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Abstract This paper aims to geometrically analyze central camera systems for computer vision. In the
sence of geometry, a central camera is a collection of all rays incident to one point. Generally speaking, most
cameras that are widely-used in the field of computer vision and robot vision are designed to fall into the class
of central cameras. This is because geometric and algebraic expressions of central cameras are simple compared
to ones of non-central cameras. In the history of computer vision, the conventional cameras are modeled as
pinhole cameras. However, the pinhole-camera model can not express catadioptric, dioptric, and panoramic
cameras that also belong to the class of central cameras. In this paper, we propose a spherical-camera model
as a standard camera model expressing all central cameras. Using the spherical-camera model as a standard
camera model of central cameras, we develop algorithms for computer vision. One of the fundamental studies
in the field of computer vision is the three-dimensional reconstruction from multiple images. As a fundamental
tool for spherical image analysis and as a fundamental pre-processing for three-dimensional reconstruction, we
develop an algorithm for detecting great circles, which correspond to lines in a space, on a sphere. On the basis
of the spherical image analysis, the formulation of multiple view geometry is then established. The analysis
enables us to develop unified algorithms which can be applied to all central cameras and to realize camera
systems involving many different cameras.

1 Introduction field of computer vision, images obtained by conven-
tional cameras have been used as input information
for acquiring 3D information. Since the images are
projected from 3D space, reconstruction of 3D infor-
mation from images are the most fundamental study in

Computer Vision is the study for constructing systems
that are capable of acquiring and recognizing 3D infor-
mation [2, 5, 6, 7, 11, 15, 16, 17]. Historically, in the
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computer vision. The essential 3D information, which
should be reconstructed, are positions and orientations
of cameras to acquire 3D information in the scene. For
the reconstruction of the 3D information, it is neces-
sary to mathematically describe relationships between
cameras, images and objects in a space. In the study
of computer vision, a conventional camera is gener-
ally modeled as a pinhole camera for expressing such
mathematical relationships.

Definition 1.1 A pinhole camera consists of a cam-
era center and a plane in a space. The pinhole camera
collects rays in a space at the center of the camera and
generates an image on the plane in a space.

A camera model geometrically and algebraically ex-
presses projection from 3D scene onto an image. Most
problems of computer vision has been solved based on
the pinhole-camera model.

Mathematically, a pinhole camera can have maxi-
mally 27-steradian field of view since it has an image
on a plane. Practically, a conventional pinhole cam-
era generally generates a m/2-steradian field-of-view
image. For the 3D reconstruction from 2D images,
it is necessary to share a common region in a space
among the images. Therefore, the development of
cameras which practically have a large field of view
compared to conventional pinhole cameras has been
one of the important studies in the field of computer
vision, robot vision and image processing [3]. Some re-
searchers developed cameras constructed by the com-
bination of a quadric-shaped mirror and a pinhole
camera' [1, 19, 23]. These cameras are called cata-
dioptric cameras. The word "catadioptric” means that
pertaining to or involving both the reflection and the
refraction of light. In Figure 1, we show an example
of a catadioptric camera, its image and a spherical im-
age transformed from the catadioptric camera image.
On the other hand, it is also possible to construct the
cameras, which can observe omni-directional scene, us-
ing the refraction of light. These cameras are called
dioptric cameras. The word "dioptric” means that re-
lating to the refraction of light. The dioptric cam-
era is constructed with a specially designed refractor
as the optical lens of the camera. For example, fish-
eye-lens cameras [21] are the typical ones of dioptric
cameras. In Figure 2, we show an example of a diop-
tric camera, its image and a spherical image trans-
formed from the dioptric camera image. In this pa-
per, we call both catadioptric and dioptric cameras
omni-directional cameras. The significant advantage
of omni-directional cameras is to acquire a large field
of view with real time using a single camera. Omni-
directional cameras are widely-used in the robot nav-
igation and video surveillance [8, 14, 24, 27].

LOne of the catadioptric cameras uses an orthographic cam-
era that collects light rays perpendicular to an image plane.

0 2440

Figure 1: An example of a catadioptric camera, its
image and a spherical image. (a) Hyperbolic camera
system, SOIOS-55 CAM. (b) Image acquired with this
hyperbolic camera system. (c) Spherical image trans-
formed from (b).

