination color vector in RGB space by using intensity varia-
tion produced by a polarizing filter. A specular pixel, which
is partially composed of a specular reflection component, will
have a different intensity if the polarization angle of the filter
is changed. The combination of polarizing filter and colors is
even for textured surfaces; however, utilizing such an additional
filter is impractical in some circumstances. Sato et al. [35]
introduced a four-dimensional space, temporal-color space, to
analyze the diffuse and specular reflections based on colors and
image intensity. While this method has the ability to separate
the reflection components locally, since each location contains
information of diffuse and specular reflections, it requires dense
input images with variation of illuminant directions. Lee et
al. [26, 27] introduced color histogram differencing to iden-
tify specularities. The key idea is that colors of diffuse pix-
els are independent of the changing of viewing positions, while
colors of specular pixels are dependent on it. They transform
the pixels of images taken from different viewing directions
into RGB space, and then identify the specular pixels. Later,
Lin et al. [29] extended this method by adding multibaseline
stereo. Criminisi et al. [5] developed an Epipolar Plane Image
(EPI)- based method to detect specularities. They found that
in two-dimensional spatio-temporal space, highlights’ straight
lines have larger gradients than diffusers’ straight lines. Lin et
al. [30], unlike previous methods, introduced a method using

sparse images (at least two images) under different illumination
positions. They proposed an analytical method that combines
the finite dimensional basis functions [33] and a dichromatic
model to form a closed form equation, by assuming that the
sensor sensitivity is narrowband. This method can separate the
reflection component locally.

The aforementioned methods are considerably effective in
separating reflection components; however, for many applica-
tions, using multiple images is impractical. Shafer [36], who in-
troduced the dichromatic reflection model, was one of the early
researchers who used a single colored image. He proposed a
separation method based on parallelogram distribution of col-
ors in RGB space. Klinker et al. [21] then extended this method
by introducing a T-shaped color distribution. This color distri-
bution represents body and illumination color vectors. By sep-
arating these vectors, the reflection equation becomes a closed
form equation and directly solvable. Unfortunately, for many
real images, this T shape is hardly extractable due to noise,
etc. Bajscy et al. [2] proposed an approach that introduced a
three dimensional space composed of lightness, saturation and
hue. In their method, the input image has to be neutralized to
pure-white illumination using a linear basis functions opera-
tion. For every neutralized pixel, the weighting factors of the
surface reflectance basis functions are projected into the three-
dimensional space, where specular and diffuse reflections are
identifiable due to the difference of their saturation values.

1.2 Overview
The rest of this paper is organized as follows: in Section 2, we
discuss the reflection model used in all methods proposed in this
paper. In Section 3, we will explain the derivation and detail al-
gorithm of the proposed color constancy method. In Section 4,
we will focus the discussion on the method of separating reflec-
tion components. A number of experimental results using real
images will be shown in Section 5. Finally, in Section 6, we
offer several conclusions.

2 Reflection Model
Image Formation. Most inhomogeneous objects, such as
those made of plastics, acrylics, etc., exhibit both diffuse and
specular reflections. The diffuse reflection is due to the varying
refractive indices in the objects’ surfaces and bodies, while the
specular reflection is mainly due to the refractive index differ-
ence between objects’ surfaces and the air. Considering these
two reflection components, Shafer [36] introduced the dichro-
matic reflection model, which states that reflected lights of inho-
mogeneous objects are linear combinations of diffuse and spec-
ular reflection components. As a result, an image’s pixel of
inhomogeneous objects taken by a digital color camera can be
described as:

I(x) = wd(x)
∫

Ω

S(λ, x)E(λ)q(λ)dλ (1)

+ws(x)
∫

Ω

E(λ)q(λ)dλ

where I = {Ir, Ig, Ib} is the color vector of image intensity
or camera sensor. The spatial parameter, x = {x, y}, is the
two dimensional image coordinates. q = {qr, qg, qb} is the
three-element-vector of sensor sensitivity. wd(x) and ws(x)
are the weighting factors for diffuse and specular reflection, re-
spectively; their values depend on the geometric structure at
location x. S(x, λ) is the diffuse spectral reflectance function,
while E(λ) is the spectral power distribution function of illumi-
nation. E(λ) is independent of the spatial location (x) because
we assume a uniform illumination color. The integration is done
over the visible spectrum (Ω). Note that we ignore the camera
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gain and camera noise in the above model, and assume that the
model follows the neutral interface reflection (NIR) assumption
[25], i.e., the color of specular reflection component equals the
color of the illumination. For the sake of simplicity, Equation
(2) can be written as:

I(x) = wd(x)B + ws(x)G (2)

where B =
∫
Ω

S(λ, x)E(λ)q(λ)dλ, and G =∫
Ω E(λ)q(λ)dλ. The first part of the right side of the

equation represents the diffuse reflection component, while the
second part represents the specular reflection component.

Chromaticity Besides the dichromatic reflection model, we
also use chromaticity or normalized rgb, which is defined as:

σ(x) =
I(x)

Ir(x) + Ig(x) + Ib(x)
(3)

where σ = {σr, σg, σb}. Based on the equation, for the diffuse
only reflection component (ws = 0), the chromaticity will be
independent from the diffuse weighting factor wd. We call this
diffuse chromaticity (Λ) with definition:

Λ(x) =
B(x)

Br(x) + Bg(x) + Bb(x)
(4)

where Λ = {Λr, Λg, Λb}. On the other hand, for the specular
only reflection component (wd = 0), the chromaticity will be
independent from the specular weighting factor (ws), and we
call it specular or illumination chromaticity (Γ):

Γ =
G

Gr + Gg + Gb
(5)

where Γ = {Γr, Γg, Γb}. Consequently, with regard to Equa-
tion (4) and (5), Equation (2) becomes able to be written in term
of chromaticity:

I(x) = md(x)Λ(x) + ms(x)Γ (6)

where

md(x) = wd(x)
[
Br(x) + Bg(x) + Bb(x)

]
(7)

ms(x) = ws(x)(Gr + Gg + Gb) (8)

As a result, we have three types of chromaticity: image chro-
maticity (σ), diffuse chromaticity (Λ) and illumination chro-
maticity (Γ). The image chromaticity is directly obtained from
the input image using Equation (3). In addition, without loss of
generality, we can have (σr + σg + σb) = (Λr + Λg + Λb) =
(Γr + Γg + Γb) = 1.

Based on the dichromatic reflection model and chromatici-
ties definitions derived above, we describe our goal: given im-
age intensities (I(x)) whose illumination chromaticity (Γ) is
estimated by a color constancy method; we intend to decom-
pose them into their reflection components: md(x)Λ(x) and
ms(x)Γ.

