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Abstract Singular points in the linear scale space provide fundamental features for the extraction of dominant parts
of an image. In this paper, we develop an algorithm on edge detection for segmentation using deep structure in the
linear scale space. A typical and well-estabhshed pre-smoothing is the convolution of an image w1th Gaussian kernel
with an appropriate variance. We introduce a mathematical strategy for the selection of the variance of the Gaussian
kernel using the deep structure in the linear scale space. This selection strategem derives the hierarchical structure
of the segments. ‘
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1. Introduction

In this paper, we develop an algorithm on edge detection
for segmentation using configurations of singular pointd in
the linear scale space. For the segmentation, .usually, pre-
smoothing for images are operated. A typical and awell-
established pre-smoothing is the convolution of an image with
Gaussian kernel with an appropriate variance. Then, a class of
deferential operations are operated for the detection of steep-
est points as candidates of segment~edges In these process,
the variance of Gaussian kernel, which defines the band-width
in Fourier domain, is heuristically selected. We introduce a
mathematical strategy for the selection of the variance of the
Gaussian kernel using linear scale space analysis, since the
convolution of image with Gaussian kernel defines the linear
scale space.

The Gaussian scale-space analysis [1]~[4],[9] is an estab-
lished image analysis tool which provides multi-resolution

analysis and expression of steel images and sequence of im-
ages [8], [10). The singular-point configuration in the linear
scale space yielded by Gaussian blurring of function is called
deep structure in the linear scale space. Hereafter, we use
DSSS for the abbreviation of deep structure in the linear scale
space. DSSS describes.hidden topological nature of the orig-
inal functions dealing with gray values of a n-variable func-
tion in the scale space as a (n + 1)-dimensional topographlcal
maps [5]~[8], [11]~([13]. :

For applications of computer vision algorithms to medical
image analysis for medical diagnosis, we are required quanti-
tative methods for the validity evaluation of algorithms. The
mathematical analysis of segmentation and edge extraction
goes back to Canny [18], Torre and Poggio [16}, and Krueger
and Phillips[17]. These results were proposed in mid '80 to
late '80. During '90, there was a progress in scale space the-
ory for image analysis, which were also dealt with in these
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early works. This paper deals with segmentation and edge
extraction from view point of linear scale space analysis to
show mathematical meanings of parameters of Canny oper-
ations. Torre and Poggio [16] numerically showed validity of
multi-scale analysis for the edge extraction.; Canny [18], and
Krueger and Phillips[17] numerically showed the validity of
the same idea. We develop a mathematical strategy for the
selection of parameters of Gaussian kernel for pre-smoothing
for edge-extraction embloying tﬁe,results in the linear scale
space analysis of images.

2. Edge Detection in Scale Space

In the 2-dimensional Euclidean space R?, for an orthogonal
coordinate system z-y defined in R?, a vector in R? is ex-
pressed by & = (z,y)" where -7
Setting || to be the length of z, for the Gaussian G,

= l=? ‘
G(z,7) = — exp ( vy ‘ (1)
the linear scale-space transform for function f(z), such that

fen=[" [” 16w-amny=s@ncemne

where G *; f expresses the two-dimensional convolution be-
tween G and f, defines the general image of function F(=).
Canny shows that the collection of curves

E. = {z|z = argment{max |VmG *: f|} 3)

as a candidate of segment edges, where Vi is the directional
gradient in the direction of m = Il;%. '

As an approximation of E., the collection of points detected
by the next operation. The operation is an approximation for
the detection of the edge points which Canny originally de-
fined [16], (18], since the gradient map of an original image
approximate the zero-crossing set defined by eq. (7)

Edge Detection

(1) Define parameter {7;}7_, and Ty and T such that
T 2T :

(2) For a pre-determined parameter {r;}%; compute
h=G# f.

(3) Mark 0(z,y) = tan™! & = tan~" Ei—ﬂ on points as
the edge direction.

(4) For |Vh| select a point |Vh| =
point of edge-tracking.

