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Abstract In order to extract the topological relationship among objects in observed images, we have previously
proposed a method to construct Contour Tree, which describes the topological structure of isosurfaces[1]. The Con-
tour Tree constructed by the method can be considered as a data structure describing the topological relationship
among regions, each of which has identical field value. We discuss about this data structure named Region-based
Contour Tree and the procedure to construct it. We also show several applications of Region-based Contour Tree
for digital image processing.
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. sents the structure of objects. Therefore, we will focus on
1. Introduction ) R
the structure of isosurfaces in digital images.

With the advance of the imaging technology and the im-
provement of computer power, the opportunities of using dig-
ital images are rapidly increasing. In the medical field, vari-
ous types of digital images are used such as two-dimensional
(2D) X-ray projection images, 3D X-ray computer tomogra-
phy images, magnetic resonance images, and the temporal
series of these images.

The final goal of our research is to extract, analyze and
display the topological structure of observed objects from
multidimensional digital images. These are difficult issues
especially when the images are 3D or higher.

If an object corresponds to a single pixel value in an im-

age, the topological structure of isosurfaces directly repre-

“Contour Tree” (CT)[2] is a data structure to describe
the topological relationship among isosurfaces in multidi-
mensional scalar fields, based on the relationship between
the critical points (local maxima, local minima and saddle
points) in the fields. In the conventional methods to con-
struct CT, the scalar fields are assumed to be continuous
and critical points that do not have area are uniquely found.

When digital images are represented as the set of pixels
having area, the position of critical points cannot define in
the images. In constructing CT from digital images, the
characteristic is a problem because the nodes of CT must
correspond to the critical points.

In this paper, we propose a modified data structure
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of the conventional CT named Region-based Contour
Tree (RBCT). RBCT describes the topological relationship
among isosurfaces defined by the set of regions, without in-
troducing the information of critical points.

Recently, we have proposed a method to construct CT
from digital images[1]. The resulted CT can be considered
as RBCT.

Using RBCT, several procedures of digital image process-
ing can be carried out in simple ways. We also show some
procedures for image processing with RBCT.

In the following sections, the scalar fields are basically as-
sumed to be 2D. However, the procedures in this paper can

be applied to higher-dimensional fields immediately.
2. Contour Tree

2.1 Data structure of Contour Tree

In multidimensional scalar field, isosurfaces are defined as
boundaries of field values. In this paper, we limit the iso-
surfaces to closed surfaces. These boundaries are called “iso-
lines” in 2D space, but we use the term “isosurfaces” for all
dimensions.

Contour Tree (CT) is a tree-structured graph, representing
the transition of isosurfaces (appearance, disappearance, ex-
pansion, contraction, join and split) involved in the increase
or decrease of the threshold of field value[2]. Figure 1 shows
the outline of CT. Figure (a) represents a 2D scalar field,
and P, Q, Ri, and R are isosurfaces. a,...,e denote criti-
cal points (local maxima, local minima and saddles) where
the topological changes of isosurfaces occur. Here, we define
a special critical point named “root” on the closed surface
surrounding the whole scalar field to evaluate.

Figure (b) is a CT corresponding to the scalar field (a).
We define CT based on the references [6] [5] [7] as follows:

e (T is a tree-structured graph having nodes and arcs.

® A node of CT represents a critical point and the cor-
responding isosurface. A node and a critical point have a
one-to-one relationship.

® An arc of CT links two nodes. The arc represents a re-
gion bounded by two isosurfaces corresponding to these two
nodes. An arc and a region have a one-to-one relationship.

We call the nodes and arcs in the definition “supernodes”
and “superarcs”, respectively. In a region represented by a
superarc, extraction or contraction of an isosurface occurs
involved in the increase or decrease of the threshold.

CT can include additional nodes on superarcs to repre-
sent isosurfaces in the regions corresponding to the superarcs.
The isosurfaces do not include any critical points. We call
these nodes “regularnodes.” “Nodes” consist of supernodes
and regularnodes. We use the word “arcs” as the links be-

tween nodes. We call this type of CT Augumented Contour

Tree (ACT)[7].

