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Abstract:  In augmented virtuality, it is important to estimate object surface reflectance properties to render
objects under arbitrary illumination conditions. There exist a number of methods to estimate reflectance prop-
erties of object surfaces densely. However, it was difficult to estimate surface reflectance properties faithfully
for objects with interreflections. This paper describes a new method for densely estimating non-uniform sur-
face reflectance properties of real objects constructed of convex and concave surfaces with diffuse and specular
interreflections. We use registered range and surface color texture images obtained by a laser rangefinder. The
proposed method first determines positions of light to take color images for discriminating diffuse and specular
reflection components of surface reflection. Surface reflectance parameters are then estimated based on an
inverse global illumination rendering. Experiments show the usefulness of the proposed method.

1 Introduction verse rendering. To produce a photorealistic image,

the object geometry, reflectance properties and light-
Computer graphics(CG) is being increasingly used ing effect in a scene are required. In the fields of
to visualize real objects and environments. Appli- computer vision and graphics, many researches has
cations in entertainment, architecture, interior de- developed to estimate each information from images
sign, virtual reality, and digital museums often re- in the scene or objects. Especially, it is important
quire that aspects of the real world be rendered re- to estimate an object surface reflectance properties
alistically from novel viewpoints and/or under novel [17, 16, 18]. This report focuses on the estima-
illumination. In addition, augmented reality (AR) tion of the object reflectance properties based on
technologies have been developed. These techniques inverse rendering. This approach, which is some-
need that a virtualized object is seamlessly merged times referred to as inverse reflectometry, repro-
into the real world [1]. duces the object shape and surface reflectance prop-

erties. If the object surface reflectance properties

In order to represent a virtualized object photo- . - A 3
are estimated at once, the virtualized object can

realistically, there is an approach which is called in-
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be rendered appropriately under virtualized illumi-
nation conditions estimated from real environments
[29,24,2,7,11,13,12, 15, 25]. In these methods, sur-
face reflectance models with several parameters are
employed, and shape and color information of the ob-
ject are used to estimate the reflectance parameters.
In this thesis, estimation of object surface reflection
in tnverse rendering framework 1s focused.

In some works [2, 7, 15] for Inverse Local Ren-
dering, 1t 1s assumed that an object has a uniform
reflectance property over the entire surface. Re-
flectance parameters are estimated by using the stan-
dard least-squares method to fit a reflectance model
to a given color image. Due to the assumption, such
methods cannot be applied to objects which consist
of several different materials and have non-uniform
reflectance properties. On the other hand, to treat
non-uniform surface objects, some works have used
multiple images of an object under different lighting
conditions and have estimated reflectance parameters
by solving simultaneous equations [11, 13, 12]. How-
ever, such methods still have a problem such that
results are not stable especially when the specular re-
flection component is very small. Sato et al. [25] have
developed a methodology to estimate non-uniform re-
flectance properties. Although the method can be
applied to objects with non-uniform reflectance prop-
erties, the shape of object should be limited. This 1s
because it 1s difficult to observe the specular reflection
component over the entire surface, since the lighting
condition for a pose of the object against the camera
cannot be changed in the method.

Inverse Local Rendering can estimate the object
surface reflectance properties based on only direct il-
lumination effect. However, in the real world, the
object has interreflections. Therefore, we must esti-
mate the reflectance properties with considering in-
terreflections on the surface. For solving this prob-
lem, Fournier et al. [6] have originally developed a
method for estimating surface reflectance properties
using the radiosity method in an indoor scene. This
method assumes uniform reflectance on an object sur-
face and determines only the diffuse reflectance pa-
rameter. There are some attempts to estimate both
diffuse and specular reflectance properties of a room
[3, 14]. They, however, also assume that all ob-
jects have the uniform reflectance properties in the
segmented region, therefore, their algorithm cannot
be also applied to an object which has non-uniform
surface reflectance properties. Yu et al. [29] have
estimated surface reflectance properties of a room
from color and geometry data considering both dif-
fuse and specular interreflections based on the inverse
global illumination rendering. They employ a hybrid
rendering method which combines the radiosity and
Monte Carlo ray tracing method. Boivin et al. [3]

have also attempted to estimate surface reflectance
properties with considering diffuse interreflections.
These methods assume that the surface of interest
has uniform reflectance properties. Therefore their
algorithms cannot be applied to an non-uniform sur-
face reflectance object.

In this study, we focus on estimating non-uniform
surface reflectance properties based on inverse ren-
dering framework as mentioned previously. We first
propose a method for estimating local surface re-
flectance properties. For this purpose, we select op-
timum light positions in order to observe both dif-
fuse and specular reflection on the object surfaces.
By this process, we can decompose diffuse and spec-
ular components at each surface point. Then, we
densely estimate the object surface reflectance prop-
erties based on Inverse Local Rendering. Moreover,
we propose two estimation methods which are cat-
egorized in Inverse Global Rendering. One is based
on radiosity rendering method and Torrance-Sparrow
reflectance model. The other is based on photon
mapping rendering method. The former method can
estimate diffuse reflectance parameter by calculat-
ing inverse radiosity algorithm and specular and sur-
face roughness parameter by calculating inverse lo-
cal reflectance model. The advantage of this method
is that the diffuse interreflection can be considered
[20, 19, 21]. In the inverse radiosity method, the in-
fluence of the specular interreflections still remains.

To solve the problem which the inverse radiosity
estimation method can not cope with, we proposed
the latter method which can also estimate diffuse re-
flectance, specular reflectance and the surface rough-
ness parameters. In this method, because both dif-
fuse and specular interreflections can be considered,
the inverse photon mapping method is more efficient
estimation method with comparing to the conven-
tional methods. In addition, because photon map-
ping rendering method recently implemented on a
graphics hardware(GPU)[23, 22], it is desired that
the real-time estimation of the object reflectance pa-
rameters.