3 Color Constancy ∗

3.1 Inverse-Intensity Chromaticity Space
By substituting each color channel’s image intensity in Equa-
tion (3) with its definition in Equation (6) and considering pixel-
based operation, the image chromaticity can be written in terms
of dichromatic reflection model:

σ =
mdΛ + msΓ

md[Λr + Λg + Λb] + ms[Γr + Γg + Γb]
(9)

∗This section has similar contents to our other papers appeared in [38, 40]

(a) (b)

Figure 3: (a) Synthetic image with a single surface color.
(b) Projection of the diffuse and specular pixels into the
chromaticity-intensity space, with index c representing g (the
green channel).

Since (Λr + Λg + Λb) = (Γr + Γg + Γb) = 1, we can obtain
the correlation between ms and md:

ms = md
(Λ− σ)
(σ − Γ)

(10)

Then, by plugging Equation (10) into Equation (6), the corre-
lation between image intensity (I) and image chromaticity (σ)
can be described as:

I = md(Λ− Γ)(
σ

σ − Γ
) (11)

The last equation shows that the correlation between im-
age intensity (I) and image chromaticity (σ) is not linear.
Consequently, by projecting a uniformly colored surface into
chromaticity-intensity space, the specular pixels will form a
curved cluster (non-linear correlation), as illustrated in Figure
3.b. On the other hand, the diffuse pixels will form a straight
vertical line, since their image chromaticity (σ) which equals to
their diffuse chromaticity (Λ) is independent from image inten-
sity (I).

3.2 Image Chromaticity and Illumination Chro-
maticity

By introducing p = {pr , pg, pb} which we define as p =
md(Λ− Γ), we can derive from Equation (11) that:

I
σ

=
p

σ − Γ
(12)

Since I/σ = ΣIi, where ΣIi = (Ir +Ig +Ib), then the correla-
tion between image chromaticity and illumination chromaticity
becomes:

σ = p
1

ΣIi
+ Γ (13)

This equation is the core of our method. It shows that by solely
calculating the value of p, we are able to determine the illu-
mination chromaticity (Γ), since image chromaticity (σ) and
total image intensity (ΣIi) can be directly observed from the
input image. Moreover, based on the equation we can solve the
illumination estimation independently for each color channel,
which is expressed as:

σc = pc
1

ΣIi
+ Γc (14)

where index c represents one of the three color channels
({r, g, b}) we want to estimate. The details are as follows.
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If the values of pc are constant and the values of ΣIi vary
throughout the image, the last equation becomes a linear equa-
tion, and the illumination chromaticity (Γc) can be estimated
in a straightforward manner by using general line fitting algo-
rithms for each color channel. However, in most images, the
values of pc are not constant, since pc depends on md, Λc and
Γc. For the sake of simplicity, until the end of this section, we
temporarily assume that the values of Λc are constant, making
the values of pc depend solely on md, as Γc has already been
assumed to be constant.

Equation (7) states that md = wd(Br + Bg + Bb). Ac-
cording to the Lambert’s Law [22], wd is determined by the
angle between lighting direction and surface normal, while
(Br + Bg + Bb) is determined by diffuse albedo and inten-
sity of incident light (L). For a surface with a uniform color,
the value of the diffuse albedo is constant. The angles between
surface normals and light directions depend on the shape of the
object and the light distribution. The angle will be constant if
an object has planar surface and illumination directions are the
same for all points in the surface. While, if the surface is not
planar or the illumination directions are not uniform, then the
angle will vary. The values of intensity of incident light (L) are
mostly determined by the location of illuminants, which will be
constant if the locations of the illuminants are distant from the
surface. For relatively nearby illuminants, the values of L may
vary w.r.t. the surface point. Considering all these aspects, as a
result, in general conditions the value of md can be either con-
stant or varied. Yet, in most cases the value of md will be varied
because, most shapes of objects in the real world are not planar
and the assumption on uniform illumination direction, in some
conditions, cannot be held.

Consequently, Equation (14) poses two problems: first,
whether there are a number of specular pixels that have the same
md, and second, whether these pixels that have the same md
also have different ΣIi. If we consider a single surface color,
then the solution of the first problem depends on wd and L. In
microscopic scale of the real world, the combination of wd and
L could be unique. Fortunately, in the scale of image intensity,
for some set of surface points, the differences of the combina-
tion of wd and L are small and can be approximated as constant.
We can take this approximation for granted, as current ordinary
digital cameras automatically do it for us as a part of their ac-
curacy limitation.

The second problem can be resolved by considering Equa-
tion (6). In this equation, two specular pixels will have the same
md but different I, if their values of ms are different. Equation
(8) states that ms = w̃s(Gr + Gg + Gb). In Torrance and
Sparrow reflection model [46], which is reasonably accurate to
model specularity, w̃s is expressed as:

w̃s = FG
1

cosθr
exp(− α2

2φ2
) (15)

where F is the Fresnel reflection, G is the geometrical atten-
uation factor, θr is the angle of surface normal and viewing
direction, α is the angle between the surface normal and the
bisector of viewing direction and illumination direction, and φ
is the surface roughness. Thus, if the two specular pixels have
the same surface color lit by distant light source and have the
same md which implies the same p, then ms of both pixels will
be different if their values of θr and α are different.

Hence, in general conditions, specular pixels can be grouped
into a number of clusters that have the same values of pc and
different ΣIi . For every group of pixels that share the same or
approximately the same value of md, we can consider pc as a
constant, which makes Equation (14) become a linear equation,
with pc as its constant gradient. These groups of pixels can be
clearly observed in inverse-intensity chromaticity space, with
x-axis representing 1/ΣIi and y-axis representing σc, as illus-
trated in Figure 4.a. Several straight lines in the figure corre-
spond to several groups of different md values (several number
of different pc: p1

c ,. . . , pj
c ,. . . , pn

c , where c is identical to the

(a) (b)

Figure 4: (a) Sketch of specular points of uniformly colored
surface in inverse-intensity chromaticity space. (b) Sketch of
specular points of two surface different colors.

(a) (b)

Figure 5: (a) Diffuse and specular points of a synthetic image
(Figure 3.a) in inverse-intensity chromaticity space, with c rep-
resenting the green channel. (b) The cluster of specular points
which head for illumination chromaticity value in y-axis

c of σc). These lines intersect at a single point on the y-axis,
which is identical to the illumination chromaticity (Γc). Figure
5.a shows the projection of all pixels of a synthetic image in
Figure 3.a into inverse-intensity chromaticity space. The hori-
zontal line in the figure represents the diffuse points, since the
image chromaticity of diffuse pixels will be constant regardless
the change of ΣIi. While, the slant cluster represents the spec-
ular points. If we focus on this cluster by removing the diffuse
points, according to Equation (14) we will find that a number of
straight lines, which compose the cluster, head for the value of
illumination chromaticity at y-axis, as shown in Figure 5.b.