Field Value

A: Maximal point
X: Minimal point
@: Saddle point

®: root

root

root

(a) 2D scalar field (level set) (b) Contour Tree

Fig. 1 Contour Tree.

2.2 Construction of Contour Tees from continu-

ous scalar fields

In most of the procedures to construct CT, the scalar field
for description is assumed to be continuous. In order to rep-
resent the field, multidimensional mesh is commonly used.
The mesh consists of vertices and edges, and the scalar field
is divided into cells by the mesh. Each vertex of the mesh
describes the position in the field and the correspondent field
value. Field values inside the cells are represented by inter-
polation.

Tarasov et al. [6] and van Kreveld et al. [5] have proposed
procedures to construct CT for 2D/3D scalar fields effi-
ciently. Carr et al. have improved these procedures and
proposed a procedure for scalar fields of any dimensions[7].
Takahashi et al. have proposed a method to construct Vol-
ume Skeleton Tree, which is a binary tree describing the
topological changes of isosurfaces in 3D scalar field [4]. Vol-
ume Skeleton Tree is a variant of CT, and genus change of
3D isosurface is also described. In these procedures, a scalar
field is represented by simplicial mesh and the field values
inside the cells are extracted by linear interpolation. In this
case, it is guaranteed that the critical points are on the ver-
tices of the mesh.

Pascucci et al. have proposed another efficient procedure
to construct CT [3]. Their procedure can be applied to rect-
angular meshes. In the procedure, bilinear and trilinear in-
terpolation is introduced to calculate the field values inside
the cells for 2D and 3D scalar field, respectively. In this case,
the critical points can be inside of the cell and the procedure
to construct CT is more complicated than simplicial mesh
case. Recently, Carr have introduced a framework named
Finite State Machine [8] for the procedure to construct CT
by the procedure of Pascucci[3]. Finite State Machine de-
scribes the transition of isosurfaces in the cells by the change
of isovalue. From the analysis using this method, the author
have selected Marching Cubes [9] [10] instead of trilinear in-

terpolation to construct CT.
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3. Region-based Contour Trees from dig-
ital images

In digital images, the isosurfaces have different characteris-
tics from those in continuous scalar fields. In this section, we
propose a modified data structure of Contour Trees for digi-
tal images named Region-based Contour Trees, and describe
the procedure to construct them.

3.1 Definition of isosurfaces in digital images

In general, a digital image can be described as a set of pix-
els on the vertices of a multidimensional, rectangular grid.
The pixels have values of non-negative, finite integer.

A digital image can be binarized using a threshold T.
Here we denote R;(T) as the i-th region (i = 1,2,...) of
connected pixels {P(t)|t = T} and S;(T) as the j-th re-
gion (i = 1,2,...) of connected pixels {P(¢)|t £ T}. Using
R and S, an isosurface can be represented by a pair of re-
gions [Ra(T), Sy (T — 1)], where one of the regions surrounds
the other and the isosurface is the boundary between them.
Figure 2(a) shows examples of isosurfaces for the threshold
T=3. In this example, the isosurfaces are represented by
{[R1(3), S1(2)], [R1(3), S2(2)], [Ra(3), S1(2)]}.

In binary images, ones of brighter or darker pixels are re-
garded as foreground, and the other becomes background.
In order to avoid the contradiction between the connected
regions of foreground / background, different types of con-
nectivity are introduced [11]. Generally, a combination of
8- and 4-connectivity for 2D images is used for foreground
and background. For 3D images, 26- and 6-connectivity are
commonly used.

In the following description, we treat brighter R;(T) as a
foreground region, with 8-connectivity of pixels for 2D im-
ages. Figure 2(b) shows an example of isosurfaces using this
condition of connectivity. In this example, regions S;(2) and
S2(2) are properly divided as the outside and inside of region
R1(3). If 8-connectivity is also used for background regions,
S1(2) and S2(2) are connected.

In order to guarantee that foreground regions are sur-
rounded by background regions in any threshold 7' > 0, we
set the values of the pixels at outside boundary as 0 in this
paper [4]. We can describe the isosurface surrounding the
whole image as the outside of R;(0).