Finally, in experiments, the three proposed meth-
ods are qualitatively and quantitatively evaluated
with reflectance parameter estimation and virtual re-
lighting. Three methods are compared with each
other, and Inverse Global Rendering is also useful
for estimating the object surface reflectance proper-
ties. The radiosity method and the photon mapping
method can usually be applied to a closed environ-
ment. However, we experimentally verify that the in-
verse radiosity and the inverse photon mapping can
also be applied to an open environment in which the
influence of the environment light is negligible.

0 28601


研究会temp
テキストボックス
－286－


| A. Measurement |

| B. Selection of optimum positions of light sources |

(Selected Iig;wt posjtionD e @elected Iigrlwt position @
¥ ']

| C. Measurement |
I I
Surfacetextureimagel) ... (Surfacetextureimagem
(Sreercnreinege)) ... (Grasiousimger)

%l D. Object surface reflectance estimation process |<J
v

( Object surface reflectance parameters )

Figure 1: General flow diagram of surface reflectance
modeling in this study.

2 Dense Observation of Reflec-
tion Components

Figure 1 illustrates a flow diagram of our light se-
lection (A, B, C) and object surface reflectance esti-
mation (D) processes. This section focusses on the
light selection process. We use a laser rangefinder to
obtain a range and a surface color images, and then
select optimum light positions based on the object
range image. Here, the surface reflectance estimation
process (D) is described in the next section. Our light
selection process consists of two parts: measurement
of an object (A, C) and selection of light sources (B).
In the followings describe the overview of the light
selection process.

1. Measurement of 3D geometry and surface tex-
ture
An object shape is acquired with a laser
rangefinder in a dark room. Multiple surface
texture 1mages are also obtained under different
light sources whose positions are selected in the
process (B).

2. Preprocessing

Generally, a range image which is acquired by
the laser rangefinder has some noises including
quantization errors. Moreover, there is a prob-
lem such that a normal vector can not be cor-
rectly calculated in the vicinity of discontinu-
ities. Therefore, we remove noises and locally fit
quadratic surfaces to the range image to acquire
the normal vector correctly.

3. Selection of light source
According to the object shape and the position of
the camera, multiple light positions are selected
among a number of possible positions of the light
source to measure both diffuse and specular re-
flection components densely on the object sur-
face.

We describe the detail of optimum light position se-
lection method in the following sections.

2.1 3D measurement of object and
Preprocessing

We use a laser rangefinder (Cyberware 3030RGB)
with known positions of point light sources and a
camera for acquiring range and surface color images,
which 1s located in a dark room as shown in Figure
2(a). This system can simultaneously obtain regis-
tered range and surface color texture images rotating
the rangefinder and the camera around an object.
Figure 2(b) shows the illustration viewed from the
top of the device. The camera is located at X1 and a
texture 1mage 1s acquired through mirrors located at
X2 and X3. We thus can assume that the camera is
virtually located at X4 and the camera looks toward
the center of rotation.

Generally, the noise and quantization errors are in-
cluded in the range image acquired from the laser
rangefinder. There is also a problem that the surface
normal is not calculated accurately around the dis-
continuity in the range image. Therefore, we employ
an adaptive local quadratic surface fitting [28] as a
preprocessing.

2.2 Selection of positions of light
sources based on reflectance
model

Here, we address the problem of determining light
source positions for effectively observing both diffuse
and specular reflection components on an object sur-
face. In the present experimental setup, multiple po-
sitions of a light source are determined among 60 pos-
sible positions prepared around the laser rangefinder
and these are two-dimensionally arranged at the in-
terval of 5 cm as shown in Figure 3. After optimum
light positions are selected, a single light source is at-
tached at the selected positions in turn so that the
calibration of brightness among multiple lights is not
needed. Note that the position of a camera is cal-

Laser rangefinder
X X2

. Camer:
Center of rotation
N-—L

X3 Virtual camera
T X4

(b) Direction of
camera In laser
rangefinder.

(a) Apparance of
3D-Digitizer

Figure 2: 3D-Digitizer in experimental setup.
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Laser rangefinder

Possible light position

Figure 3: Multiple possible light source positions.

ibrated in advance by measuring a calibration box
whose size 1s known. The position of a light source is
also calibrated based on the distance from the center
of rotation in the world coordinate. In addition, we
can ignore the influence of environmental light be-
cause the object is measured in a dark room.

Let I, be a color image which is to be obtained with
a possible light position p (p = 1, - - -, 60) and consists
of v pixels (ip1, - -, ipy), Where i, means a color in-
tensity with corresponding to the surface point z, D,
be the number of pixels which include only the diffuse
reflection component in 7,, and S, be the number of
pixels which include the strong specular reflection in
1.

First, the following conditions are examined for
each pixel in the object surface texture under each
light position p.

¢ Measurability of light reflection
e Measurability of only diffuse reflection
¢ Measurability of strong specular reflection

Second, the light positions p and ¢ which satisfy D, =
Max(Dy,- -, Dgo) and Sy = Max(Si,-- -, Seo) are
selected. In the next light source position selection,
the position which satisfies the same condition is se-
lected among the rest except for light source positions
decided so far. Then, m light positions are selected
to densely estimate reflectance parameters. The se-
lection of light positions is repeated until almost all
pixels are observed once for only the diffuse reflection
component and twice for the strong specular reflec-
tion component.

We introduce a threshold thq, i.e., the ratio of the
measurability of both reflection components to stop
the process of selecting light positions. With respect
to determining the threshold thy, we judge the ratio
of the measurability of the specular reflection with
all possible positions. This ratio is a limit of mea-
suring the specular reflection component. Using the
threshold, we can terminate the light selection pro-
cess in the case that the ratio of measurability of
specular reflection component cannot increase more,
even if the number of positions of light source 1s in-
creased. In such a way, reflectance parameters can be
efficiently estimated almost the whole object surface
using a limited number of texture images. In the fol-
lowing, the three measurability conditions above are

described in detail, after giving the surface reflection
model employed in the present study.