According to the development of many types of
cameras, recently, the new geometric concept of cam-
eras is proposed [20, 22].

Definition 1.2 A central camera is a collection of all
rays incident to one point. The point is called the cam-
era center.

Definition 1.3 A non-central camera is a collection
of rays which are not incident to one point.

On the basis of these definitions, we geometrically clas-
sify cameras and images. Figure 3 shows the classifi-
cation of cameras based on these definitions. The con-
ventional pinhole camera is classified into the class of
central cameras. Depending on the shapes of the mir-
ror and lenses, omni-directional cameras are classified
into the classes of the central and non-central cameras.
The typical non-central cameras are the orthographic
camera and push-broom camera [10]. Generally speak-
ing, most cameras that are widely-used in the field of
computer vision and robot vision are designed to fall
into the class of central cameras. This is because ge-
ometric and algebraic expressions of central cameras
are simple compared to ones of non-central cameras.
In this paper, we therefore focus on the mathematical
analysis of central camera systems for computer vision.

In the computer-vision communities, traditional al-
gorithms and their applications are developed based on
the pinhole-camera model. However, it is impossible
to express omni-directional cameras using the pinhole-
camera model theoretically and practically since the
pinhole camera has an image on a plane. For the gener-
ation of an image which practically expresses an omni-
directional scene in a space, a camera must project
the scene onto a quadric surface. For the develop-
ment of theories and algorithms that are applicable
to all central cameras, it is necessary to use a unified
and standard camera model, otherwise, the proposed
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(a) (b) ()

Figure 2: An example of a dioptric camera, its im-
age and a spherical image. (a) Fish-eye-lens camera,
Nikon Coolpix 950 digital camera with Nikon Fisheye
converter FC-E8. (b) Image acquired by this fish-eye-
lens camera system. (c) Spherical image transformed
from (b).

algorithms become dependent on selection of the cam-
eras. For the standardization of central cameras, in
this paper, we mathematically classify central cameras
and define the camera models. These mathematical
clarifications of central cameras naturally leads to the
spherical-camera model as a standard camera model
expressing all central cameras. The spherical camera
is defined as follows.

Definition 1.4 A spherical camera consists of a cam-
era center and a surface of a unit sphere whose center
is the camera center. The spherical camera collects
rays in a space at the camera center and generates an
image on the surface of the unit sphere.

The central catadioptric and dioptric cameras geomet-
rically collect light rays at a single point in a space.
Therefore, it is possible to transform the images ac-
quired by these cameras to images on a sphere, spher-
ical images in abbreviated form, when the appropri-
ate factors of the cameras, such as the parameters of
the quadric surface in the catadioptric system and the
method of refraction in the dioptric system, are known
2[18, 22]. Obviously, it is also possible to transform the
pinhole-camera images to the spherical images. These
geometric properties of central cameras lead that anal-
ysis on central-camera images are converged to spher-
ical image analysis. In other words, theories and algo-
rithms proposed for spherical image analysis are ap-
plicable to all central-camera image analysis.

In Section 2, we mathematically classify cameras in
the class of central cameras and define these camera
models. We then define the spherical-camera model

2For the practically accurate transformation from omni-
directional images to spherical images, it is required to calibrate
the omni-directional images. In the calibration, it is necessary
to estimate the parameters of image distortion as same as the
calibration of conventional pinhole cameras and to re-estimate
the appropriate factors of the cameras. The well-established
methods are proposed by [9, 18, 22].

in Section 3. For the standard use of the spherical-
camera model instead of each central-camera model,
it is essential to transform central-camera images to
spherical images. The transformations are uniquely
defined when a central camera center and a spheri-
cal camera center are geometrically configured at the
same point in a space. On the basis of this geometric
configuration of the cameras, in Section 3, we formu-
late the transformations from central-camera images
to spherical images. Using the spherical-camera model
as a standard camera model of central cameras, we
develop algorithms for computer vision. One of the
fundamental studies in the field of computer vision is
the 3D reconstruction from multiple images. As a pre-
processing of 3D reconstruction using the spherical-
camera model, it is essential to analyze the images
on a sphere. In Section 4, as a fundamental tool for
spherical image analysis and as a fundamental pre-
processing for 3D reconstruction, we develop an algo-
rithm for detecting great circles, which correspond to
lines in a space, on a sphere. On the basis of the spher-
ical image analysis, the formulation of multiple view
geometry is then established in Section 5. In Section
5, we formulate multiple view geometry for 3D recon-
struction based on the spherical-camera model using
the combinations of point and great-circle correspon-
dences. The mathematical analysis of central cameras
enables us to observe underlying mathematical rela-
tionship among cameras, images and 3D information
beyond the pinhole cameras. Practically, the analysis
enables us to develop unified algorithms which can be
applied to all central cameras and to realize camera
network systems involving many different cameras.

