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Abstract Supporting strokes drawn by users called trimaps are exploited in natural image matting where an
object is extracted from an image and composited against another image. In this paper, we apply a semi-supervised
method for extracting a fuzzy cluster from similarity data to this task and present a methbd for extracting object
regions by using coarse strokes by users. Rough specification of foreground or background regions instead of precise
trimaps is sufficient for our method. Broad propagation window enables our method to jump gaps in objects .and
reduce specification strokes. However, broad window increases computational costs, hence we devise a fast algorithm
for computing approximate solutions'in the method.

Key words natural image matting, object extraction, semi-supervised cluster extraction, membership propagation

. called the alpha channel in computer graphics, whil call
1. Introduction P !+ computer graplics, while we
it the membership in this paper.

Image matting refers to the process extracting an object Computation of z is a fuzzy segmentation of the image:into

from an image and compositing it against another image.
Natural image matting instead of conventional blue or green
screen matting has recently attracted attention, which is de-
fined as
[Natural Image Matting] Given the color C of every pixel in
a natural image, compute z € [0,1] and Cr € [0,255]*,Cs €
[0, 255} satisfying C = zCr+(1—z)Cp where suffix F refers
to foreground and B is background. .

This is a highly under-constrained problem difficult to
solve at once. In ordinary approaches, z is computed at
first and Cr and Cp are next computed. The variable z is

a foreground (object) region and a background area, which
is rephrased as

[Object Extraction] Extract a fuzzy cluster with membership
z from the set of pixels.in an input image.

This is a'problem still difficult to solve automatically. User
interaction is hence normally exploited. Users are required
to specify both of definitely foreground (z = 1) and defi-
nitely background (z =0) pixels. The task. of the matting
system is then compuf.ation of z at remaining unknown pix-
els. Drawing such sﬁeciﬁcation is called a trimap, an exam-
ple of which is shown in Fig.1 where white is foreground,
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black is background and gray is unknown area. Narrower
the unknown region, easier and more precise the system can
estimate = there. However careful drawing of trimaps such

as in Fig.1 is time-consuming and laborious. Moreover it is

not uncommon to be hard to paint every object region in an

image such as in Fig.6. Coarse drawing of only one region
(normally background) is favorable for unskilled users.

Nevertheless many approaches to image matting require
the trimap. Early approaches using sampling-based estima~
tion need precisely drawn trimaps [1]~[3]. More modern ap-
proaches based on spatial propagation of memberships ac-
cept loose drawing but still require trimaps [4]~[6].

In this paper, we present a novel method for extract-
Our .method is based on the
semi-supervised extraction of fuzzy clusters with arbitrary

ing objects from an image.

shapes from similarity data developed previously by us[7].
Our method can extract objects by using user’s specification
of only one region if the object is moderately easy to ex-
tract. Additional specification of another region, i.e. trimap
drawing, improves the discrimination of objects hard to ex-
tract. In contrast to previous approaches where the spatial
propagation of memberships is local, typically 6111y through
4-neighbors, the window in our method is wide hence the
propagation can jump across the gaps in objects. This gap
surmounting capability of the propagation in our method can

further reduce the labor of user's drawing.

2. Semi-Supervised Extraction of Fuzzy
- Cluster

Before presenting the matting method, we briefly overview
a semi-supervised fuzzy cluster extraction method presented
by us[7).

Let there be n data where the similarity between data
and j is sij(= 8ji, 81 = 0). Extraction of a cluster to which

some data are known to belong is expressed as

n n n

max Z Zs,-_,-z,':z, - Z fiz? (1)
i=1 j=1 i=1

where f; = me.x{zj sij, €} and z: €0, 1] is the membership

of datumn ¢ in the cluster. Eq.(1) resembles the Hopfield neu-

ral networks. Its first term produces a driving force for z:

increasing to 1, while the second term induces a counter-force

Fig. 1 Example of trimap (left: input image, right: trimap)

to 0. Their balance gives the solution of eq.(1).
Some z:’s of specified data are fixed to 1 and the remain-

ing zi’s of unknown data are computed with the fixed-point

iteration:

" .
e+y _ 1 €
.’Z:s ) = ?-.. E Sij-’l"(,i ) (2)
j=1
where § is the iteration counter. All z; is initially set to 0
except for fixed ones.

3. Object Extraction from Image

Let there be a color image with size M x N where the
color of pixel (4,7) is Ci; which is represented with the
CIELAB color space: Cij = (L#ij,a*ij,b*;;). The simi-
larity between pixel (3,7) and (i + k,j + ) is expressed by

2402 . 2 . .
—olk*+)=FlICs —Citnitt I yrhere sy is the abbrevia-

Ski=¢e
tion of $i5 (i+k,j4+1). We set soo = 0. For saving computation,
we set si = 0 if |k| > p or |l| > p, i.e. we use the square
window —p < kSp,—p<1<p.