(5) Track peaks using 8(z,y) of |VA| as for as Vh = Ty.

(6) Superpose edges for all {r;}1,.

For n = 1, this algorithm is called Canny operation‘ " )

T: as the starting

This expression implies that for Ca.ni:y operation, we are

(note 1) Canny [18] did not define this algorithm in the original paper.
However, since the gradient-map approximates the zero-crossing of eq.
(12), this algorithm is named Canny edge detector. Equation (7) was
derived in reference[18).

is the transpose of a vector. -

required to pre-define two sets of parameters {n},; and
{T\, T2} from an image. Usually, these parameters are de-
fined from pre-assumed noise property of an image [18).

The first aim, of this paper is to derive a mathematical strat-
egy to define {r;}7, and {T1,T>} theoretically from an input
image. The second aim is to define a method for the de-
scription of hierarchy of segments derived from scale space
analysis. :

3. Mathematical Property of Canny Edge

3.1 Algebraic Property of Threshold Pair
We define the following operators

_( ¢ _[ Gt
(&) (Gar) ©
L "Gv _ ‘Gy"‘2f
v (9 )= (T0) o

Geata f G,mf)_ ©

Hg=[VeVi|%f=
[ G] Gazy%2tf Gy f

In reference [18], Canny derived that his edge sets is the 2€ero-
grossing set as :

2
(G f)=0, m ;ﬁl 10

In reference[17), it was proven that eq. (7) becomes

Vof THeVef =0, . ®8)
since
i - F2 faz + 22 fy fay + £ fuv
d’n R+
T [
IV o v HY, )
_ Vi
v
(10)

for the Hessian matrix

H=[vwT)f=( = fo ) 1
[vvTis (m m) (1)
Therfore, the zero-crossing set

E.={a|Vaf HcVaf =0} (12)

is the candidate of segment-edges "** ) Generally, for an
appropriate function F, the set of zero-crossing points

F = {x|F(x) = 0} (13)
is expressed as a common set of two sets

F=Fy0F-, Fy = {z|F(z) 2 0}, F- = {z|F(z) £ 0}.(14)

( note 2 ) In reference [is]. eq. (12) was not explicitly derived.
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Equation (14) posses the next assertion! "°* ) -
[Assertion 1]' Using ‘eq.” (14), we can track points on
VefTHgVef = 0 without a pair of thresholds {1, T2}.
3.2 Geometrical Property of Canny Edge
Since the edge curves detected by Canny operator is the
structure line [14], [15] (See Section 5.) in the linear scale
space[1], employing linear scale space analysis, we develop
a strategy to. define {7:}];. .
The top points in the linear scale space are ponnts satisfy
the conditions

Vef=0, detHg =0. (15)

Setting r;° to be a scale which derives a top point, and setting

"= arjment(mkin{r'lvaf =0, detHg = 0}), (16)

where min is the k-th largést argument of the conditidn, the
next rule is one of possibilifies for selection of the scale pa-
rameter.

[Strategy 1] (1) Compute scales {r{}£_, such that v} <
T4 and 70 = 0. .

(2) Select scales in the interval (7,73, ).

(3) One of possibility is to select scales from (0, 7).

Next, we investigate a topological property of segments. For
the speed of trajectory of singular points in linear scaie space,
we adopt the following definition [11}, [12]

[Definition 1] [11], [12] For S(z,7) = Iu"jrﬂl, the stationary
points on the stationary-curves are the points which satisfy
S(;'c,r, t) = 0 or are isolated points under the conditions
S+(7) =0 and S,-(r) 2 0. o
Denoting a stationary point on the stationary-curves as
(zi,7:), we define the stable attention point and the atten-
tion field on an image f(z,y) and a view-controlled image of
the original image,

[Definition 2] [11],[12] A pomt @; and the region of interest
R(zi7;)

R(zi, i) = {z||x — z:| £ V27 an

define the stable attention point and the attention field on an
image f(z,y).