2.2.1 Torrance-Sparrow model

For selecting the optimum light positions among pos-
sible light positions, we need to judge whether a pixel
in the image taken by a laser rangefinder has each re-
flection component. Here, there is a surface reflection
model which represents the property of both diffuse
and specular reflection components. The reflection
model describes the direction of reflection from a light
source based on an object geometry, a viewing direc-
tion and a light source direction. If these parame-
ters are known, we can judge whether each pixel in
the image has both reflection components. In this
section, we employ the Torrance-Sparrow model [26]
to represent local surface reflections physically. The
Torrance-Sparrow model is given as:

PS@‘ 672‘17
erp(—525)}, (1)

where ¢, represents an observed intensity with corre-
sponding to the surface point z, ig, and ¢5, denote
the diffuse and specular reflection components, C' is
an attenuation coefficient concerning the distance be-
tween a point light source and an object surface point,
Y represents the strength of a light source. Py, Psy
and o, are the diffuse reflectance, the specular re-
flectance and the surface roughness parameters which
is the standard deviation of a Gaussian distribution,
respectively. 84, is an angle between a light source
vector L, and a surface normal vector N, #,, is an
angle between a viewing vector V, and a surface nor-
mal vector N, and 8,, is an angle between a surface
normal vector N, and a half vector R,. Note that
the half vector R, means halfway between a light
vector L, and a viewing vector V,, and is given by
Equation (1). All vectors are unit vectors. Figure 4
illustrates the geometry for this model. 8,, is used
for judging whether the specular reflection occurs or
not.

To densely estimate non-uniform surface re-
flectance parameters independently, it is required to
observe each surface point x under at least three dif-
ferent lighting conditions: One for determining one
unknown parameter Py, and others for acquiring the
remaining two unknown parameters P, and o,. The
selection of optimum positions of the light source in
Figure 1(B) is repeated until almost all pixels satisfies
three different lighting conditions[17]. As a result of
this process, a certain number of light positions, say
m (as described previously) are selected to densely
observe both diffuse and specular reflection compo-
nents.

A texture image is obtained with a selected light
position p (p = 1,---,m) and consists of 4 pixels

. Y
ty = @{de cos Bgr + cos By,
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Figure 4: Diffuse and Specular reflection on an object
surface.

(4p1, -+, 1py), Where i,, means a color intensity of a
surface point x.

2.2.2 Measurability of light reflection

In order to measure the light reflection at a specific
point x of the object surface, the surface point must
be observable from the camera position and the light
must illuminate the surface point. Thus the posi-
tional relationship among the camera, the point and
the light source must satisfy the following conditions.

(Vo Ng) >0, (Lye - Ng) >0, (2)

where V,, L,;, and N, are the viewing direction,
the light source direction, and the surface normal
with corresponding to the surface point z, respec-
tively. Note that the viewing direction V, and the
surface normal N, are independent of the light source
position p.

Even when the above equations are both satisfied,
there is a possibility that a shadow is casted on the
pixel. In this case, the pixel must not be used for
estimating reflectance parameters. Whether a surface
point z is covered by a shadow casted by light source
p or not can be judged by the conventional method

[5].

2.2.3 Measurability of diffuse reflection only

When the pixel at the surface point z exhibits only
the diffuse reflection, the half vector R, satisfies the
following equation.

Orp = cos™ (N - Rypp) > 01, (3)

where 441 1s a threshold angle between N, and R,..
Equation (3) implies that only the diffuse reflection
component is observed if 8,, is greater than 64,1 as
illustrated in Figure 5. When this condition stands
and the pixel is not in a shadow, the pixel is judged
to have diffuse reflection only and is counted in D,.

V

Range for observing
only the diffuse
reflection component

Range for observing |
both reflection
components

7 Object surface’7

Figure 5: Observation of only the diffuse reflection.

Range for observing
the strong specular
reflection component

L

Figure 6: Observation of the specular reflection.

2.2.4 Measurability of strong specular reflec-
tion

When the pixel at the surface point x exhibits the
strong specular reflection, the half vector R, satis-
fies the following equation.

97‘@‘ = COS_l(Nx : Rpx) S gcha (4)

where 652 1s a threshold angle between N, and
R,.. Equation (4) means that both the diffuse and
specular reflection components are observed if 8, 1s
smaller than 6,2 as illustrated in Figure 6. The
above condition 1s based on the fact that the spec-
ular reflection is observed strongly in a limited range
of viewing angle. When this condition stands and the
pixel 18 not in a shadow, the pixel is judged to have
strong specular reflection and is counted in S,.

2.3 Experimental results

We experimentally demonstrate the results of effi-
ciently selecting optimum light positions from dense
set of possible light positions. We then show the ac-
tual measurability of both diffuse and specular re-
flection components on test objects. Four objects
are used in experiments (Figure 7). Object A and
B have non-uniform reflectance properties with re-
spect to both diffuse and specular reflection, and have
comparatively complicated geometry. These objects
are mainly used to verify that our proposed methods
can estimate the object with non-uniform reflectance
properties in Section 3 and eliminate the influence of
interreflections in Section 4. Object C and D have
non-uniform diffuse reflectance and uniform specular
reflectance properties. These objects are also mainly
used to verify that our proposed methods can elimi-
nate both diffuse and specular interreflections in Sec-
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Object A

(b) Object B
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(c) Object C

(d) Object D

Figure 7: Four objects used in the experiment.
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Figure 8: Measurability of both reflection components for Object A.

Table 1: Measurability of both reflection components and the number of selected light sources for estimating

the reflectance parameters of Objects A, B, C and D.