Now we relax the assumption of uniformly colored surface
to handle multicolored surfaces. Figure 4.b. illustrates the
projection of two different surface colors into inverse-intensity
chromaticity space. We can observe two specular clusters with
different values of diffuse chromaticity head for the same value
on the chromaticity axis (Γc). Since we only consider points
that have the same values of pc and Γc, then even if there are

(a) (b)

Figure 6: (a) Synthetic image with multiple surface colors. (b)
Specular points in inverse-intensity chromaticity space, with c
representing the green channel.
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(a) (b)

Figure 7: (a) Projection of points in Figure 5.b into Hough
space. (b) Sketch of intersected lines in Hough space.

Figure 8: Intersection-counting distribution of the green chan-
nel. The estimated illumination chromaticity is as follows:
Γr = 0.535, Γb = 0.303, Γb = 0.162, the ground-truth val-
ues are: Γr = 0.536, Γb = 0.304, Γb = 0.160.

many different clusters with different values of Λc, as is the case
for multicolored surfaces, we can still safely estimate the illu-
mination chromaticity (Γc). This means that, for multicolored
surfaces, the estimation process is exactly the same to the case
of a uniformly colored surface. Figure 6.b shows the projection
of hightlighted regions of a synthetic image with two surface
colors (Figure 6.a) into inverse-intensity chromaticity space.

3.3 Computational Method
To estimate every value of illumination chromaticity
({Γr, Γg, Γb}) from inverse-intensity chromaticity space,
we use the Hough transform for each color channel. Figure 7.a
shows the transformation from inverse-intensity chromaticity
space into the Hough space, where its x-axis represents Γc
with index c representing color channel we want to estimate,
and its y-axis represents pc, with c equals the c of Γc. Since
Γc is a normalized value, the range of its value is from 0 to 1
(0 < Γc < 1).

Using the Hough transform alone does not yet give any so-
lution, because the values of pc are not constant throughout the
image, which makes the intersection point of lines not located at
a single location. Fortunately, even if the values of pc vary, the
values of Γc are constant. Thus, in principle, all intersections
will be concentrated at a single value of Γc, with a small range
of pc’s values. These intersections are indicated by a thick solid
line in Figure 7.a. If we focus on the intersections in the Hough
space as illustrated in Figure 7.b, we should find a larger num-
ber of intersection at a certain value of Γc compared to other
values of Γc. The reason is, in inverse-intensity chromaticity
space, within the range of Γc (0 < Γc < 1), the number of
groups of points that form a straight line heading for certain
value of Γc are more dominant than the number of groups of
points that form a straight line heading for other values of Γc.

In practice, we count the intersections in the Hough space
based on the number of points that occupy the same location.
The details are as follows. A line in the Hough space is formed
by a number of points. If this line is not intersected by other
lines, then each point will occupy a certain location uniquely
(one point for each location). However, if two lines intersect,
a location where the intersection takes place will be shared by

two points. The number of points will increase if other lines
also intersect with those two lines at the same location. Thus,
to count the intersections, we first discard all points that occupy
a location uniquely, as it means there are no intersections, and
then count the number of points for each value of Γc.

As a consequence, by projecting the total number of inter-
sections of each Γc into a two-dimensional space, illumination-
chromaticity count space, with y-axis representing the count of
intersections and x-axis representing Γc, we can robustly esti-
mate the actual value of Γc. Figure 8.a shows the distribution
of the count numbers of intersections in the space, where the
distribution forms a Gaussian-like distribution. The peak of the
distribution lies at the actual value of Γc.

3.4 Implementation
Implementation of the proposed method is quite simple. Given
an image that has highlights, we first find the highlight regions
by using thresholding on image intensity and saturation values.
Following the method of Lehmann et al. [28], we define the
threshloding as follows:

Ĩ =
Ir + Ig + Ib

3
> Ta Ĩmax

S̃ = 1− min(Ir , Ig, Ib)
Ĩ

< TbS̃
max (16)

where Ĩmax and S̃max are the largest Ĩ and S̃ in the whole
input image, respectively. Ta and Tb are the thresholds of image
intensity and saturation, respectively. In our implementation,
we set Ta and Tb from 0.4− 0.6.

This thresholding technique cannot always produce pre-
cise highlight regions. Fortunately, in practice our estimation
method does not need precise highlight region, even if rela-
tively small regions of diffuse pixels are included, the algo-
rithm could work robustly. Of course, more preciseness is
better. Then, for each color channel, we project the high-
light pixels into inverse-intensity chromaticity space. From this
space, we use the conventional Hough transform to project the
clusters into Hough space. During the projection, we count
all possible intersections at each value of chromaticity. We
plot these intersection-counting numbers into the illumination-
chromaticity count space. Ideally, from this space, we can
choose the tip as the estimated illumination chromaticity. How-
ever, as noise always exists in real images, the result can be im-
proved by computing the median of a certain percentage from
the highest counts. In our implementation, we use 30% from
the highest counted number.

Note that, first, in our current implementation we esti-
mate three color channels of illumination chromaticity indepen-
dently. In fact, since (Γr+Γg +Γb) = 1, we can solely estimate
two color channels instead of three color-channels. Second, the
problem of determining highlight regions is still an open chal-
lenging problem, and our method could fail for specific domains
that do not follow our thresholding described in Equation (16).

4 Reflection Components Separation †

4.1 Normalization
In our method, to separate reflection components correctly, the
color of the specular component must be pure white (Γr =
Γg = Γb). So, we need to normalize the input image. The
normalization requires the value of Γ (illumination chromatic-
ity), which can be estimated using color constancy algorithms
explained in Section 3, or using white reference. We express

†This section has similar contents to our paper appeared in [37]
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the estimated illumination chromaticity as Γest, with Γest =
{Γest

r , Γest
g , Γest

b }, and the normalized image as:

I′(x) = md(x)Λ′(x) + ms(x) (17)

where I′(x) = I(x)
Γest , the normalized image intensity and

Λ′ = Λ(x)
Γest , the normalized diffuse chromaticity, and we as-

sume Γ
Γest = {1, 1, 1}. Using the above normalization, we can

obtain a scalar value of the specular reflection component.
Later, when the separation is done, to obtain the actual reflec-

tion components, we need to renormalize the separated compo-
nents, simply by multiplying them

(
md(x)Λ′(x) and ms(x)

)
with Γest:

md(x)Λ(x) =
[
md(x)

Λ(x)
Γest

]
Γest (18)

ms(x)Γ =
[
ms(x)

Γ
Γest

]
Γest (19)

4.2 Specular-free Image
To deal with multicolored surfaces we utilize specular-to-
diffuse mechanism [37, 39, 41]. By utilizing the mechanism,
the problem of separation can be simplified into the problem
of finding diffuse maximum chromaticity; and, principally for
uniformly colored surface, we can find it from the largest value
of maximum chromaticity (the extreme right point in maximum
chromaticity intensity space). Unfortunately, unlike uniformly
colored surfaces, the diffuse maximum chromaticities for multi-
colored surfaces are completely unknown, which in fact, is the
main problem of separating reflection component using a sin-
gle multicolored image. Thus, for multicolored surfaces, the
specular-to-diffuse mechanism cannot be applied directly.