3.2 Characteristics of isosurfaces in digital images

Figure 3 shows six types of the transition of isosurfaces in
a digital image along the continuous decrease of threshold ¢.
The range of the threshold for the left images in this figure
are 2 < t £ 3 and that for the right ones are 1 < ¢t < 2.
These types of transition can be described by CT (ACT), as
mentioned in section 2.

As shown in the figure, the isosurfaces are discontinuously
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(b) Difference of connectivity
between
foreground/background region

(a) Example of isosurfaces
(Threshold = 3)

Fig. 2 Isosurfaces of digital images.

changed between integer threshold ¢t = T and ¢t = T + €
where 7" = 2 in this example and ¢ is a small positive value.
From the discontinuity, any critical point and corresponding
isosurface does not appear during the change of threshold.
Here we denote the set of isosurfaces before and after the
transition as C*(T) and C~(T), respectively.

The change of isosurface between integer threshold T and
T + e is caused by a set of pixels P(T') having value T = 2.
There are several relationships among the regions relating
the transition of isosurfaces as follows:

e All isosurfaces C; € CT(T)(i = 1,..,M) are the
boundaries between one region S;(7") and adjacent regions
R;(T + 1). Here Si(T) surrounds R;(T + 1) or R;(T + 1)
surrounds S1 (7). Similary, All isosurfaces C; € C™ (T)(j =
1,...,N) are the boundaries between one region R:(T) and
adjacent regions S; (T — 1).

e The set of pixels P(T) related to the transition of iso-
surfaces are included both in R (T') and Si(7T).

e R/(T+1)C R:(T)and S;(T —1) C S:i(T).

If the transition of isosurfaces is “appearance” or “disap-
pearance”, M = 0 or N = 0, respectively. If M = N =1,
the transition does not include topological changes.

Different types of transitions can occur in the same time.
Figure 4 shows an example for the combined transition. This
shows these characteristics again.

3.3 Region-based Contour Tree

As described above, any critical point or corresponding iso-
surface does not appear in the change of isosurface. There-
fore, the nodes of CT from a digital image cannot correspond
to any critical point. The fact is against the definition of CT
in section 2. Here we modify the definition of CT to describe
digital images properly. The definition of the proposed CT
as the structure of ACT is as follows:

e (T is a tree-structured graph having nodes and arcs.

® A supernode of CT represents a set of isosurfaces re-
lated to one tramsition of isosurfaces involving topological

changes.
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Fig. 3 Transition of isosurfaces in a digital image.
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Fig. 4 Combined Transition of isosurfaces (join and split).

e A superarc of CT links two nodes. The arc represents
a region bounded by two isosurfaces corresponding to these
two nodes. An superarc and a region have a one-to-one re-
lationship.

® A regularnode is on a superarc. The node represents
a transition of isosurface in the regions corresponding to the
superarc. Nodes consist of supernodes and superarcs. Arcs
links nodes.

From the characteristics of isosurfaces in digital images,
we can define:

e n(i=1,..,X):
faces.

e 4;(j=1,..,Y):

e C(ni) ={C*(n:),C™(n:)}: aset of isosurfaces related
to n;.

e P(n;):

a node, and a transition of isosur-

an arc.

a set of pixels related to n;.

® V(n;) : a field value that the pixels P(n;) have.

® R(n;): aregion of connected pixels having pixel value
t 2 V(n;) and including P(n;).
® S(n;): aregion of connected pixels having pixel value

t < V(n;) and including P(n;).

Here we can represent all the transitions of isosurfaces in
a digital image by the set of nodes. Since any pixel in an
image takes part in a transition of isosurfaces, each pixel is
an element of P(n;) of exactly one node n;.

If all the transitions of isosurfaces are represented by the
nodes of CT, an arc a; which links n, and ng represents ex-
actly one isosurface. If V(n,) > V(ng) the isosurface is the
boundary between R(np) and S(ng) where the threshold t is
V(ny) 2t > V(ng). Otherwise, it is the boundary between
S(np) and R(ng) where the threshold tis V(ng) 2t > V(n,).
If the nodes represent all the transitions of isosurfaces, the
arcs represent all the isosurfaces in the image. If necessary,
we can represent the isosurface surrounding the whole image
in the following procedure:

® Set a node which represents outside region of an im-
age. We call the node “virtual node”.