Measurement object Object A | Object B | Object C | Object D
Number of selected light positions 12(5) 14(4) 10(3) 9(4)
Diffuse reflection component 100.0% 100.0% 100.0% 100%
Specular reflection component
(with our method) 83.46% 91.02% 89.17% 91.72%
Specular reflection component
(with 60 light positions) 83.52% 93.56% 91.27% 94.90%

tion 5. According to Ward et al.[27], the strong spec-
ular component can be observed within 20 degree
around a half vector R. Therefore, the thresholds
O = 60°, 032 = 20°, thy = 80% are fixed. In
addition, standard conventional PC (CPU: 3.06GHz,

Memory: 1GB) is used in all of the experiments.

Figure 8 illustrates the measurability of both reflec-
tion components with respect to the number of light
sources for objects A. The vertical axis means the
measurability of diffuse or specular reflection compo-
nent and the horizontal axis means the number of
selected light sources in our light selection algorithm.
Note that the horizontal axis only extends to 20, be-
cause these graphs do not change even if all 60 possi-
ble positions are used. (a) shows the relation between
the number of selected light position and the ratio of
measurability of diffuse reflection component. For

example, when the number of selected light source
positions is five, the ratio of the measurability of the
diffuse reflection component is 100%. On the other
hand, (b) shows the relation between the number of
selected light positions and a radio of measurability
of specular reflection component. Even when Object
A is measured at all possible positions, the ratio of
the measurability of the specular reflection compo-
nent is 83.53%. In the proposed method, the ratio
of measurability of the specular reflection component
is 83.46% with 12 automatically selected light source
positions. The measurability of both reflection com-
ponents and the number of selected light sources for
estimating reflectance parameters of Objects A, B,
C and D are summarized in Table 1. The number in
brackets indicates the number of selected light source
positions required to estimate the diffuse reflectance
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parameter. This table also shows a comparison of
our light selection method and the case of using all
possible positions with respect to the measurability
of specular reflection component. It is shown that
the specular reflection component is observed in all
objects using a limited number of light source posi-
tions efficiently compared with using all 60 possible
positions.

3 Inverse Local Rendering for
Dense Reflectometry Estima-
tion

The following section describes how to estimate the
object surface reflectance properties densely using
the Torrance-Sparrow model. Note that because
the Torrance-Sparrow model supports non-metal and
heterogeneous dielectric material, we can not esti-
mate the object surface reflectance properties with
metaric material. In addition, although the Torrance-
Sparrow model supports fresnel component, we ig-
nore the fresnel component because it is assumed that
the object is opaque. The mirror material is not also
supported.

3.1 Estimation of surface reflectance
parameters

Let I 4i;¢ be the set of pixels which consist of only
the diffuse reflection component with possible light
position p and consists of v pixels (4p a1, -, ip dv);
where 4, 4 means a color intensity with correspond-
ing to the surface point z. If it is judged that ¢, 4»
does not consist of only the diffuse reflection compo-
nent, ¢, g» = 0. Let I, porn be the set of pixels which
include the specular reflection component strongly,
and also consists of v pixels (ipp1,- - ,%pby), Where
ip,by Means a color intensity on the object surface
point z. If it is judged that iy 3, does not include
the strong specular reflection component, ¢, p, = 0.
In addition, Tgy;; means a pixel containing only
the diffuse reflection component and 7;p.. means a
pixel containing strong specular reflection compo-
nent. T, .ne means a pixel which is classified into
neither Ty ¢ nor Typee. Fach pixel is classified into
three types Tuirs, Tipee and Thone.

3.1.1 Estimation of diffuse reflectance pa-

rameter

The estimation process is performed at each point
on the object surface. Pixels in multiple images with
corresponding to the object surface are used as shown
in Figure 9. The diffuse reflectance parameter Py, at

Figure 9: The object point in multiple texture
images.

surface point z is estimated by solving the following
equation from Equation (1).
C?%y 4w
P = D 5

dw Y cosflyq,’ (5)
where 1, 4. is the value of the pixel at surface point
in the image 7 4. cos g4, is calculated from surface
normal vector N, and light source vector Ly,. In
order to get the most reliable estimation, the pixel
whose angle 8, is the smallest but greater than 6,5
1s selected.

3.1.2 Estimation of specular reflectance and
surface roughness parameters

The specular reflectance parameter Ps,; and surface
roughness parameter ¢, at surface point z are also
estimated by solving Equation (1) with Ny, L,z, V,
and the value of the specular reflection component
which is extracted from the pixels ¢, v and 744, in
the images Ip porn and Iy porn. In order to get the most
reliable estimation, the pixels whose angle 8, are the
smallest or the second smallest and are smaller than
B: 12 are selected.

First, the diffuse reflection component is computed
with the diffuse reflectance parameter Py, estimated
above and Equation (1). Second, the specular re-
flection component is extracted by subtracting the
diffuse reflection component.

p sz =
g se =

Finally, the specular reflectance and surface rough-
ness parameters are obtained by the following equa-
tions.

{ Ip,sz COS Oyp =

tgs0 COSlhyy =

Z.p,bx - Z.p,dx (6)
igba — lq,dr

Py - 6l‘p(—972.x1/20'§,) (7)
Py, - 61‘])(—932/2012,)

It should be noted that Equation (1) can not be
solved for a pixel at which strong specular reflection is
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Figure 10: Estimated reflectance parameters for Object A.
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Figure 11: Estimated reflectance parameters for Object B.

observed less than twice. In such a case, the specular
reflectance and surface roughness parameters are ob-
tained by using a linear-interpolation method within

a W x W window.

3.2 Experimental results

In order to verify our method, we have carried out
experiments for densely estimating reflectance pa-
rameters of Objects A ~ D in Figure 7. Note that
with respect to the window size used in interpolation

method, we fixed W = 5.