Nevertheless, the mechanism is still useful, since it informs
us that the diffuse component of a specular point lies some-
where in the curved line. A brief about the mechanism is as
follows. First, we define maximum chromaticity as:

σ̃′(x) =
Ĩ′(x)

I′r(x) + Ig′(x) + Ib′(x)
(20)

where Ĩ′(x) = max(I′r(x), I′g(x), I′b(x)). Unlike normal-
ized image chromaticity (σ), σ̃′ is a scalar value. Using the
maximum chromaticity definition, we describe the correlation
of image intensity, Ĩ′, and image chromaticity, σ̃′, as (see Ap-
pendix A for detail derivation):

Ĩ′(x) = md(x)(Λ̃′(x) − 1/3)
( σ̃′(x)

σ̃′(x) − 1/3

)
(21)

where Λ̃′ has identical color channel to Ĩ . Then, the
specular-to-diffuse mechanism mathematically can be ex-
pressed as:

md(x) =
Ĩ′(x)[3σ̃′(x) − 1]
σ̃′(x)[3Λ̃′(x) − 1]

(22)

ms(x) =
1
3
[(I′r(x) + I′b(x) + I′g(x)) −md(x)](23)

md(x)Λ′(x) = I′(x)−ms(x) (24)

One significant appliance of specular-to-diffuse mechanism
is to generate a specular-free image, an image that is free from
highlights and has geometrical profile identical to the diffuse
component of the input image. To generate it, we simply set the

(a) (b)

Figure 9: (a) Synthetic image. (b) Projection of the synthetic
image pixels into the maximum chromaticity intensity space.

(a) (b)

Figure 10: (a) Shifting all pixels into arbitrary Λ̃′. (b) Specular-
free image.

diffuse maximum chromaticity (Λ̃′ in Equation (22)) equal to an
arbitrary scalar value (1/3 < Λ̃′ ≤ 1), for all pixels regardless
of their color. For instance, we set Λ̃′ equal to 0.5 for image in
Figure 9.a, which implies that the distribution of the points in
maximum chromaticity-intensity space becomes a vertical line
as shown in Figure 10.a. As a result, we can obtain an image
that does not have specular reflections (Figure 10.b). Figure
11.a shows a real image of a multicolored scene. By setting
Λ̃′ = 0.5 for all pixels, we obtain an image that is geometrically
identical to the diffuse component of the input image (Figure
11.b). The difference of both is solely in their surface colors.

This technique can successfully remove highlights mainly
because the saturation values of all pixels are made constant
(with regard to the maximum chromaticity) while retaining their
hue [6, 2]. It is well known that, if the specular component’s
color is pure white, then diffuse and specular pixels that have
the same surface color will have identical values of hue, with
the hue defined as [18]:

H = cos−1

[ 1
2

[
(I′r − I′g) + (I′r − I′b)

]
[
(I′r − I′g)2 + (I′r − I′b)(I′g − I′b)

] 1
2

]
(25)

but difference saturation values, with saturation is defined as
[18]:

S = 1−
[ 3
I′r + I′g + I′b

min(I′r , I
′
g, I

′
b)

]
(26)

In our dichromatic reflection model (Equation 17), different sat-
uration means different value of ms (the weighting factor of
specular component), and the same hue means the same value of
Λ′ (the normalized diffuse chromaticity). As consequences, in
maximum chromaticity intensity space, for diffuse points with
the same Λ′, both saturation and hue values will be constant
(since their ms values equal zero). In contrast, for specular
points, the saturation values will vary (since their ms values
vary), and if their diffuse chromaticities are the same, the hue
values will be constant. Thus, shifting all points in maximum
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(a) (b)

Figure 11: (a) Normalized image after removing achro-
matic pixels, below-camera-dark pixels and saturated pixels (b)
Specular-free image by setting Λ̃ = 0.5. The specular compo-
nents are perfectly removed; the difference is only in the surface
color.

chromaticity intensity space into a certain arbitrary value us-
ing a specular-to-diffuse mechanism is identical to making all
points’ saturation values constant while retaining their hue val-
ues intact. These constant-saturation values cause the highlights
to disappear from the image.

Formally, we can describe the specular-free image as:

I̊(x) = m̊d(x)Λ̊(x) (27)

where ˚I(x) = {I̊r(x), I̊g(x), I̊b(x)} is the image intensity of
the specular-free image, ˚Λ(x) = {Λ̊r(x), Λ̊g(x), Λ̊b(x)} is the
diffuse chromaticity, and m̊d is the diffuse weighting factor. In
the following, we will prove that m̊d has the same geometrical
profile to md (the diffuse weighting factor of normalized im-
age).

According to Equation (17) a normalized diffuse pixel is de-
scribed as I′(x) = md(x)Λ′(x). If we apply the specular-to-
diffuse mechanism to the pixel by substituting the value of Λ̃′ in
Equation (22) where Λ̃′ = max(Λ′

r, Λ′
g, Λ′

b) with an arbitrary
maximum chromaticity whose value equals max(Λ̊r , Λ̊g, Λ̊b),
then the equation becomes:

m̊d(x) =
Ĩ′(x)[3σ̃′(x) − 1]

σ̃′(x)[3max(Λ̊r, Λ̊g, Λ̊b) − 1]
(28)

Since Ĩ′(x) = md(x)Λ̃′(x), and for diffuse pixels Λ̃′(x) =
σ̃′(x), by defining Λ̃new = max(Λ̊r , Λ̊g, Λ̊b), we can obtain:

m̊d(x) = md(x)
3Λ̃′(x) − 1
3Λ̃new − 1

(29)

Λ̃new is independent of the spatial parameter (x), since we use
the same value Λ̃new for all pixels regardless of their colors.
Note that the same value of Λ̃new does not necessarily imply
the same value Λ̊. As a result, for diffuse pixels with the same
diffuse chromaticity (the same surface color), 3Λ̃′(x)−1

3Λ̃new−1
will be

constant, thereby enabling us to describe the image intensity of
specular-free image as:

I̊(x) = md(x)kΛ̊(x) (30)

Figure 12: Basic Flow of the proposed method.

where k = 3Λ̃′(x)−1

3Λ̃new−1
, a constant scalar value for pixels with the

same diffuse chromaticity (pixels that are not located at color
discontinuities). The proof for specular pixels is described in
Appendix B. Therefore, since m̊d(x) = md(x)k, the diffuse
geometrical profile of the specular-free image is identical to the
geometrical profile of both the normalized image (17) and the
input image (6).