Eq.(1) is , in this case, written by

M N P P M N
ma.xzz Z Z SKITijTitk.j+l — Z Zﬁjzfj 3)

i=1 j=1 k=—pl=—p i=1 j=1

where fi; =max{3}}___ 3 swu,e€} and eq.(2) becomes

P P
Tt(',e'ﬂ) = fi Z Z Skl‘”ii)k,,'y O]
Y k=—pl=—p
which resembles the bilateral filter [8].

Transformation of eq.(3) into an equivalent form of regu-
larized interpolation is described in the appendix 1. .

A user specifies some definitely foreground regions or def- v
initely background regions by drawing strokes at those re-
gions. The system then fix z;; =1 at pixels in those regions
and computes z;; at the remaining pixels by iterating eq.(3)
until its convergence. If the foreground regions are speci-
fied by the user, computed z;; is the membership of pixel
(2,7) in the object. Conversely if the background regions are
specified, 1 — x;; is the degree of objects.

Owing to the cluster extraction capability of the method
in section 2 with only specification of some cluster members,
the present method can extract object with specification of
only one of foreground or-background regions. This is an ad-
vantage of the present method over the previous ones which
require the specification of both foreground and background
regions, i.e. drawing of trimaps.

Additional advantage in' our method is the broad win-
dow in eq.(3) in contrast to only local, typically 4-neighbors,
propagation in the previous methods. Broad window enables
the propagation to jump gaps in objects as will be shown in
the experiments below. Distant propagation between pixels
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simmulates long-range connections between neurons in the vi-
sual area in brains. Broad window, however, increases the
computational costs. Fast algorithm for computing eq.(4)
with approximate spatial decomposition of sk is described
in the appendix 2. This fast algorithm was used in all exper-
iments below. Although this fast algorithm is only approxi-
mate, we can get with this algorithm results almost identical
to those computed with exact computation of eq.(4).

If the color distributions are sufficiently different in fore-
ground regions and background areas, then their discrimina-
tion is easy and we can extract objects with user’s support
of specification of only one of foreground or background re-
gions. However if their distribution becomes close, their dis-
crimination with the user’s specification of only one of them
becomes difficult. In such hard images, additional input of
strokes of another regions serves to improve the extraction of
objects. In such trimap specification cases, z;'s are fixed to 1
at the pixels specified to the foreground and are fixed to 0 at
the background regions, and we compute z;’s at remaining

unknown pixels.
4. Experiments of Object Extraction

We experimented firstly with the image of a parrot in Fig.2.

Fig. 2 Image of parrot

(a) strokes (b) memberships

Fig. 3 Extraction with specification of foreground

(a) strokes (b) memberships

Fig. 4 Extraction with specification of background

(a) with strokes in Fig.3(a) (b) with strokes in Fig.4(a)

Fig. 5 Memberships extracted with p =5

This is an example where the object (parrot) is easy to ex-
tract with supporting strokes in either foreground or back-
ground. However easiness depends on which region is speci-
fied. Since the object (parrot) contains several color regions
each of which requires touching of strokes, several strokes are
needed for specifying foreground as is shown in Fig.3, while
the background color is almost uniform hense few strokes are
sufficient for specifying it as is shown in Fig.4. Parameters
are a = 0.01, 8 = 0.1,¢'= 0.1, p = 50 throughout this paper
except for p which is varied in some figures. Note that filling
up the periphery of the parrot in Fig.3 and the background
space under the beak in Fig.4 is owing to the broad win-
dow in our method. If we set p small, these areas are not
enough filled as is shown in Fig.5, hence additional strokes
are needed if p is small. This space-filling capability of our
method is also examined in the next example.

We experimented next with the image of a flower of spi-
der lily in Fig.6. This is an example where the shape of

the object (flower) is complex. We drew some strokes in the

Fig. 6 Image of spider lily

Fig. 7 Strokes in background in Fig.6
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Fig. 8 Extracted memberships with p =10

Fig. 9 Extracted memberships with p = 50

Fig. 10 Stroke (center bottom) in foreground in Fig.6

background region as shown in Fig.7. When we set p = 5,
z; shown in Fig.8 was obtained. Some background regions
isolated within the flower petals are failed to be discrimi-
nated as background and erroneously extracted as included
in the object (flower). This is due to p = 5 is too narrow
for zi; to propagate across the petal. As far as we use nar-
row windows, we should draw many strokes, that is, at least
one stroke in each isolated region. This is the case of previ-
ous methods [4]~[6] where memberships propagates to only
4 or 8 neighbor pixels. However this requirement for strokes
drawn by users is laborious.

The result with p = 50 is shown in Fig.9 where the sup-
plement strokes are the same as in Fig.7. Background re-
gions enclosed in the flower are successfully extracted as
backgrounds. This is owing to the broad window of p = 50
sufficiently wider than the width of the petals of the flower.