3.2.1 Estimated reflectance parameters

Estimated parameters for the objects are given in
Figures 10 and 11, where parameter values are coded
in color or intensity in the cylindrical coordinates.
The diffuse reflectance parameter estimated over the
object surface is shown in (a) of each figure. The
specular reflectance and surface roughness parame-
ters are shown in (b) and (c) of each figure, respec-
tively. Note that all (c) in each Figure are illustrated
with gray-scale where the largest value 1s coded as
white. This image means that the smaller the value
is, the smoother the object surface i1s. In addition, all
(d) in each figure illustrates the ratio of pixels where
specular reflectance and surface roughness parame-
ters can be computed. The black part means that
both parameters are not directly estimated.

In Figure 10, it is clearly shown that the specular
reflectance and the surface roughness parameters of
the doll’s beak and leg are different from the rest. Ac-
tually, the beak and legs are highly reflective as can
be seen in Figure 7(a). In Figure 11, the reflectance
parameters of Object B having a more complex ge-
ometry is estimated. In this figure, it can be observed
that some parts have the diffuse reflection component

. Laser rangefinder
Object E

L

(a) Object E

(b) A position of
Object E

Figure 14: An object with interreflections.

and other parts have the specular reflection compo-
nent as well as Object A. It is verified from these
results that the non-uniform surface reflectance prop-
erties can be observed efficiently by our light selection
method.

These results also show that uniform of non-
uniform specular reflectance and surface roughness
parameters are estimated without interpolation for
more than nearly 90% of the surface.

3.3 Discussion

In this section, we have estimated non-uniform object
surface reflectance properties densely by using the
local illumination model (Torrance-Sparrow model).
As described in Section 2, because the local illumi-
nation model considers only the direct illumination
effect on the object surface, there may exist some er-
rors in the case of occurring interreflections. In this
section, we examine how much errors the proposed
method inolve due to the influence of interreflections.

In the experiment, we use Object E shown in Fig-
ure 14(a), which is separated into two regions I and II.
We have conducted two setups. One 1s that the same
white paper with a uniform diffuse reflectance surface
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Figure 13: Estimated diffuse reflectance parameter in the experimental setup 2.

is pasted up on both regions (setupl). The other is
that the same glossy paper with a uniform reflectance
surface is pasted up on both regions (setup2). In both
setups, the Object E is put on the table obliquely as
shown in Figure 14(b), so that the influence of inter-
reflections can be observed. It is expected that, if in-
terreflections occur, the estimated value in the inverse
local rendering method must exhibit incorrect results
in that part. Results for diffuse (setupl) and specu-
lar (setup2) surfaces are shown in Figures 12 and 13,
respectively. Each graph represents RGB channels of
the diffuse reflectance parameter estimated in both
setups. The horizontal axis in the graph means the
position of the surface point in the vertical direction
of Object E and the vertical axis means the average of
diffuse reflectance parameters in the horizontal direc-
tion of the object. In Figure 12, it is observed that
the diffuse reflectance parameters estimated by the
present method are large around the boundary be-
tween the regions a and 3. Moreover, the influence
of interreflections also remains in the glossy surface
as slightly observed in Figure 13, because interreflec-
tions due to the specular reflection also occurs at the
boundary between the regions I and IT in the sec-
ond setup. Here, in this experiments, it is actually
observed that the influence of interreflections cause
some errors in estimation of object surface reflectance
properties.

4 Inverse Radiosity for Dense
Reflectometry Estimation

4.1 Radiosity redering method

In most shading algorithms (i.e. Torrance-Sparrow
model), light sources have always been treated sepa-
rately from the surfaces they illuminate. In contrast,

radiosity methods [8] allow any surface to emit light;
thus, all light sources are modeled inherently as hav-
ing area. In the radiosity method, the environment is
breaked up into a finite number v of discrete patches,
each of which is assumed to be of finite size, emitting
and reflecting light uniformly over its entire area. If
we consider each patch to be an opaque Lambertian
diffuse emitter and reflector, then, for surface u,

By = Euy+Pau Yy BuFuy, (8)

v=1

where B, and By (1 < u,v < 7) are the radiosities of
patches u and v, measured in energy/unit time/unit
area(i.e., W/m?). Note that + is the number of object
patches. FE, is the rate at which light is emitted from
patch u and has the same units as radiosity. Py, 1
patch u’s reflectivity and i1s dimensionless.

Py, 1s called the dimensionless form factor, which
specifies the fraction of energy leaving the entirety
of patch v that arrives at the entirety of patch u,
taking into account the shape and relative orientation
of both patches and the presence of any obstructing
patches.

4.2 Estimation of surface reflectance
parameters with considering dif-
fuse interreflections

Since the object 1s measured in a dark room in the
present study, we can assume that the influence of
environment light can be ignored. In other words,
the form factor between each patch of the object and
the wall of the dark room need not be calculated.
Here, recall that Figure 1 shows a general flow di-
agram of estimating surface reflectance properties in
our method. The proposed method consists of four
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parts. The first three processes (A, B and C) have
already been described in Section 2, which represent
measurement of an object (A and C), selection of
light source (B), respectively. In this section, process
(D) is constructed of the inverse radiosity render-
ing for estimating the diffuse reflectance parameter,
and the estimation of the specular reflectance and
surface roughness parameters using the Torrance-
Sparrow model.

4.2.1 Estimation of diffuse reflectance pa-

rameter based on radiosity

In the proposed method, the hemi cube method [4]
can be used for calculating the form factor F,, be-
cause the object shape has already been measured
by the laser rangefinder. Since the range and texture
images are registered at each pixel, the radiosity B,
of the patch u is calculated based on the sum of the
values of the pixels which correspond to the patch
u. Here, Py, represents the diffuse reflectance pa-
rameter on the patch u. Then, the diffuse reflectance
parameter Pg, is determined as follows:

B, — By,
Pu = o 5 o 9
’ 2=t BuFu ©

where F, 1s 0 since there is no emission at the patch u
on the object. Finally, the diffuse reflectance param-
eter at each surface point i1s estimated by calculating
the average among neighbouring patches which share
the point.