Pinhole Central catadioptric Central dioptric Spherical

z= an
L

Central cameras

Non-central

#
UL |

Orthographic

Push-broom Circular panorama Non-Linear mozaicing

Figure 3: Central and non-central cameras. Figures
show examples of cameras classified based on Defini-
tion 1.2 and Definition 1.3.
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2 Central Camera Models

Mathematical Classification of
Central Cameras

2.1

A pinhole camera collects light rays and generates an
image on a plane. As shown in Figure 4 (a), a point
X € R® is mapped to a point p € R? on the pinhole-
camera image by the perspective projection P:

P:X —p. (1)

As shown in Figure 4 (b), a catadioptric camera
generates an image following the two step. A point
X € R3 is transformed to a point & € C? on a quadric
surface by the nonlinear function f:

f: X - (2)

The point € C? is projected by a pinhole or ortho-
graphic camera to a point m € R? on a planar image:

P:xz—m. (3)

As shown in Figure 4 (c), a dioptric camera collects
light rays to a point in a space. This point is the center
of the dioptric camera. The dioptric camera generates
an image according to the following two steps. A point
X € R is transformed to a point £ € S? on the unit
sphere by the nonlinear function f:

f: X - (4)

The point & € S? is transformed to a point m € R?
on a planar image by the nonlinear function g:

g:x—m. (5)
X
X X
F
b
c Cc —

(a) (b) ()

Figure 4: Central cameras. (a) Pinhole camera. (b)
Catadioptric camera. (c) Dioptric camera.

2.2 Pinhole Camera
2.2.1 Pinhole-Camera Model

On the basis of Definition 1.1, we describe the pinhole-
camera model algebraically. Hereafter, we call the cen-
ter of the pinhole camera the pinhole-camera center

and the image plane of the pinhole camera the pinhole-
camera image. We formulate the relation between
a point on a pinhole-camera image and a point in a
space. As shown in Figure 5, setting a pinhole-camera
center C' € R? to be the origin of the world coordinate
system, the pinhole camera collects a light ray from a
point X € R? to the pinhole-camera center C. The
z-axis is perpendicular to the pinhole-camera-image
plane. The intersection of the light ray and pinhole-
camera-image plane yields a point p = (u,v)’ € R%.
Using the homogeneous expression p and X of p and
X, we have the equation between p and X, for a given
focal length f,

L F 000\
p=5|0 700X (6)
00 1 0
X
c

Figure 5: Pinhole-camera model.

2.3 Catadioptric Camera

We express a quadric surface in the homogeneous form
as

& Az =0, (7)
where & = (z,y,2,1)", and A = {a;;} for i,j =
1,2,3,4. The matrix A satisfies the relation AT = A.
A quadric surface is also expressed as

z Aoz +2b' T + ass = 0, (8)
where x = (z,y,2)", Ay = {aij}, 4,5 = 1,2,3,
and b = (a41,a4,a43)". We set A\, and o, for

m = 1,2,3,4 and n = 1,2,3 are the eigenvalues of
the matrix A and Ay, respectively. If A\, and o,
satisfy the two conditions, the quadric surface is the
revolution surface of quadratic curve, that is, an el-
lipsoid of revolution, a hyperboloid of two sheets, a
paraboloid of revolution. One is that the signs of A;
are three positives and one negative, and vice versa.
The other is o0y = 09 and o3 € R. Such a quadric
surface has two focal points. For the construction of
central-catadioptric cameras, we use a quadric-shaped
mirror which has two focal point. When a light ray
passes through the focal point of the quadric surface,
the light ray reflected on the quadric surface passes
through the other focal point. If we locate the pinhole-
camera, center at this focal point, it is possible to con-
struct central-catadioptric cameras. 3.