Note that, in order to avoid generating negative values of
I̊(x), the arbitrary scalar value of maximum diffuse chromatic-
ity (Λ̃new) should be chosen from a value near the smallest max-
imum chromaticity of the input image. Also, caution should be
taken in using a specular-free image, particularly for applica-
tions that require evaluating color discontinuities since, in the
case of two adjacent colors that have the same hue but different
saturation, color discontinuities of the two colors will disappear.

Generating a specular-free image using specular-to-diffuse
mechanism is a one-pixel-based operation that requires only a
single colored image without any segmentation process. As a
result, it is simple and probably useful for many applications in
computer vision that do not need actual surface color but suffer
from highlights.

4.3 Separation Method
Figure 12 shows the basic idea of our proposed method. First,
given a normalized image, we generate a specular-free image.
Based on the image, in the ”diffuse verification” process, we
verify whether the normalized image has diffuse-only pixels.
If so, the processes terminate; otherwise, in the ”specularity
reduction” process, we decrease the intensity of the image’s
specular pixels. After that, we verify once again whether the
decreased image has diffuse-only pixels in the ”diffuse verifi-
cation” process. These two processes (diffuse verification and
specularity reduction) are done iteratively until there is no spec-
ularity in the normalized image. To accomplish their tasks, the
two processes require only two adjacent pixels. This local oper-
ation is indispensable in dealing with highly textured surfaces.
The following subsections will show how the two processes are
carried out.

4.4 Diffuse Pixels Verification
Intensity Logarithmic Differentiation Given one colored
pixel, to determine whether it is diffuse or specular pixel is com-
pletely an ill posed problem. In a linear equation such as equa-
tion (17), only from a single I′, whether ms is equal to zero is
undeterminable. In this section, instead of a single pixel, we
will show that two-neighboring pixels can be the minimum re-
quirement to determine whether both of them are diffuse pixels.

We base our technique on intensity logarithmic differentia-
tion of the normalized image and the specular free image. Con-
sidering a diffuse pixel which is not located at color discontinu-
ity, we can describe it as: I′(x1) = md(x1)Λ′.
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The spatial parameter (x1) is removed from Λ′, since the
pixel is not located at color discontinuity. If we apply logarith-
mic and then differentiation operation on this pixel, the equation
becomes:

log(I′(x1)) = log(md(x1)) + log(Λ′) (31)
d

dx
log(I′(x1)) =

d

dx
log(md(x1)) (32)

For the same pixel’s location (x1), we can obtain a correspond-
ing pixel in the specular-free image. This pixel has exactly
the same diffuse geometrical profile as that of the input im-
age; only its diffuse chromaticity is different. We describe it
as: I̊(x1) = md(x1)kΛ̊ where k and Λ̊ are independent from
spatial parameter. Thus, using the same operations, logarithmic
and differentiation, we can obtain:

d

dx
log(̊I(x1)) =

d

dx
log(md(x1)) (33)

which is exactly the same result as the pixel from the normal-
ized image (Equation (32)). As a result, based on the inten-
sity logarithmic differentiation operation, we become able to
determine whether two-neighboring pixels are diffuse pixels
(in discrete operation, the differentiation requires at least two-
neighboring pixels):

∆(x) = dlog(I′(x)) − dlog(̊I(x)) (34)

∆(x)
{ = 0 : diffuse
�= 0 : specular or color discontinuity (35)

As shown in Equation (35), for pixels located at color dis-
continuities, there is still an ambiguity between specular and
color discontinuity pixels. Since using two neighboring pixels
that have different surface color, the difference of the logarith-
mic differentiation does not equal zero, although the pixels are
diffuse pixels. Theoretically, by extending the number of pixels
into at least four neighboring pixels, it is possible to distinguish
them. However, in real images, camera noise and surface noise
(surface variance) [19, 39, 41] make such identification become
error-prone. Consequently, to deal with the color is continuity
problem, we need another more robust analysis which will be
described in the next subsection.

Color Discontinuity A number of methods have been pro-
posed to solve the color discontinuity problem, which is also
known as the problem of material changes [20, 15]. Unlike
most of the existing methods, we use a simple chromaticity-
based method to handle the problem. We define σ′

r = I′
r

I′
r+I′

g+I′
b

and σ′
g = I′

g

I′
r+I′

g+I′
b

, and use the below decision rule:

(∆r > thR and ∆g > thG)
{

true : color discontinuity
false : otherwise

(36)
where thR and thG are the small scalar numbers. ∆r(x) =
σ′

r(x) − σ′
r(x − 1) and ∆g(x) = σ′

g(x) − σ′
g(x − 1). We

obtain the values of σ′
r and σ′

g from the pixels of the normalized
image. This simple technique is similar to the method proposed
by Funt et al. [13].

For two neighboring pixels, this simple chromaticity thresh-
olding is sufficient. Since when two neighboring pixels have the
same surface color, their chromaticity difference is small, even
for specular pixels. This is one of the advantages of our local,
two-neighboring-pixels operation. Moreover, the above thresh-
olding can also solve the problem of two adjacent objects that
have the same hue but different saturation, as long as the satu-
ration difference is not less than the thresholds. Fortunately, in

(a) (b) (c)

Figure 13: (a) Three points in an image. (b) The three points in
spatial-intensity space. (c) The three points in maximum chro-
maticity intensity space.

practice, even if the saturation difference is less than the thresh-
olds, it does not affect the result much; since it implies that the
objects have almost the same color, so that it is unnecessary to
distinguish them. In addition, we have no problem when the
above thresholding wrongly deems the shadow boundary to be
a color discontinuity, since we have nothing to do with shadow.

4.5 Specularity Reduction
Specularity reduction is the second process of the two main pro-
cesses we have proposed. The purpose of this process is to de-
crease the intensity of the specular pixels until we obtain diffuse
only reflection. All operations in this process are still based only
on two-neighboring pixels. Figure 13.a shows three pixels: a, b,
and c. For the sake of simplicity, for the moment we assume a
uniformly colored surface and that the three pixels are adjacent
spatially to each other. Pixel a is the highlight’s brightest pixels,
and pixel c is a diffuse pixel, and pixel b is a specular pixels lo-
cated between pixels a and c. In spatial-image intensity space,
the image intensity of pixel a will be the largest value followed
by pixels b and c, as shown in Figure 13.b. If we transform
the pixels into maximum chromaticity-intensity space, we will
obtain a point distribution illustrated in Figure 13.c.