Here, we describe the calculation of the radiosity
B, of the patch u in more detail. Each patch consists
of four points and B, 1s represented as the sum of the
color values of the pixels which correspond to these
points. Let us suppose that the patch u contains pix-
els s and £. It should be noted that pixel values e
and e; of s and ¢ in Ty;¢; are obtained with different
light positions p(s) and p(t), respectively, because the
light source attached with the rangefinder moves dur-
ing measurement (Figure 15). In calculating the B,,
it 1s required to use the color value &; of the pixel t
with the light position p(s). From the Lambert’s law,

Laser rangefinder

Figure 15: Calculation of radiosity.

the color value ¢; can be obtained by:

Nt'Lp(s)t
& = ———"¢,, (10)
Ns'Lp(s)s

where N and N; are normal vectors at pixels s and
t. L’.’(s)s and Lp(.s)t are light vectors With the light
position p(s) at pixels s and ¢. Note that in the case
of N-L < 0, the color value & should be 0 to consider
the measurability of light reflection.

4.2.2 Estimation of specular reflectance and
surface roughness parameters based on
Torrance-Sparrow model

The specular reflectance and the surface roughness
parameters are estimated by using the Torrance-
Sparrow model in Section 2. The specular reflectance
parameter Ps, and the surface roughness parameter
o, at the surface point z are estimated by solving the
simultaneous equation. In this case, we use the pixel
values of the specular reflection component extracted
from two images taken under two different illumina-
tion conditions and Py, estimated previously.

4.3 Experimental results

In the experiment, we use five objects: Objects A ~
E already used in previous sections. Here, Object E
1s used in a preliminary experiment for demonstrat-
ing that our inverse radiosity method can eliminate
the influence of diffuse interreflections. Note that
with respect to the window size used in interpolation
method, we fixed W = 5.

This experiment is conducted to confirm the effect
of eliminating the influence of interreflections. We
separate Object E, having a right-angled fold into
two regions I and IT as shown in Figure 7(a). For this
experiment, we also used two setups exactly the same
as in Section 3.3. In one setup, a white paper hav-
ing a uniform diffuse reflectance surface was pasted
to both regions (setup 1). In the second setup, glossy
paper having a uniform reflectance surface was pasted
to both regions (setup 2). Then, we compare our
inverse radiosity method with our previous method
[17, 16, 18] described in the last section, which does
not consider interreflections in estimating reflectance
parameters. If interreflections occur, the estimated
value in the previous method should be incorrect in
that part. The results for diffuse (setup 1) and spec-
ular (setup 2) surfaces are shown in Figures 16 and
17, respectively. Each graph represents RGB chan-
nels of the diffuse reflectance parameter estimated by
both methods. The horizontal axis indicates the po-
sition of the surface point in the vertical direction of
Object E, and the vertical axis indicates the average

0 2940


研究会temp
テキストボックス
－294－


a
=3

140

nhe,

Previous method

oW
o o

=)

Average diffuse reflectance
parameter

°
=3

O
MM

egion |

Region |1

1 21 41 61 81 101 121 141 161 181 201 221

Vertical position of the pixel

(a) R channel

Figure 16: A comparison with previous works for Obiect E

150
140
130
120
110

100

Average diffuse reflectance
parameter

B ey -

-

Region |1

1 21 41 61 81 101 121 141 161 181 201 221

Vertical position of the pixel

(a) R channel

Average diffuse reflectance

Average diffuse reflectance

&
T

&

parameter

150

140
130

Previous method
. 26, PN

[

120

Rl St gt

110
100

e

Region I1

1

150
140
130
120
110
100

21 41 61 81 101 121 141 161 181 201 221

Vertical postion of the pixel

(b) G channel

1 21 41 61 81 101 121 141 161 181
Vertical position of the pixel

(b) G channel

201 221

Average diffuse reflectance
am

T
T
]
Q

150

140

Y. 2

I,

A

130
120 -

110

100 -
1

A PR g

Region |1

21 41 61 81 101 121 141 161 181 201 221

Vertical position of the pixel

(c) B channel

with diffuse surfaces.

Previous method
AN s
A g T 130
3
Wnﬁaﬁ E§ 120
g a
Present method Region | Region 11 f 110 Region | N Region
= 100 -
<

1 21 41 61 81 101 121 141 161 181 201 221
Vertical position of the pixel

(c) B channel

Figure 17: A comparison with previous works for Object E with glossy surfaces.

(a) Object A

(b) Object B

Figure 18: Difference between estimated diffuse reflectance parameters with inverse radiosity and with the

method in Section 3.

of diffuse reflectance parameters in the horizontal di-
rection. Figure 16 shows that the diffuse reflectance
parameters estimated by the previous method are
large around the boundary between regions I and 1I.
In contrast, such an effect 1s rather reduced in the
present method. This clearly shows the effectiveness
of the inverse radiosity method. However, the in-
fluence of interreflections still remains slightly in the
glossy surface, as can be observed in Figure 17, be-
cause interreflections due to the specular reflection
also occur at the boundary between regions I and I1
in the second setup. The diffuse reflectance param-
eter obtained by the present method looks smoother
than that obtained by the previous method. This is
because the diffuse reflectance parameter of a point
on the object is calculated as the average of the dif-
fuse reflectance parameters of four patches that share
the point.