The extraction in Fig.9 is satisfactorily good but extrac-
tion of the stalk under the flower is weak because its color

Fig. 11 Memberships extracted by using Fig.7 and Fig.10

(a) input image

(b) supplement strokes (left: fore_ground, right: background)

(c) extracted memberships
Fig. 12 Image of peacock

is close to the green of background leaves. Hence we added
a stroke in the stalk as a foreground region shown in Fig.10.
Then as shown in Fig.11, the stalk was also extracted clearly
as objects. Since our method can be executed interactively,
additional computation is fast because re-iteration of eq.(4)
starts from the final values of z;; of previous iterations. This
suitability to interactive processing is a merit of iterative so-
lution methods.

Next Fig.12 is also an example of object (peacock) with
complex shape. We drew strokes both in foreground and
background. Final example is an image of squirrel in Fig.13
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(a) input image

(b) supplement strokes (left: foreground, right: background)

(c) extracted memberships

Fig. 13 Image of squirrel

where the object (squirrel) is hard to extract because its color
is close to that of backgrounds.

5. Image Composition

As we described in the introduction, objects extracted
from an image are composed with another image in image
matting. This composition needs the foreground color Cr of
every pixel in addition to their membership z. In previous
approaches to image matting [1]~[6], both of Cr and Cp
are computed. Their computation is , however, complex and
wasteful because Cp is unnecessary for the iinage composi-
tion and is discarded. Hence in this paper, we present a new
scheme for computing only the foreground color Cr by using
the memberships z computed with the above algorithm and
the color C of the input image.

Let the color of pixel (i.j) in an input image be C;; =
[Rij, Gij, Bi;] and its precomputed membership be z:;. We
compute the foreground color Cri; = |Rrij, Grij, Brij] by

M N P P
min Y Y0 Y7 Y sumensrtlCra—Cinsnl*(5)
i=1 j=1 k=-pl=-p

where si is the same as that in eq.(3). Eq.(5) is solved
analytically as

Fig. 14 Composite images with new backgrounds

P P
E E SkiTitk,jHC itk j+1

k=—pl=—p

) P
E E SkITitk,54+1

k=—pl=—p

Crij =

(6)

where z:; is added to eq.(4) as a third weight, so eq.(6) is of
the form of the trilateral filter [9]. Eq.(6) is also computed
approximately with a fast algorithm similar to that for eq.(4)
as is described in appendix 2.

Let the color of pixel (3, ) in another image with the same
size M x N be D;;. Then we set z;;Cri; + (1 — z:;)D;; to
the color of pixel (i,7) in the composite image. Examples
are shown in Fig.14.
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6. Conclusion

We have presented a method for extracting objects from
natural images for image matting. Examination of various
color coordinates for their suitability to our method is cur-
rently under study.
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Appendix

1. Equivalent Formulation of Eq.(3)
Eq.(3) is rewritten as

M N p p
min EZ Z Z 11(Tig = Tigkj+1)°/2

i=1 j=1 k=—pl=—p

M N
+ Z E gi_-,-’t?,’

i=1 j=1

(A1)

P »

k= —p 2ot=—p Ski- This is the form of reg-

where gi; = fi; —
ularization which is interpreted as the Bayesian inference and
implemented with an electronic circuit which is also related
to random walks. If € = 0, then the second term in eq.(A.1)
vanishes. Note again that the novelty of eq.(A.1) lies in the
broad window in contrast to the local 4 or 8 neighbors inter-
action in Markov random fields or electrical circuits.

2. Fast Algorithms for Eq.(4) and Eq.(6)

The following algorithm is derived from an approximate
decomposition of e~PICi ~Citrstill® a5 g=BlIC; ~Corr,sI%,
e—pllci+k,j_ci+k,j+-1”2'
|Algorithm for eq.(4)):

Step 1: For all i and j, compute

P
—al? —B|C;i—C: 2
v = § I§§}+le ol —BlIC:; Ci gl

I=—p

(A2)

p
—al? — 2 C 2
g5 = § e~ e=PIC;=Ci sl

(A-3)
l=—p
Step 2: For all  and j , compute
Ld 2 2
z = Z y¢+k,j6'°‘k e~ PlICi;~Cupi, 11 _ zg) (A-4)
k=-—p
L2 2 2
By = 3 gurn e e M0~ Cusnsl (A5)
k=—p
u;; = max{hi; — 1,¢€} (A-6)
Z§* = 2y (a7)

This zgf-“) is an approximation of eq.(4). Computational
time of eq.(4) until convergence is shown in Fig.A.1.

|Algorithm for eq.(6)):
Step 1: For all i and j, compute

P
ol Bl —Cesatll?
Yij = E 24, j1Csjpre” > e P0G ~Cosnl

(A8)
I=—p
P 2 2
g = Z I‘_‘j“e—ul e—ﬁllcij—c.',j+||l (A-9)
I=—p
Step 2: For all  and j , compute
4 2 2
2= Y Berne™ e Gl 20y (A10)
k=—p
P 2 2
hij = Z yi+k,ge'“k e~ PlIC:; ~Cigr 5l (A-11)
k=—p
ui; = max{hi; — Tij, €} (A12)
Crij = 245/ (A13)

CPU time (sec.)

°a

Fig. A1 Computational time (solid line:eq.(4), dotted line: fast
algorithm) ,
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