3In case of o3 = 0, a camera center must be at the point at
infinity for the catadioptric camera to be fallen into the class
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Furthermore, assuming that the focal point of the
quadric surface is the origin of the world coordinate
system, we set that a light ray has the direction p € R?
and passes through a point ¢ € R? in a space. The
intersection of the light ray and the quadric surface is
expressed as

T =pup+q. (9)
w is computed from the substitution of Eq. (9) to Eq.
(8), such that,

= —BEVP —ay
a )

(10)

where o = Y, YL pagp, B =
E?:l 23:1 pjaijqi, v = E;Ll Z?zl q;aijqi, for
ps = 0 and g4 = 1. The sign of u depends on the
geometric configuration of the quadric surface and the
light ray. These algebraic representations enable us
to express the correspondence between a point on the
quadric surface and any point in a space in a unified
way.

2.3.1 Example of Catadioptric Camera Model

A central hyperbolic camera is constructed from the
combination of a hyperboloidal shaped mirror and the
conventional pinhole camera [1, 19, 23]. The hyper-
bolic camera collects light rays in a space at the focus
of the hyperboloid as shown in Figure 6. The light
rays, which pass through the focus of the hyperboloid,
are reflected on the mirror. Then, the reflected rays
pass through the other focus of the hyperboloid. For
the construction of the central hyperbolic camera, we
locate the pinhole-camera center at the focus, which
collects the reflected rays. The pinhole camera col-
lects the light rays which are reflected from the mirror
surface at the pinhole-camera center and generates an
image on a plane.

As shown in Figure 6, the focus F' of the hyper-
boloid C? is located at the origin of the world coor-
dinate system. The hyperbolic-camera axis [ is the
line which connects C and F'. The center of the pin-
hole camera is located at the point C = (0,0, —2e).
The pinhole-camera image plane is perpendicular to
the hyperbolic-camera axis I. Using this geometric
configuration of the camera and mirror, it is possible
to construct the central hyperbolic camera. We set the
hyperboloid C? :

Az =0, (11)
where
L 0 o0 0
0 % 0 0
A=l o % L . . (12)
0 0 —% -&5+1

of central cameras. Therefore, it is necessary to combine a
paraboloidal mirror and an orthographic camera.

1o

Figure 6: Hyperbolic camera model. A point X in a
space is transformed to the point & on the hyperboloid.
and x is mapped to the point m on image plane.

and e = va? + b2. We set a point X = (X,Y,Z)" in
a space, a point = (z,y,2) " on the hyperboloid C?,
and m = (u,v)" on the image plane 7. The nonlinear
transform in Eq. (2) is expressed as

T =xX, (13)

where

a2

X[ =z’ (14)

X:

The projection in Eq. (3) is expressed as

(1)

Accordingly, a point X in a space is transformed to a
point m as

fa*X fa?y

(@ —2e3)Z + 2be|X| " (a® — 2¢2)Z + 2be|X|
(16)

u =

2.4 Dioptric Camera
2.4.1 Example of Dioptric Camera Model

The well-established dioptric camera is the fish-eye-
lens camera. Depending on the methods of refraction,
fish-eye-lens cameras generate images according to the
stereographic, equi-solid angle, orthogonal, and equi-
distance projection. As shown in Figure 7, first, set-
ting the center of the fish-eye-lens camera to be at the
origin of the world coordinate system, the fish-eye-lens
camera collects a point X = (X,Y,Z)T to a point
x = (z,y,2)" on S%. This collection of the light ray
is the nonlinear transform in Eq. (4). The nonlinear
transform is expressed as
z=X/|X]| (17)
Next, we set m = (u,v) " and & = (A, )" to be a point
on an image acquired by fish-eye-lens camera and the
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Figure 7: Fish-eye-lens camera model. A fish-eye-lens
camera acquires an image by stereographic, equi-solid
angle, orthogonal and equi-distance projection.

point mapped onto the unit sphere in the spherical
coordinates, respectively. The point £ is transformed
to the point m on the fish-eye-lens camera image de-
pending on the methods of projections in Eq. (5) as
follows,

u=2ftan(p/2)cosd, v =2ftan(p/2)sinb,
u=2fsin(¢/2) cosl, v=2fsin(p/2)sinb,
u= fsinpcosh, v= fsinpsinb,

u= fepcosh, v= fpsinb.