¢ Find a node m, where P(n,) includes the pixels at

“root node”.

outside boundary. We call the node

® Set an arc which links the virtual node and the root
node. The arc represents the isosurface surrounding the
whole image. We call the arc “root arc”.

It can be considered that the nodes of the proposed CT
represent regions in an image, and the CT describes the topo-
logical structure of the image from the relationship among
the regions.
“Region-based Contour Tree (RBCT).” Figure 5 illustrates
the RBCT of a digital image.

The nodes of the conventional CT describe isosurfaces, and
the arcs describe regions bounded by isosurfaces. On the

other hand, the nodes of RBCT describe the transition of

From this characteristic, we call the CT as

isosurfaces and related regions, and the arcs describe isosur-
faces.

RBCT is uniquely constructed from a digital image, de-
scribing all the isosurfaces and their relationship.

3.4 Rooted tree representation

In this section, we first describe the characteristics of iso-
surfaces described by conventional (Augmented) CT.

Let v(n) be the region surrounded by an isosurface corre-
sponding to the node n on CT.
Lemma 1. When nodes n1 and na, ne and ns are connected
by arc respectively, if y(n1) D y(n2) then y(n2) D v(ns).
Proof.
at the outer side of v(n2), being against the definition of CT.

If y(n2) C v(ns3), both y(n1) and y(ns) have regions

Therefore v(n2)2v(n3). Since the isosurface for n» is not the

same as that for ns, v(n2) D v(ns).
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Fig. 5 Region-based Contour Tree.

Let RN be the node corresponding to the isosurface sur-
rounding the whole scalar field, defined in Section 2. CT
can be considered as rooted tree where RN is the root node.
Here, we can introduce the following theorems in the rooted

tree representation of CT. Let A(n) be the area of v(n).

Theorem 1. For a node n and the child node n° of n,
v(n) D y(n°).
Proof. If nis RN, obviously y(n) D v(n°). If n? is the par-

ent node of n and y(n”) D v(n), v(n) D v(n°) from Lemma
1. Therefore, for arbitrary node n, y(n) D v(n°).
Theorem 2.
1,...,N) of n, A(n) > ZZV:I A(ng).
Proof.
¥(n) > Uis, v(0f). i % j, 4(nf) Ny(n5) = ¢.
A(n) > S°NA(nf).

We can easily modify these theorems for RBCT. The mod-

For a node n and the all child nodes n(1 =
From Theorem 1, y(n) D v(n{) for all . Hence
Therefore

ified theorems are as follows:

Theorem 1°.  For a node n, the parent arc a¥ and a child arc

a® of n, y(a?) 3 y(a).
Theorem 2’.
child arcs a$(i = 1,...,N) of n, A(a?) > ZZV:I A(as).

Here,

For a node n, the parent arc a® and the all

e Parent arc a” of node n is the arc between node n and
the parent node n? of n.

® Child arc aj of node n is the arc between node n and
a child node n{ of n.

e (a) is the region surrounded by an isosurface corre-
sponding to the arc a.

e A(a) is the area of vy(a).

® RN is the root node of RBCT.

From the characteristics of the transitions of isosurfaces in
digital images, it can be also introduced:
Theorem 3. For a node n, the parent node a? and the all
child arcs ai(i = 1,...,N) of n, A(a®) = Eivzl A(a$) + A(n).
Here, A(n) is the area of the set of pixels P(n), defined in
section 3.3. Simply, we can treat A(n) as the number of

pixels in P(n).

4. Construction of Region-based Contour
Trees

4.1 Previous work for construction of Contour
Trees from digital images

Several procedures have been proposed to construct tree
structures from digital images[12][13][14]. In these proce-
dures, constructed structures describe the topological change
of connected regions in one of decreasing or increasing the
threshold, where local minima or local maxima are not eval-
uated, respectively.

Asano et al. have introduced CT for digital images [15],
where the method by van Kreveld et al. [5] has been used for
the construction. However, precise procedure including the
treatment of the difference of the pixel connectivity is not
described.