(a) (b) (c)

(d) (e) (f)

Figure 14: Basic idea of the iterative framework using local
two-pixels operation. Top row, spatial-intensity space: (a) Ini-
tial condition. (b) First looping. (c) Final condition; Bottom
row, chromaticity intensity space: (d) Initial condition. (e) First
looping. (f) Final condition.

Figure 14 illustrates the basic idea of our specularity reduc-
tion. In considering a two-pixel operation, the iteration begins
with comparing the maximum chromaticity of point a and point
b in Figure 14.d . From the maximum chromaticity definition
in Equation (20), we know that the smaller the ms is, the big-
ger the maximum chromaticity value. In other words, point b is
more diffuse than point a. Thus, by shifting point a using the
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specular-to-diffuse mechanism w.r.t the maximum chromatic-
ity of point b, the more diffuse pixel a can be obtained, i.e.,
the intensity of pixel a becomes decreased and its chromatic-
ity becomes identical to point b’s, as illustrated in Figure 14.b
and 14.e, respectively. Using the same process in the second
iteration, the maximum chromaticity of point b and point c are
compared and then shifted. When the maximum chromaticity
of point b equals the maximum chromaticity of point c, the in-
tensity of pixel b becomes equal to its diffuse component. The
same operation is done for all pixels iteratively until their max-
imum chromaticity becomes the same (Figure 14.f), which as
a result, produces the diffuse components of the three pixels
(Figure 14.c).

However, the above termination condition, looping until the
maximum chromaticity of all pixels is the same, is feasible only
for a uniformly colored surface. In multicolored surfaces, such
a termination condition will produce incorrect separation re-
sults. Thus, to verify whether the image contains only diffuse
pixels, we use the logarithmic differentiation, as explained in
Subsections 5.4.1. Algorithm 4.1 shows the pseudo-code of the
iteration method for both uniform and multicolored surfaces; a
detailed explanation will be provided in Section 4.6.

4.6 Implementation
Algorithm 4.1 shows the pseudo-code of the iterative algo-
rithm. It begins with executing function delta(N, S, ε), which
computes the difference of the intensity logarithmic differenti-
ation of the normalized image (N ) and the specular-free image
(S). In discrete operations, the logarithmic differentiation is
done using: dlog(I′tot(x)) = log(ΣI′i(x + 1)) − log(ΣI′i(x)),
where ΣI′i = (I′r + I′g + I′b). Then, the function computes
∆ = dlog(I′tot(x))−dlog(I̊tot(x)), and labels the pixels of the
normalized image; for pixels that have ∆ more than ε (≈ 0),
they are labeled ”specular”, otherwise ”diffuse”.

Algorithm 4.1: ITERATION(N, S, ε)

comment: N=normalized-image; S= specular-free-image
(1) ∆ = delta(N, S, ε);
(2) while any(∆(x) > ε)


for x← 0 to sizeof(N)-1


(3) if x.flag == diffuse
then next(x);

(4) if IsDiscontinuity(x, x + 1) == true

then

{
x.flag = discontinuity;
(x + 1).flag = discontinuity;
next(x);

(5) if c̃(x) == c̃(x + 1)

then

{
x.flag = noise;
(x + 1).flag = noise;
next(x);

(6) M(x) = Specular2Diffuse(I′ (x), I′(x + 1));
next(x);

N = M ;
(7) ∆ = delta(N, S, ε);

return (N)
comment: N = normalized diffuse component

In Step 2 until Step 4, if there are any pixels labeled ”spec-
ular”, for each of them, the algorithm examines whether the
pixel and its neighbor are color discontinuity pixels. If so, then
they are labeled ”discontinuity;” otherwise, then at least one of
them must be a specular pixel. In Step 5, before we apply the
specular-to-diffuse mechanism to both pixels, additional check-
ing is necessary, i.e., whether both pixels’ maximum chromatic-
ity is the same. If they are the same, then the pixels are labeled
”noise”. The reason that they are noise and not specular pixels

is because two-neighboring specular pixels never have the same
maximum chromaticity.

In Step 6, using the specular-to-diffuse mechanism the in-
tensity and maximum chromaticity value of the pixel that have
smaller σ̃′ is shifted w.r.t. the pixel with bigger σ̃′. This
is applied to all pixels, and produces a more diffuse normal-
ized image. By setting N equal to this image (M ), function
delta(N, S, ε) is executed once again in Step 7. This time,
pixels labeled ”discontinuity” and ”noise” are ignored (not in-
cluded in the process). Finally, if there is still any ∆ larger than
ε, then the iteration continues; if not, the separation terminates,
which consequently, yields a diffuse component of the normal-
ized image.

In our implementation, we define ε = 0. For color discon-
tinuity thresholds (thR and thG), we set them with the same
number ranging from 0.05 to 0.1. The numbers are chosen
by considering camera noise, illumination color variance, am-
bient light (some considerably small interreflections) and sur-
face color variance (although human perception deems that the
color surface is uniform, there is, in fact, still color variance
due to dust, imperfect painting, etc. [39, 41]). For a more stable
and robust algorithm we add an algorithm that controls the de-
crease of the threshold of ∆ step-by-step, as described in Algo-
rithm 4.2. In function Iteration(N, S, ε), stepTh will replace
ε, which in our implementation its initial value isequal to 0.5.
Ideally, the initial value should be set as large as possible; yet,
by considering the time computation the number is chosen. To
obtain more accurate results, the smaller subtracting number (δ)
is preferable and, in our implementation, we set it equal to 0.01.
To anticipate regions having achromatic pixels (I′r = I′g = I′b),
which are inevitable in the real images, we remove them by us-
ing simple thresholding in maximum chromaticity; achromatic
pixels of normalized image have maximum chromaticity near
1/3. In addition, to avoid saturated pixels, HDR (High Dy-
namic Range) images or a diffuser filter can be used.