3 Standardization of Central

Cameras

3.1 Standard Camera Model for Cen-

tral Cameras
3.1.1 Spherical-Camera Model

On the basis of Definition 1.4, we define the spherical-
camera model. Hereafter, we call the center of spher-
ical camera the spherical camera center and the sur-
face of a unit sphere the spherical image. As shown
in Figure 8, a spherical camera center C is located
at the origin of the world coordinate system. The z-
axis corresponds to the north pole of the unit sphere.
The spherical camera collects a light ray from a point
X € R? to the spherical camera center C. The in-
tersection of the light ray and spherical image yields
a point to the point = (z,y,2)" on S according to
the formulation,

z=X/|X]| (22)
The spherical coordinate system also expresses a point
x = (x,9,2)" on the unit sphere as

x = (cos f sin ¢, sin A sin @, cos ) - (23)

where 0 < 0 < 27 and 0 < ¢ < w. Therefore, the
spherical image is also expressed as (6, ).

Figure 8: spherical-camera model.

3.2 Spherical Image Transform for
Standardization

As shown in Figure 9 (a), we locate the spherical cam-
era center at the pinhole-camera center. A nonlinear
function h expresses the one-to-one mapping from a
point p € R? to a point € € S? on the unit sphere:

h:p—&. (24)
Since p and & satisfies one-to-one correspondence,
there exists an inverse function h~!:

ht:¢&—p. (25)
This nonlinear function is the pinhole-to-spherical im-
age transform.

As shown in Figure 9 (b), locating the spherical
camera, center at the focus of the quadric surface, a
nonlinear function h expresses the one-to-one mapping
from a point € C? on the quadric surface to a point
¢ € S? on the unit sphere:

h:x— €. (26)
Since x and & satisfies one-to-one correspondence,
there exists an inverse function h~!:

Rt € — . (27)
This nonlinear function is the catadioptric-to-spherical
image transform.

In Eq. (4), the dioptric camera collects rays at a
single point in a space and transforms a point in a
space onto a point on a sphere. Therefore, as shown in
Figure 9 (c), the function in Eq. (5) directly expresses
the one-to-one mapping from a point £ € S to m €
R?. This nonlinear function is the dioptric-to-spherical
image transform. Since £ and m satisfies one-to-one
correspondence, there also exists an inverse function
g

-1

g :m —E. (28)

3.2.1 Pinhole-to-Spherical Image Transform

In this section, we formulate the transform from an
image acquired by a conventional pinhole camera to

0 2480
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Figure 9: Geometric configuration of the central cam-
eras and the spherical camera. In this configuration,
there exist a one-to-one correspondence. (a) Corre-
spondence between a point on a pinhole-camera image
and a point on a spherical image. (b) Correspondence
between a point on a quadric mirror of a catadioptric
camera and a point on a spherical image. (c) Cor-
respondence between a point on a quadric mirror of
catadioptric camera and a point on a spherical image

(c)-

Figure 10: Image transform of pinhole-to-spherical
cameras. In this geometrical configuration of the cam-
eras, a point &€ on the spherical image and a point p
on the pinhole-camera image lie on a line connecting
a point X in a space and the camera center.

an image on a sphere. As shown in Figure 10, setting
the pinhole-camera center C to be the origin of the
world coordinate system. A point X = (X,Y,Z)" in
a space is projected to the point p = (u,v)" on the
pinhole-camera-image plane. For the pinhole-camera-
to-spherical image transform, as shown in Figure 10,
we set, the center of a unit sphere C; = C. The point
p on the pinhole-camera image and the point & on the
spherical image in the spherical coordinates satisfy the
relation

u= ftanpcosf, v = ftanpsin. (29)
Therefore, the pinhole-camera image I(u,v) is trans-
formed to the images Is(6, ¢) on a sphere, that is,

I(u,v) = I(ftan@cos, f tan psin @) = Is(, ¢).
(30)

3.2.2 Catadioptric-to-Spherical Image Trans-
form

In this section, we show the uniform algebraic ex-
pression of the transform from an image acquired by
central-catadioptric cameras to spherical images. Lo-
cating the center of the unit sphere at the focus of
quadric mirror, all the rays which pass through the
focus of quadric mirror and the center of the sphere
are identical. In this geometric configuration of cam-
era centers, it is possible to set p = € and ¢ = 0 in
Eq. (9). Therefore, the nonlinear transform h~! in
Eq. (27) is expressed as:
z = i€, (31)

where 1 is computed from the substitution of Eq. (31)
to Eq. (8).