4.2 Proposed method

Recently, we have proposed a procedure to construct CT
from gray-scale digital images representing scalar fields[1].
This procedure is based on the method by Carr et al. [7]. Al-
though the first aim of our method was to construct the con-
ventional CT, the resulting CT can be considered as RBCT.

4.2.1 Construction of Contour Tree using Join Tree and

Split Tree

In this section, we describe the outline of the procedure
by Carr et al.[7].
construct CTs from scalar fields in all dimensions. In this
procedure, a Join Tree (JT) and a Split Tree (ST) are con-
structed from a simpicial mesh. The CT is constructed by
merging the JT and ST.

Using this procedure, we can efficiently

At the beginning, the vertices of the mesh are sorted by
field values in descending order. Then to construct a JT, the
following procedure to each vertex is carried out in order.
JT has nodes corresponding one-on-one with the all vertices
of the mesh.
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The procedure at step n searches the connectivity between
the focused vertex and regions constructed by step n—1, and
merge the vertex to the connected regions. We can classify
the types of the merger into appearance (the vertex is con-

nected to no region), expansion (one region), and join (plural

regions).
Figure 6 shows the outline of the procedure. wv(n) de-
notes the n-th vertex. ~;(n — 1),i = 1,..., N, are regions

constructed by the (n — 1)-th step, being connected to v(n).
vi(n—1),i =1,..., N, are vertices having minimum field val-
ues in v;(n—1); Here, one of n-th regions y(n) is constructed
by connecting v;(n — 1),i = 1,..., N, and v(n). In this step,
the node corresponding with v(n) is connected to the nodes
corresponding with v;(n — 1).

Figure 7 (a) shows an example of JT. In this figure, the
JT rep-

resents the appearance, expansion, and join of the regions

numbers at the nodes indicates the field values.

surrounded by isosurfaces involved in the decrease of the cor-
responding field value.

ST can be constructed with the same procedure of JT to
the vertices of ascending order. Figure 7 (b) shows an exam-
ple of ST. ST represents the appearance, expansion, and join
of the regions involved in the increase of the corresponding
field value. In other words, ST represents split, contraction,
and disappearance of the regions with the decrease of the
field value.

Since each node in JT and ST correspond to a vertex of
the mesh, the relation of nodes between JT and ST can be
extracted immediately. CT having the correspondent nodes
with JT and ST is constructed by merging these two trees,
considering the structures of them. Figure 7 (c¢) shows an
example of CT by merging JT (a) and ST (b).

Y - : :
LR i : 3
NG 1 f 6 vi(n-1)
<\ /] 7 vo(n-1) ~TNA
L 98
NS L@ | :
\ v

~
~

(a)two-dimensional mesh (b)Join Tree

Fig. 6 Procedure to construct Join Tree.

4.2.2 Construction of Contour Trees considering the
connectivity of pixels

In the procedure described above, JT is constructed by

processing from vertices with higher field values to them with

lower, and the procedure for ST is opposite order. Therefore,

the procedure to construct JT corresponds to the expansion

S)

V.

o of of

(a) Join Tree  (b) Split Tree  (¢) Contour Tree

Fig. 7 Construction of Contour Tree.

of foreground regions, and that for ST corresponds to the
expansion of background.

As mentioned in Section 3.1, different types of connec-
tivity are introduced for foreground/background region in
digital images. In our proposed method, the connectivity for
foreground is used in the procedure to construct JTs, and
that for background is used for STs. Figure 8(a) shows the
procedure to extend foreground regions in constructing JT
from digital images, corresponding to Figure 6(a) for trian-
gular meshes. Figure 8(b) shows the procedure to extend
background regions, where the connectivity to use is differ-
ent from that for foreground. The procedure to construct
CT from JT and ST can be same as the method by Carr et
al. [7].

Since a node v(n) of CT represents a pixel taking part in a
transition of isosurfaces, the resulting CT can be considered
as RBCT.

= et 7D |

’71(n' 1)

w(n) vin]

27N

(b)Background
(4-connectivity)

(a)Foreground
(8-connectivity)

Fig. 8 Procedure to extend foreground/background regions in

digital images.