[Definition 3] [11], [12] The view-controlled image of the orig-
inal image is given as

flz,zi,7) = Gz~ z:)f(x). (18)

A function f(z,®;,7:) approximates‘ an image which is ob-
served by a vision system with a same mechanisms to those
of of human beings [1]. Geometrically, view-controlled express
local dominate parts of an image, and the stable attention

( note 3 ) Considering computational epsilon, eq. (14), is expressed as

Fe = {allF(@)| S ¢} = {w|F(=) 2 —}  {=IF(a)  }

points are centroid of local dominate parts. Therefore, edges
computed for a scale 7 which defines stable view pomt are
segment-edge of local dominate parts.

This property of the smgula.r points in the sca]e space sug-
gest the riext ¢riterion for the selectlon of scale’rin the interval
(Cry ,‘"-+1)

[Strategy 2] Select 7 in (8, 75, such that S,-(r) = 0 and
S:r (7') 2 0

H—z(r) = —VAf(a:(r),r)

Using these analysis, Canny operation 'witl.xc';utvthreshblds
and a parameter is ‘déscribedia,s following.
Edge Detection in the Linear Scale Space

(1) Using strategies 1 and 2, select a scale b or a collec-
txon of scales {7 }p=;. .

(2) Compute the zero-crossing set V& f T H Ve f =0. for
a scale or a collection of scales. .

(3) Detect closed curves which encircles extremal.

(4) For a collection of scales, superpose zeroicrossing
sets. . .

In the following sections, using scale space analysis and dif-
ferential geometry of the surface, we describe the validity of
this criterion. )

4. Hierarchy in the Linear Scale Space

4.1 Linear Scale Space

Equation (2) defines the general image of functxon F(=) de-
fined in R? x Ry [1]. The function f(,7) is the solution of
the linear diffusion equation .

U@  pt(@,), 750, f@0) = f@).  (19)

Stationary points for the topographical maps in the scale
space(1], [11] are defined as the solutions of the equation
Vf(z,7) = 0. The stationary-curves in the scale space are
the collections of the stationary points. We denote the tra-
Jectories of the stationary points as (7). Setting H to be
the Hessian matrix of f(2,7), Zhao and Iijima[11] showed
that the stationary-curves for a 2-dimensional image are the
solution of,

da(r
HE0

= -VAf(z(r),7) (20)

and clarified topological properties of the stationary-curves for
two-dimensional patterns Since the Hessian matrix is always
singular for singular points, this equation is valid for nonsin-
gular points. The definitions are formally valid to functions
defined in R?. Using the second derivations of f(x, ), we
classify the topological properties of the stationary points on
the topographical maps. In the neighbourhood of the point 2
which satisfies the relation Vf (a: 7) = 0, we have the equa-
tion
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:'{, =n.V(n Vf)=n"Hn (1)

Equation (21) means that the eigenvectors of Hessian matrix
of f(z,7) gives the extremal of D’ and that the extremal are
achleved by the elgenva.lues of the Hessian of f(z,7), since
o 2 n"Hn 2 a, for In|=1. Furthermore, the rank of the
stta.n matrix in the hxgher-dxmensxonal space classxﬁes the
propert:es of the smgula.r points.
[Definition 4] For 2D functions, a point is the smgula.r pomt
if the rank of the Hessian matrix at the point is one.
4. 2 Scale Space Zero-crossmg .
Denotmg the signs of the eigenvalues of the Hessxa.n matrix
of a functionf which is expressed as H= va f, a3 MM,
Mm and mm in ‘the linear scale space, these labels of pomts
correspond to the local maximum pomts, the saddle points,
and the local minimum points, respectively. '

' Since the stationary curves consist of many curves for 7 > 0,
we call each curve a bra\.nch curve, The‘point oo for
Jim =(r) = (22)
is uniquely determined for any image. We call a curve on
which point @ lies-arid a curve which is open to the direc-
tion of —r, thé trunk and Braxi'ch,"téspectivel&.' At the top
Theréfore, for the
construction of a unique hierarchical expression of stationary

of each branch, a singular point exists.