Example of Catadioptric-to-Spherical Image
Transform

We show the hyperbolic-to-spherical image trans-
form. As shown in Figure 11, Setting & = (£,,&,,&.) "
to be a point on the unit sphere, the spherical-camera
center C and the the focal point F' of the hyperboloid
C? are Cy = F = 0. Therefore, ¢ = 0 in Eq. (9). Fur-
thermore, I, denotes the axis connecting Cs and north
pole of the spherical surface. For the axis [ and the
hyperbolic-camera axis I we set I, = = k(0,0,1)" for
k € R, that is, the directions of I; and [ are the direc-
tion of the z axis. For the configuration of the spherical
camera and the hyperbolic camera which share axes I
and [ as shown in Figure 11, the nonlinear function in
Eq. (27) is expressed as:

z = ut, (32)
where
+a?
H= h e (33)

Applying the spherical coordinate systems, a point m
on the hyperbolic image and a point & on the sphere
derives the equations:
_ fa® cosfsin B fa?sinfsin ¢
“= (a2 — 2e?) cosp + e’ (a2 — 2e2) cos + 2be’
(34)
Setting I(u,v) and Is(f,¢) to be the hyperbolic-
camera image and the spherical image, respectively,
the hyperbolic-to-spherical image transform is ex-
pressed as follows:

15(0730) =
fa? cos@sin @ fa?sinfsinp
(a2 — 2e?) cosp + 2be’ (a2 — 2e?) cos @ + 2be

I( ), (35)

for the hyperbolic-camera image I(u,v).
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Figure 11: Image transform of hyperbolic-to-spherical
cameras. In this geometrical configuration of the cam-
eras, a point € on the spherical image and a point
on the hyperboloid lie on a line connecting a point X
in a space and the focal point F' of the hyperboloid.

X
oF
-7

=

Figure 12: Image transform of a dioptric-to-spherical
cameras. Since the fish-eye-lens cameras acquire im-
ages by stereographic, equi-solid angle, orthogonal and
equi-distance projection, it is possible to transform
fish-eye-lens camera images to spherical images di-
rectly.

3.2.3 Dioptric-to-Spherical Image Transform
Fish-Eye-Lens-to-Spherical Image Transform

In Eq. (4) the fish-eye-lens camera collects rays at
a single point in a space and generates an image on
a sphere. When the projection method is known, as
shown in Figure 12, using the relationship expressed
by the function g in Eq. (5) between the point m € R?
and the point & € S? it is possible to derive the image
transform as follows:

Is(8,¢) =
I(2ftan(n/4 — ¢/2) cos8,2f tan(mw/4 — ¢/2) sinh),
Is(0,¢) =
I(2fsin(w/4 — p/2) cosB,2f sin(m/4 — ¢/2) sinB),
Is(8,¢) =

(

(

(

for the fish-eye-lens-camera image I(u,v).

4 Feature Detection on Spheri-
cal Images

In this section, as a fundamental pre-processing for
3D reconstruction, we introduce a method based on
the randomized Hough transform [26, 25], which is
the well-established method of using voting and ac-
cumulation, for the detection of great circles from a
collection of points on a sphere. In the field of pat-
tern recognition and computer vision, lines in a space
are considered as one of the fundamental features for
the recognition of three-dimensional space. Elemen-
tary mathematics in spherical geometry states that a
great circle on a sphere corresponds to a line on a
plane in a space. Therefore, great-circle detection is
an essential problem in spherical image analysis.