4.2.3 Influence of identical pixel value

When the pixels of digital images have values of finite in-
teger, it frequently occurs that plural pixels have identical
value. At the sorting of pixels in the procedure to con-
struct JT and ST, the order of these pixels having the same
value depends on another condition such as position of pixels.
However, the order is irrelevant to the topological structure
of isosurfaces. In order to eliminate this influence, we in-

troduce following procedure. After constructing CT having
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nodes corresponding to all pixels, two nodes connected by an
arc are merged into one node, when these nodes correspond
to the pixels with identical value. The procedure is repeated

until such pair of nodes disappears.

5. Applications for digital image process-
ing

Using RBCT, several procedures of digital image process-
ing can be carried out in simple ways. In this section, we
introduce some procedures. Before the description of the
procedures, we define several words as the supplement of the
definition shown in section 3. 3:

¢ nP(a),n°(a) : parent and child node of arc a, respec-
tively, which means that n?(a) is the parent of n°(a) in the
two nodes linked by arc a.

e n%(a) : descendant node of arc a, which means that
n(a) is n°(a) itself or the descendant of n°(a).

5.1 Thresholding

In thresholding a digital image, any pixel having pixel
value ¢ is equal or greater than threshold 7' correspond to
node n of RBCT where V(n) 2 T. Considering that any
connected region of {p} is surrounded by isosurfaces corre-
sponding to arc a; where V(n°(a;)) < T, extraction of con-
nected regions where pixel values ¢ =2 T can be carried out
by tracing nodes from n°(a;) to the descendant nodes nf(a;)
connecting to n°(a;), where V(n¢(a;)) = T. The procedure
is as follows:

e Find arcs {a;} (i =1, ..., M) where V(n°(a;)) = T and
V(n(ai)) <T.

e TFor all a;:

— Find descendant nodes n¢(a;)(j = 1, ..., Ni) connect-
ing to n°(a;), where V(n(a;)) 2 T.

—  Set a region as {P(nf(a:))}.
In the procedure of finding a;, the number of the connected
regions is counted. Figure 9 illustrates the procedure of
thresholding for Figure 5 (a).

5.2 Segmentation

By applying Theorem 3 from chile node of arc a to its
descendant nodes n;i(a) recursively, we can introduce that
v(a) = {P(n{(a))}. Segmentation of the region v(a) of se-
lected arc a with hole filling can be carried out by tracing
all descendant nodes n¢(a) from the child node of a. The
procedure is as follows:

¢ Find descendant nodes {n;i (a)} (j=1,..,N).

e Set a region as {P(nf(a))}.
Figure 10 illustrates the procedure of thresholding for Fig-
ure 5 (a).
Afa) = 1L, A(nf(a)).

5.3 Noise reduction

The area of the region can be calculated by

As described in Section 5.2, the area of region for any arc

1'2\0 o o {0 (o Jo Jo (0 |0 |0 O T3

o 13 |g8 |& (0 |1 |0 (3= g% T4
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{b) Processed Image

Fig. 9 Thresholding using Region-based Contour Tree.

a can be calculated. Therefore, we can find small regions and
remove them as noise reduction. The procedure is similar as
morphological area opening/closing [16].

Noise reduction by removing small regions which area is
smaller than A,,in is carried out as follows:

¢ Find arcs {a;} (¢ =1, ..., M) where A(a;) < Anin.

e TFor all a;:

— Find descendant nodes n(a;)(j = 1, ..., N;).

— For each pixel p € {P(n%(a:))}, set pixel value
V(nP(a;)
Figure 11 illustrates the procedure of thresholding for Figure
5 (a).

6. Conclusion

In order to extract the topological relationship among ob-
jects in observed images, we have previously proposed a
method to construct Contour Trees (CT), which describe the
topological structures of isosurfaces [1]. Since the isosurfaces
of digital images have different characteristics from those of
continuous scalar fields, we have proposed a modified data
structure of conventional CT named Region-based Contour
Tree (RBCT). RBCT can be considered as a data structure
describing the topological relationship among regions. In this

paper, we have discussed about the data structure of RBCT
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Fig. 10

Field value

(b} Processed Image

Segmentation using Region-based Contour Tree.

and the procedure to construct it. We have also shown sev-

eral applications of RBCT for digital image processing.
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