points, Zhao and lijima [11] proposed t.he followmg rule.
Tree Construction o
(1) ‘The sub-root of a bran.ch is the singular’ point, such
that Vf =0, ot the fop of the branch curve and & sub-root.’
(2) The sub-root is connected to the trunk by [ lme seg-
ment parallel to the z-y plane. o .
This rule ylelds a monotonically bra.nchmg curve from in-
finity to zero along the -

the monotonically branching curve,

axis in the linear scale space. On

4.3 Combinatorial Property of Singular Points
For two-dimensional positive funictions with a finite number
of extrema, we define la.bellmg functlon such that

MM, r<2, <0,
Mm, r=2, ay - o <0 ',
Sr={ ™™ 1= >0 (23)
sM, r=1, o <0,
sm, r= 1, o >0,
Moo Ia’l

for points V f 0, where ris the rank of the Hessian matrix
H for each scale 7. )

Accordmg to one-to-one mapping between functnon on Eu—
clidean plane R? and the unit sphere S2 the scale space ex-
trema, local maxima, saddle, local minima correspond to ver-
tices, edges, and faces on a polyhedron, respectively. Using
this one-to-one correspondences between a sphere,and the Eu-
clidean pla.ne, for the numbers of the singular points, we have

the next theorem. . . T
[Theorem 1] Setting |M.M]|, |Mm| |mm|, and |me| to be the
numbers of singular points with symbols MM, Mm, mm, and
Teo, fOr x2. . - [

= [MM| le| + (|mm|+ |moo|) (24)

the relation x2 = 2 is satisfied for 0 < 7 S 00.,
5. Structure Lines [14] [15] [17]

For a two-a.rgument functxon z = f(z,y), setting H to
be the Hessian matrix of f, Enomoto and Katayama[14],
Enomoto, Yonizaki, and Watanabe [15] Krueger and Phillips
[17] defined three types of second order singular point sets as

ViTHVf =0, V*fTHVf =0, V' fTHV*fT =0,(25)

where V1fTVf =

‘ 0, that is, for Vf = (fz,fy)T. Vlf =
(~fir £)T

. Enomoto and Katayama [14] called the point sets

= {=z|VfTHVf =0}, (26) .
. C = {x|VfTHVf =0}, (27)
D = {z|V*fTHV*fT =0}, {28y

the edge, characteristic, and division lines, respectively. -

Setting n and ¢ to be the not_mé.l and tangent vectors-on
the iso-level contour curves of surface f(z,y) — z = 0, points
on E, C, and D, satisfy the following geometrical proper-
ties [14], [16), [17).

e On E, Vf = 0 or the normal curvature on, the smf
face f(z,y) — 2z = 0 for the direction of Vf is zero. On E,
|V £l =0 since

ElVﬂ |Vf|2 Vf HVf ‘(29)

e On C, aneigenvector of H is Vf, since V1fTVf=0
and V* fTHVf imply that HVf =aVffora€R. OnC,
£|Vfl =

0 since

ElVfl ===V THVS. (30)

i ,
e On D Vf =0 or the normal curvature on the surface
f(z,y) — z'= 0 for the directior of f(z,y) =
On D, f{‘}& = 0 since
dfe
dt fy

const. is zero.

= |Vf[2 VJ-f HVJ.f

Krueger and Phillips [17] showed that C describes lo¢al sym-
metry and E detects edge of a segment. We define structure
lines in the linear scale space. '

(1)

[Deﬁmt:on 5] Structure lines in the linear scale spa,ce E(T),
C(r), and D(r) are

E(r) = {|Vef HaVef =0},

’ (52
Cc(r) = {z|V§ fTHcYc f=0}, v (33)
D(r) = {elV&f HoVEfT =0} (34)
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These definitions correspond to the definitions of zero-crossing
of Krueger and Phillips[17].
From these mathematical backgrounds, we have the next
property of the edge curves define by Canny [18].
[Asséttion 2] The edge of segment detected by Canny opera-
tion in reference [18] is E(r), which is. edge-line in the linear
scale space for an appropriate scale parametet :

6. Topological Stabxhty of Segments

For a fixed T E(t) is the edge detected. by Canny edge-
detection operator [17]~[19] The top points in linear scale
space are points which satisfy the conditions

Vef =0, detHg =0. N ’ (35)

“Let }(r) be the number of extremal for the scale 7. We have ‘

the next assertion.