Algorithm 4.2: CONTROLLEDTHRESHOLD(N, S)

comment: N=normalized-image; S= specular-free-image
RemoveAchromaticP ixels(N );
stepTH = InitialThreshold;
while stepTH > ε


∆ = delta(N, S, ε);
if any(∆(x) > stepTH)

then Iteration(N, S, stepTH);
stepTH = stepTH − δ;
ResetAllLabels();

Renormalization(N);
return (N);
comment: N=actual diffuse component

5 Experimental Results
Experimental Conditions We have conducted several exper-
iments on real images, which were taken using a SONY DXC-
9000, a progressive 3 CCD digital camera, by setting its gamma
correction off. To ensure that the outputs of the camera are lin-
ear to the flux of incident light, we used a spectrometer: Photo
Research PR-650. We examined the algorithm using four types
of input, i.e., uniform colored surfaces, multicolored surfaces,
highly textured surfaces, and a scene multiple objects. We used
convex objects to avoid interreflection, and excluded saturated
pixels from the computation. For evaluation, we compared the
results with the average values of image chromaticity of a white
reference image (Photo Research Reflectance Standard model
SRS-3), captured by the same camera. The standard deviations
of these average values under various illuminant positions and
colors were approximately 0.01 ∼ 0.03.
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5.1 Color Constancy
Result on a uniformly colored surface Figure 15.a shows a
real image of a head model that has a uniformly colored surface
and relatively low specularity, illuminated by Solux Halogen
with temperature 4700K. Under the illumination, the image
chromaticity of the white reference taken by our camera has
chromaticity value: Γr = 0.371, Γg = 0.318, Γb = 0.310.

Figure 15.b shows the specular points of the red channel
of chromaticity in inverse-intensity chromaticity space. Even
though there is some noise, generally, all points form several
straight lines heading for a certain point in the chromaticity
axis. The same phenomenon can also be observed in Figure
15.c and Figure 15.d. Figure 16 shows the intersection-counting
distribution in the illumination-chromaticity count space. The
peaks of the distribution denote the illumination chromatic-
ity. The result of the estimation was: Γr = 0.378, Γg =
0.324, Γb = 0.287.

Result on a multi-colored surface Figure 17.a shows a plas-
tic toy with a multicolored surface. The illumination is Solux
Halogen covered with a green filter. The image chromaticity of
the white reference under this illuminant taken by our camera
was Γr = 0.298, Γg = 0.458, Γb = 0.244.

Figure 17.b, c, d show the specular points of multiple surface
colors in inverse-intensity chromaticity space. From Figure 18,
we can observe that, even for several surface colors, the peak of
intersection counts was still at a single value of Γc. The result
of the estimation was Γr = 0.319, Γg = 0.439, Γb = 0.212.

Result on highly textured surface Figure 19.a shows a mag-
azine cover with a complex multicolored surface, which was
lit by a fluorescent light covered with a green filter. The
image chromaticity of the white reference under this illumi-
nant taken by our camera has a chromaticity value of Γr =
0.283, Γg = 0.481, Γb = 0.236. The result of the estimation
was Γr = 0.315, Γg = 0.515, Γb = 0.207, as shown in Figure
20.

Result on multiple objects Figure 21.a shows a scene with
multiple objects, which was lit by a fluorescent light taken in
uncontrolled environment. The image chromaticity of the white
reference under this illuminant taken by our camera has a chro-
maticity value of Γr = 0.337, Γg = 0.341, Γb = 0.312. The
result of the estimation was Γr = 0.321, Γg = 0.346, Γb =
0.309, as shown in Figure 22.

Evaluation To evaluate the robustness of our method, we
have also conducted experiments on 6 different objects: 2 ob-
jects with a single surface color, 1 object with multiple surface
colors, and 3 objects with highly textured surfaces. The colors
of illuminants were grouped into 5 different colors: Solux Halo-
gen lamp with temperature 4700K, incandescent lamp with
temperature around 2800K, Solux Halogen lamp covered with
green, blue and purple filters. The illuminants were arranged at
various positions. The total of images in our experiment was
43 images. From these images, we calculated the errors of the
estimation by comparing them with the image chromaticity of
the white reference, which are shown in Table 1. The errors are
considerably small, as the standard deviations of the reference
image chromaticity are around 0.01 ∼ 0.03.

Table 1: The performance of the estimation method with regard
to the image chromaticity of the white reference

red green blue
average of error 0.0172 0.0141 0.0201
std. dev. of error 0.01 0.01 0.01

(a) (b)

(c) (d)

Figure 15: (a) Real input image with a single surface color. (b)
Projection of the red channel of the specular pixels into inverse-
intensity chromaticity space. (c) Projection of the green channel
of the specular pixels into inverse-intensity chromaticity space.
(d) Projection of the blue channel of the specular pixels into
inverse-intensity chromaticity space.

5.2 Reflection Components Separation
We evaluate the separation results by comparing the results of
two polarizing filters. We place one of the two filters in front
of camera and the other in front of the light source. Theoret-
ically, if we change the polarization angle of one of the two
filters into a certain angle, we can obtain diffuse only reflection.
In our experiment, we changed the polarization angle of the fil-
ter placed in front of the camera. Figure 5.2.a, b and c show,
respectively, the input image, the diffuse reflection component
obtained using the two polarizing filters (ground truth) and re-
flection components estimated using our method. Figure 5.2.d,
e and f show the difference of image intensity values of the in-
put image (Figure 5.2.a) and the ground truth (Figure 5.2.b), in
red, green and blue channels, respectively. The ranges of blue
pixels in the figures are 0 ∼ 5. Green pixels are 6 ∼ 15, red
pixels are 16 ∼ 35, while yellow pixels represent larger than
35. In highlighted regions, we can observe a large difference of
the intensity values in all color channels. Also, in certain places
near occluding boundaries, yellow and red pixels also appear;
this is caused by the difference of intensity distribution when
the polarization angle is changed. Figure 5.2.g, h and i show the
difference of image intensity values of the estimated reflection
component (Figure 5.2.c) and the ground truth (Figure 5.2.b)
in red, green and blue, respectively. In former highlighted re-
gions, the colors became blue, indicating that the estimation re-
sult was considerably accurate. Red and green pixels occurring
in many places in the comparison are due to two main factors:
inaccurate illumination chromaticity estimation, and the second
type of noise (dark noise) that occurs as the result of using po-
larizing filters. Despite these factors, the estimation results are
considerably accurate, since the maximum value of second type
of noise of the camera (Sony DXC-9000) is around 10. Figure
5.10 shows another separation result using a different object.
Note that, in this evaluation, we do not evaluate pixels whose
image intensity below camera is dark (black pixels in the eval-
uation represent unevaluated parts).

For a complex textured surface, Figure 24.a shows an image
of a textured surface under fluorescent lights in uncontrolled
environment. The specular-free image, which was generated by
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(a) (b)

(c)

Figure 16: (a) Intersection-counting distribution for red chan-
nel of illumination chromaticity for image in Figure 15.
(b) Intersection-counting distribution for green-channel. (c)
Intersection-counting distribution for blue channel.

(a) (b)

(c) (d)

Figure 17: (a) Real input image with multiple surface colors.
(b) Projection of the red channel of the specular pixels into
inverse-intensity chromaticity space. (c) Projection of the green
channel of the specular pixels into inverse-intensity chromatic-
ity space. (d) Projection of the blue channel of the specular
pixels into inverse-intensity chromaticity space.