4.3.1 Estimated reflectance parameters

The next experiment was conducted in order to ex-
amine the effect of considering interreflections in re-
flectance parameter estimation of non-uniform ob-

jects: Objects A and B. Figures 18(a) and (b) illus-
trate the sum of differences in RGB channels of the
diffuse reflectance parameters between the previous
and present methods. These images are shown using
cylindrical coordinates in gray-scale having a maxi-
mum value of 255. The difference is large in parts
in which interreflections occur. These results show
that the present method is effective for objects that
have non-uniform surface reflectance properties and
exhibit interreflections. Some parts have larger differ-
ences than others. For example, the part of the beak
of Object A and the arms and legs in Object B. In the
inverse radiosity method, the diffuse reflectance pa-
rameter 1s calculated as the average of four patches,
as explained in preliminary experiments. Therefore,
the diffuse reflectance parameter that includes the in-
fluence of specular interreflections is also smoothed,
this smoothing process causes a large difference com-
pared to the previous method.

The part where the color squre surrounds in Figure
19 shows difference of result between the inverse lo-
cal rendering and the inverse rendering. For example,
the diffuse reflection component is different between
left and right image in (a). The rendering result of
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Inverse local renderi ng Inverseradiosity rendering

(a) Object A

Inverselocal rendering  Inverseradiosity rendering

(b) Object B

Figure 19: Difference of rendering results based on
the inverse radiosity rendering and with the inverse
local rendering in Section 3.

inverse radiosity rendering shows the diffuse inter-
reflections are removed with comparing to the result
of the inverse local rendering. (b) is also clear that
an influence of diffuse interreflections are eliminated.

5 Inverse Photon Mapping for
Dense Reflectometry Estima-
tion

5.1 Photon mapping

In the photon mapping rendering method [9], an out-
going radiance L from a surface point z is calculated
to decide a surface color. The following equations
form the rendering equations in the photon mapping
method.

L(x ﬁ)—Le( z?)+L( @), (11)
/ P B 3L, T - 7)dT (12)

Surface point

ﬁ Unit vector of surface normal at &
W :  Direction from outgoing radiance
@' . Direction of incoming radiance
dW@ : Differential solid angle

. Hemisphere of directions

where Le(x,j), L’“(J:,j), Lo(x,j’) and f(x, 7’,7)
represent the emitted radiance, the reflected radi-
ance, the incoming radiance, and a BRDF (i.e. the
Torrance-Sparrow model), respectively.

5.2 Estimation of surface reflectance
parameters with considering both
diffuse and specular interreflec-
tions

Here, the outgoing radiance L in Equation (11) is
equivalent to the reflected radiance L” due to the as-
sumption that the underlying objects have no emis-
sion. Equations (11) and (12) are theoretical mod-
els. In fact, the color i, at a surface point x 1s rep-
resented by the following equation called Ward re-
flectance model using Equation (1) [27].

~ Py exp(—tcm29m/ai)
z = ].r Ps.r
¢ { T + 4rwo2 }
Pd.r
= I, { + Poo K (80, 0ra,02)}, (13)

where I, is the incoming radiance. K(0yp,0py,05)
denotes the specular term in Equation (1), and other
parameters are the same as in Equation (1). In prac-
tice, the Ward model described above has five pa-
rameters for representing an anisotropic object sur-
face reflectance properties. Because we assume that
the object has isotropic reflectance properties, un-
known parameters are three (the diffuse reflectance,
the specular reflectance and the surface roughness pa-
rameters). I, is decided by counting the number of
photons which arrive at the point #. The photon
is specifically traced by a Monte Carlo ray tracing
method [10]. In this case, the photon is reflected
or absorbed according to the reflectance parameters,
and only the photon which is reflected is traced iter-
atively.

Figure 20 illustrates the detail of iterative re-
flectance estimation process based on inverse pho-
ton mapping. The reflectance parameter estimation
method based on inverse photon mapping is sepa-
rated into two processes (a) and (b). These processes
are conducted iteratively. In each process, we min-
imize the following equation derived from Equation
(13) at each pixel in the texture image.

q
Z laj — lr] ) (14)

J=1

E(Paq, Pez, 01)

where iy; is the measured radiance (color intensity),
and z/x; is the irradiance which is computed from
Equation (13) at the surface point # with light source
position j. ¢ denotes the number of sample points.
In the process (a), the diffuse reflectance parameter
Py, 18 estimated by using a pixel which is categorized

as Taizg- Pm” Pinit and ¢i™ are used to compute
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Figure 20: Detail of reflectance estimation process
based on inverse photon mapping.

i/x; only at the first iteration. Here, the specular re-
flection term in Equation (13), Iy Psy K (Oyg, Org, 05),
is set to be 0 because the specular reflection can not
be observed.

In the process (b), the specular reflectance Py, and
the surface roughness o, parameters are estimated
by using only pixels categorized as Tipec and Thone.

Pinit and o are used again to compute i,; only
at the first iteration. Py, estimated above 1s used
in Equation (13). When P, and o, are estimated,
the value of each reflectance parameter is updated
and the processes (a) and (b) are iterated ths times.
The reflectance parameter is selected when differ-
ences between the real and synthetic images is the
minimum value among thy samples. Because this is
non-linear equation with some unknown parameters,
we iteratively perform the photon mapping rendering
and estimation of surface reflectance parameters, and
minimize the difference between the real image and
synthesis image (Equation (14)). To minimize this
equation, there are some methods such as downhill
simplex method [3]. We also employ downhill sim-
plex algorithm for this minimization problem.

After the estimation process finishes, the specu-
lar reflectance and the surface roughness parameters
may not have a correct value, if the specular reflec-
tion component is significantly small. Such parame-
ters are interpolated linearly by scanning the texture
image horizontally.