[Assertlan 3]
top point, the deference between {(7* + e) and fi(t* —¢€) is at
least one as‘described‘in section 3.

o Setting 7* to be a scale wluch denves a

o E-line crosses at saddle points and a simple ¢losed por-
tion of E-line encircles at most one extremal [15]. V
These two geometric properties in the linear scale space and
topology of E-line lead to the next assertions.
[Assertion 4] The difference between the numbers of simple
closed curves for scales 7* + ¢ and 7* — ¢ is at least one.
[Assertion 5] A closed curve encircles an extrema has common
region with a stable view field.
These topological properties define the local hierarchy of seg-
ments.
[Proposition 1] If a pair of branches of stationary curve is
merged at a top point, a pair of simple closed curves in E-line
which share a saddle point is merged to a simple closed curve

Therefore, for a pair of scales which are separated by a top
point. the topolégy of E-line varies. This property implies
the validity of strategy 1 for the selection of scales in edge
detection as zero-closing of Ve fT HgV¢f.

Furthermore, proposition 1 and strategy 1 show that,
with carful selection of the Gaussian-kernel variance, Canny
edge-detection algorithm eliminates small segments which are
caused by noise for the protection of over segmentation. On
the other hand, over-smoothing by a large variance of the
Gaussian kernel eliminates some segments and causes under
segmentation. The configuration of top-points, which are sec-
ond order singularity in the linear scale space, clarifies the
topological change of the segments and boundary curves de-
tected by Canny edge detection algorithm.

7. Numerical Example

Figure 1 shows edges and segments for selected scales.
Scales in Figure 1 are selected based on the number of saddle

Table 1 The number of saddle points for scales.

scale | number of saddle points
730 > T 2 400 . 4
>72380 - ‘ 5
Sr2360-0 0, . "
> 72230 7
> 72220 8

points listed in table 1. These numbers define 7°. Since, at a
top-point, at least one saddie point disappears based on the
geometrical propei‘ty of scale 'space ’saddle, that is; a saddle
point and a local maximal point are merged to yield a top

‘point and a top point ‘is linked to 4 local maximal point.

If a closed cutve for a small scale encircles a collection of
closed curves m a Ia.rge scale, this relation defines a hierarchy
of segments across the scale. Figure 2 shows the tree extracted
form the singular pomts in the linear scale space and tlie tree
extracted from segments. The tree constxjucted from segments
may define a strategy for the unification of small segments to
a large segments for the controlling of over-segmentation.

Figre 4 shows gradient maps for = 30,50, 70, 90, for
|VG#*3 f 2 0.5. The connectivity of edges collapse if the scale
increases. Therefore, edges detected by the edée detection
algorithm described in section 2 does not allow to construct
hierarchical tree of segments across the scales. :

(a)Edge; 7= "(b)Edge;r= (c)Edgeir= (d)Edge;r=
220 . . 290 . 370 " 480

(g) Segment ;
T =370

(e) Segment ;
T =220

(f) Segment ;
T =290

(h). Segment ;
T = 480

Fig. 1 Edges and segments in the linear scale space. From left to
right, figures show edges and segments for selected scales.

8. Conclusions

In this paper, we déveloped an algoﬁthm on edge detec-
tion for segmentation using deep structure in the linear scale
space. Since Canny developed an edge detecnon method for
pre-smoothed images with Gaussian kernel. Therefore, we
analysed Canny operator using Gaussina scale space frame-
fork, and found out theoretical strategy on the determination

of parameters involved in Canny operation.
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