(a) (b)

(c)

Figure 18: (a) Intersection-counting distribution for the red
channel of illumination chromaticity for image in Figure 17.
(b) Intersection-counting distribution for the green channel. (c)
Intersection-counting distribution for the blue channel.

setting Λ̃new equal to 0.5 is shown in Figure 24.b. Figure 24.c
and 24.d show the separated components of the object. Fig-
ure 27.a shows a complex scene lit with fluorescent lights in
an uncontrolled environment. The specular-free image result is
shown in Figure 27.b. Figure 27.c and Figure 27.d show the
diffuse and specular reflections, respectively. In the estimated
diffuse component (Figure 28.a) and the specular-free image
(Figure 28.b), regions which are originally white become dark.
The reason is that the specular-to-diffuse mechanism fails to
handle achromatic pixels.

6 Conclusion
We have introduced a novel method for illumination chromatic-
ity estimation. The proposed method can handle both uniform
and non-uniform surface color objects. Given crude highlight
regions, the method can estimate illumination color without re-
quiring color segmentation. It is also applicable for multiple
objects with various colored surfaces, as long as there are no in-
terreflections. In this paper, we also introduced inverse-intensity
chromaticity space to analyze the relationship between illumi-
nation chromaticity and image chromaticity. There are a few
advantages of the method. First, the capability to cope with
either single surface color or multiple surface colors. Second,
color segmentation inside highlight regions and intrinsic cam-
era characteristics are not required. Third, the method does not
use strong constraints on illumination, which several existing
color constancy methods use, such as blackbody radiator.

We also have proposed a novel method to separate diffuse
and specular reflection components. The main insight of the
method is on the chromaticity-based iteration with regard to the
logarithmic differentiation of the specular-free image. Using
the method, the separation problem in textured surfaces with
complex multicolored scene can be resolved without requiring
explicit color segmentation. It is possible because we base our
method on local operation by utilizing the specular-free im-
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(a) (b)

(c) (d)

Figure 19: (a) Real input image of complex textured surface. (b)
Projection of the red channel of the specular pixels into inverse-
intensity chromaticity space. (c) Projection of the green channel
of the specular pixels into inverse-intensity chromaticity space.
(d) Projection of the blue channel of the specular pixels into
inverse-intensity chromaticity space.

age. There are three crucial factors, and thus the main contribu-
tions of our method, i.e., the specular-to-diffuse mechanism, the
specular-free image, and the logarithmic differentiation-based
iteration framework.

The experimental results of our color constancy and reflec-
tion components separation on complex textured images show
that the proposed methods are accurate and robust.
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Appendix A
Derivation of the correlation between illumination chromaticity and
image chromaticity.

σ̃′(x) =
md(x)Λ̃′(x) + ms(x)

md(x)[Λ′
r(x) + Λ′

g(x) + Λ′
b(x)] + 3ms(x)

(37)

where [Λ′
r + Λ′

g + Λ′
b] = 1. For local (pixel based) operation the

location (x) can be removed. Then:

ms = md
(Λ̃′ − σ̃′)
(3σ̃′ − 1)

(38)

Substituting ms in the definition of Ĩ (Equation (17)) with ms in the
last equation:

Ĩ ′ = md(Λ̃
′ − 1/3)(

σ̃′

σ̃′ − 1/3
) (39)

(a) (b)

(c)

Figure 20: (a) Intersection-counting distribution for the red
channel of illumination chromaticity for image in Figure 19.
(b) Intersection-counting distribution for the green channel. (c)
Intersection-counting distribution for the blue channel.

Appendix B
A diffuse pixel from a normalized image can be described as: I′(x) =
md(x)Λ′(x). In Section 4.2, we have shown that using specular-to-
diffuse mechanism by substituting Λ̃′ with an arbitrary value (Λ̃new)
whose value is between 1/3 ∼ 1, we can obtain:

I̊(x) = m̊d(x)Λ̊(x) = md(x)kΛ̊(x) (40)

where, for a pixel not located at color discontinuity, k is a constant
scalar value (k = 3Λ̃′(x)−1

3Λ̃new−1
).

A specular pixel with identical diffuse geometrical profile to the
above diffuse pixel is described as: I′(x) = md(x)Λ′(x) + ms(x).
By applying specular-to-diffuse mechanism to the specular pixel with
the same value of Λ̃new, we can obtain:

m̊d(x) =
Ĩ ′(x)[3σ̃′(x) − 1]

σ̃′(x)[3max(Λ̃new − 1]
(41)

where Ĩ ′(x) = md(x)Λ̃′(x)+ms(x), and Λ̃new is the arbitrary maxi-
mum chromaticity. Unlike diffuse pixels, for specular pixels, σ̃′ �= Λ̃′.
Then, the last equation becomes:

m̊d(x) =
[
md(x)Λ̃′(x) + ms(x)

]
[3σ̃′(x) − 1]

σ̃′(x)[3Λ̃new − 1]
(42)

Since we argued that in specular-free image specular reflection disap-
pear (m̊s = 0), then m̊d of the specular pixel should equal to m̊d of
the diffuse pixel:

m̊diff
d = m̊spec

d (43)

md

[
3Λ̃′(x) − 1

3Λ̃new − 1

]
=

[
md(x)Λ̃′(x) + ms(x)

]
(44)
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(a) (b)

(c) (d)

Figure 21: (a) Real input image of a scene with multiple objects.
(b) Result of projecting the specular pixels into inverse-intensity
chromaticity space, with c representing the red channel. (c)
Result of projecting the specular pixels, with c representing the
green channel. (d) Result of projecting the specular pixels, with
c representing the blue channel.

[3σ̃′(x) − 1]

σ̃′(x)[3Λ̃new − 1]

md(x)
[
3Λ̃′(x) − 1

]
σ̃′(x) = md(x)Λ̃′(x)

[
3σ̃′(x) − 1

]
+(45)

ms(x)
[
3σ̃′(x) − 1

]
md(x)

[
Λ̃′(x) − σ̃′(x)

]
= ms(x)

[
3σ̃′(x) − 1

]
(46)

ms(x) = md(x)
(Λ̃′(x) − σ̃′(x))

(3σ̃′(x) − 1)
(47)

the last equation is identical to Equation (38) in Appendix A, which
proves that m̊diff

d = m̊spec
d holds true. Therefore, all pixels in a

specular-free image have no specular reflection component and its ge-
ometrical profile is identical to the diffuse component of the input im-
age.
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channel (e) G-channel (f) B-channel

(a) (b)

(c) (d)

Figure 24: (a) A complex textured surface lit with fluorescent
lights. (b) The specular-free image was created by setting Λ̃′ =
0.5. (c) Diffuse reflection component. (d) Specular reflection
component.
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