4.1 Duality of Point and Great Circle

on Sphere

A great circle is a common curve with S? and a plane
which passes through the origin. This geometrical
property of the great circle implies that great-circle
detection on S? is achieved by detecting the plane that
passes through the origin, since a plane which passes
through the origin is expressed as

T

a'z=0, a€S], zek. (36)

For spherical images, z also lies on S?, that is, |z| = 1.
Therefore, for x = (z,y,2)" € $? and @ = (a,b,c)" €
S? the equation

T

a'z=0 acS?, xcs? (37)

defines a great circle on S? when we fix @ € S1. Con-
versely, Eq. (37) defines a great circle on S when we
fix € S2. This geometric duality provides us the
standard Hough transform, SHT in abbreviated form,
and the randomized Hough transform [26, 25], RHT
in abbreviated form, for great-circle detection.

4.2 SHT and RHT on Sphere

On the basis of the duality of a point on a sphere
and a great circle on a hemisphere, it is possible
to achieve SHT for great-circle detection. Setting
P = {z; = (z;,yi,z)" € S?}, to be samples on
a spherical image, Eq. (37) leads to the transform
from a collection of points P on S? to great circles on
S3. Let the function u(r) be

1, ifr=0,
u(r) = { 0, otherwise. (38)
The voting is then expressed by
h(a € S7) = Z u(a’ ;). (39)

:EieP
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(a) (b) () (d)

Figure 13: Duality and Hough transform. For point-
to-great-circle voting for SHT, (a) points {x; € S?}7_,
yield great circles on a dual parameter space Si, and
(b) the intersection of the great circles expresses the
parameter of the great circle on the original spherical
image. For points-to-point voting for RHT, (c) ran-
domly selected two points on a spherical image are
sampled, and (d) the cross product of the two points
z;,x; € S? yields a point a;; on a dual parameter
space Si. This point a;; expresses the parameter of
the great circle on the original spherical image.

This is the mathematical expression of point-to-great-
circle voting for SHT. Figures 13 (a) and (b) show this
point-to-great-circle voting.

On the other hand, since the duality of a point
and a great circle also defines the transform from a
pair of points on S? to a point on S%, it is possi-
ble to achieve RHT for great-circle detection. Setting
P = {z; = (zi,yi,2z) € S?}", to be samples on a
spherical image, the solution of the system of equa-
tions,

T

a x; =0, a’

(40)
where @ = (a,b,¢)" € S and i # j, defines a point
as the common point of a pair of great circles on Si.
This system of equations is equivalent to the system
of equations,

.’12]':0,

T T

ula x;) =1, ula' z;) =1, (41)

where u(7) is the function defined in Eq. (38). The
solution of the systems of Eqs. (40) and (41) is equiv-
alently computed by the cross-product of z; and x;,
such that

T; X Tj

a;; = A A€ {—1, 1}, (42)

N |$i X $j|’
where ) is selected so that vector a;; lies on S7 . These
mathematical properties derive the voting for RHT ex-
pressed by

v(a € S2) = (43)

> ula—ay),

$i,$]'€P

for ¢ # j. This is the mathematical expression of
points-to-point voting for RHT. Figures 13 (c) and
(d) show this points-to-point voting. Since the ran-
domized Hough transform involves a random sampling

Table 1: Algorithm 1: RHT for great-circle de-
tection on a sphere

i. Repeat for a predetermined number of iterations
N,

Operate the voting using Eqs. (42) and (45)
and accumulate the voting to the cells.

ii. Detect peaks of the accumulation.

iii. Qutput the peaks as great circles.

process [26, 25], this is the fast version of SHT. Fur-
thermore, in the phase of practical implementation,
the points-to-point voting requires a small memory
space as the Hough space compared with the point-
to-great-circle voting. This is the main reason why we
use RHT on a sphere for great-circle detection.

In RHT on a sphere, voting is accumulated to a cell
generated by tessellating the dual hemispherical space
Si. Parameters a of great circles are determined by
detecting peaks of the accumulation. For practical op-
eration of RHT on a sphere, the dual hemispherical
space Si is tessellated to a collection of cells D. Here-
after, we call this discrete hemispherical space D the
discrete Hough space. Let the function 4(7) be

i(r) = { 0

where T' is a given real constant determined by the
size of the cell. Therefore, the voting expressed in Eq.
(43) is modified as

if |7] =T,

otherwise, (44)

v(a € D) =

Z a(a—aij).

x;,x;cP

(45)

An algorithm of RHT with tessellated cell parameter
space is implemented as shown in Table 1.