5.3 Experimental results

In Section 3 and 4, we have already proposed two
methods of inverse reflectometry (hereafter called
the method T and the method IT). In the following,

we first show the result of comparing estimated re-
flectance parameters by the present method (here-
after called the method IIT) with the methods T and
IT using Object E. We then examine the effect of con-
sidering interreflections in surface reflectance param-
eter estimation using Objects A ~ D with uniform
and non-uniform surface properties. Finally, we show
rendered images based on reflectance parameters es-
timated by using the method III. See Figure 7 and
14 for the test objects used in the expriments. The
number of photons is 2 million and our algorithm
requires approximately 4 hours to estimate the re-
flectance parameters of each object. The threshold is

fixed thy = 50.

5.3.1 Preliminary experiments

In preliminary experiments, we demonstrate the per-
formance of the present method using a simple ob-
ject (Object E). Especially we compare the present
method ITT with the previous methods I (with no con-
sideration of interreflections described in Section 3)
and IT (with consideration of only diffuse interreflec-
tions described as Section 4). Object E consists of
two plates (region I and IT) which are adjacent with
90 degrees mutually. We also used two experimental
setups exactly the same as in Section 3.3. Results
are shown in Figures 21 for setup 1 and 22 for setup
2. Each graph represents RGB channels of the dif-
fuse reflectance parameter estimated by three meth-
ods. A horizontal axis represents the position of the
pixel along the vertical direction of the object and
a vertical axis represents the average of diffuse re-
flectance parameters along the horizontal direction
of the object. In the methods I and II, the value
of the diffuse reflectance parameter is large around
the boundary between regions I and II due to the in-
fluence of interreflections. On the other hand, in the
present method, the parameter estimated 1s more sta-
ble. From these results, it is clear that the present
method III can eliminate the influence of both diffuse
and specular interreflections.

5.3.2 Estimated reflectance parameters

In the next experiment, we use Objects A ~ D shown
in Figures 7. These objects have non-uniform or uni-
form diffuse and specular reflectance properties.
Figure 23 and 24 show the cylindrical images of
real objects and difference images between real and
synthetic images (rendered by photon mapping) in
the method II and the present method III for each
test object (Object C and D), respectively. The
light position locates at the above on the rangefinder.
Synthetic images are rendered using estimated re-
flectance parameters under the same illumination
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Figure 22: A comparison among three methods for Object E with glossy surfaces.

condition as in the real images. Note that linear inter-
polation is conducted when the specular reflectance
and the surface roughness parameters can not be es-
timated due to small value of the specular reflection.
In the previous method II, the error due to the in-
fluence of specular interreflections is confirmed. Es-
pecially, Objects C and D exhibit large errors at the
part of inequalities (i.e. cats’ leg, neck, and pigs’
nose). The present method IIT does not have such an
influence. Additionally, Table 2 shows the variance
of differences between real and synthetic images. The
present method III has much smaller variances than
the method II for all the objects. These results show
the present method III can accurately estimate each
reflectance parameter even if diffuse and specular in-
terreflections occur.

Figure 25 shows the relationship between the it-
erated process and the differences between real and
synthetic images. The vertical axis indicates the sum
of differences between the real and synthetic images,
and the horizontal axis indicates the number of itera-
tions. Each graph shows that the iterated estimation
process decreases the difference between real and syn-
thetic images. However, the minimum difference may
not be the global minimum because the proposed it-
eration method ends when the number of iterations
reaches 50. Therefore, each graph illustrates pulsa-
tion of the differences. In other words, the higher the
number of iterations, the lower the differences.

5.3.3 Rendering results with the photon
mapping method

Figure 26 shows rendered images of Object C and
D based on reflectance parameters estimated by the
mverse photon mapping rendering. 1t is clear that
these images are photorealistically rendered. How-

ever, there are some errors with respect to the geom-
etry. For example, some parts of pig’s legs (a) are
not rendered and there are spike noises at cat’s legs
(b). These errors are due to noise in range images.
To solve this problem, it is necessary to interpolate
the range data using the data around these parts.

6 Conclusions

The objective of this study is to develop a new sur-
face reflectance modeling method which can densely
estimate non-uniform reflectance properties for al-
most the whole object surface by using the laser
rangefinder for virtualizing real objects.

At the beginning of the study, multiple light source
positions around the laser rangefinder are automat-
ically selected, so that both diffuse and specular re-
flection components are observed densely. In experi-
ments, we show that our approach can discriminately
observe the diffuse and specular reflection compo-
nents on the object surface. But, even when our
approach is performed, it is difficult to observe both
reflection components on the whole object surface.
Therefore, i1t is necessary to plan the lighting con-
ditions in the scene to observe the reflection compo-
nents densely. We then have proposed three methods
for surface reflectance estimation based on inverse
rendering framework without assumption of uniform
object surface reflectance properties.

In future work, we will extend the following items.

e Light planning in observing the object surface
reflection component.

e Automatic estimation of scene lighting condi-
tions.
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(a) Real image

Figure 23: Differences between real and synthetic cylindrical images for Object C.
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Figure 24: Differences between real and synthetic cylindrical images for Object D.

Table 2: Average and variance of differences between real and synthetic images.

Object A | Object B | Object C | Object D
Average | Method II 17.7 20.1 8.7 13.3
Method TI1 1.11 1.06 0.51 0.92
Variance | Method II 501.9 485.4 493.3 375.2
Method 11T 6.8 8.0 3.2 9.8

e Real time estimation by
ware.

using graphics hard-

The first item can improve the light selection method
to observe both object surface reflection components
more accurately and densely. The second item helps
us to merge the virtual and virtualized objects into
the real world. Because our method can estimate
object reflectance parameters, it is easy to faith-
fully represent the object if the lighting condition is
known. The third item is concerned with rapid esti-
mation by implementing the algorithm on high speed
graphics hardware (GPU). Photon mapping render-
ing is already implemented on GPU in resent other
researches. Therefore, by using these methods, our
estimation processes can be done in real time. Real
time estimation has grateful usefulness in computer
vision and graphics. If three items described above
are achieved, the proposed technique can be prac-
tically applied to a number of fields such as mixed
reality.
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