4.3 RHT-based Method for
Circle Detection

Great-

In this section, we propose a RHT-based method with
a continuous Hough space. In this method, for a prede-
termined number of iterations, we repeat the random
sampling and points-to-point mapping using Eq. (42)
instead of voting and accumulation on RHT. Note that
on the basis of geometric duality, points on a unique
great circle define a unique point on a hemisphere.
Therefore, if there is no noise for the samples, which
corresponds to a unique great circle on the original im-
age, points computed from a randomly selected pair of
samples using Eq. (42) always denote a unique point
in the parameter space Si. However, because of the
noise in the original image, points computed using Eq.
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Table 2: Algorithm 2: RHT-based method for
great-circle detection on a sphere

i. Repeat for a predetermined number of iterations
N,

For a randomly selected pair of points, op-
erate the points-to-point mapping using Eq.

(42).
ii. Operate clustering of a point cloud on S7%.

iii. Repeat M times for the number of clusters M,

Compute a centroid of a cluster and output
the centroid as a parameter of a great circle
on the original spherical image.

(42), which should correspond to a great circle in the
original image, are distributed in the neighborhood of
the true point on Si. Therefore, the points yielded by
random sampling and points-to-point mapping are dis-
tributed as a point cloud on S%. Furthermore, when
there exist many lines in the original image, this ran-
dom sampling and points-to-point mapping procedure
yields a number of point clouds on Si. We need a
process for clustering point clouds so that each cluster
represents a great circle. Such an algorithm is sum-
marized in Table 2.

4.3.1 Clustering of Point Cloud on Sphere

To cluster the point cloud on S2, we set a collection of
points Q = {a}™, that expresses the point cloud. As
shown in Figure 14, first, we generate a region Qg (6)
on S7 defined by the intersection of a cone and a hemi-
sphere, that is, the inside of a small circle on a sphere.
The cone has the opening angle # and the central axis
of the cone passes through a point a; € Si arbitrar-
ily selected from Q. Second, for 6, we compute the
cardinality of points @ in the region Qq,; (fx) such that

C(Ok;ai) = 1Q N Qa;(6)]. (46)

Third, by increasing the opening angle 6. as 0p41 =
0, + K, where k is a given constant and 0y = Kk, we
expand a region Qq,; (fx). Then, we detect the opening
angle 8, when the cardinality C(0y; a;) of points in the
region Qq,;(0r) becomes locally constant. We define
this opening angle as the minimum opening angle @,y
of a;. Finally, using the minimum opening angle 0yin,
we extract a collection of points Q, from Q. Then, we
compute the centroid of the collection of points Q, as
the parameter of a great circle on the original spherical
image.

For this clustering, there does not exist any mathe-
matical criterion for the selection of a; € S3 from Q.
Therefore, for all points in @, we first compute the

Figure 14: Clustering of point clouds. (a) When the
opening angle, which defines the size of the region
Qa;(0r), is small, the region Qq, () does not include
a sufficient collection of points. (b) We select the the
opening angle #; when the cardinality of points P in
the region Qq,;(fx) becomes locally constant. Using
this region, it is possible to extract a collection of
points @, from the point clouds Q. (c) If the open-
ing angle of a cone is large, the cone includes other
collections of points.

minimum opening angle ,;, of a; based on the cardi-
nality C(fx;a;). Second, we select the point that has
the largest cardinality in the region Qq,; (é:min). Third,
we compute the centroid of the collection of points Q,
and remove the collection of points that lie in the re-
gion Qa;(0min) from Q. These operations merge the
collection of points, which may express the same line,
in the continuous Hough space. Finally, we repeat
these operations for the remaining points Q\Q, in the
parameter space. We summarize the RHT-based algo-
rithm for great-circle detection in Table 2.

4.4 Numerical Examples

4.4.1 Edge Detection

In this section, we show numerical examples of the de-
tection of great circles from spherical images. As a
pre-process to great-circle detection, we extract sam-
ple points on a sphere by edge detection. Two meth-
ods are applicable. The first is a method in which
an input original image is transformed onto a spheri-
cal image and edges are extracted as sample points on
the spherical image. In the second method, the edges
on an original central-camera image are extracted us-
ing the standard image processing technique and then
the points extracted as sample points are mapped to
a sphere. We use the second method in this numerical
experiment.

4.4.2 Prescreening of Meaningless Sampling

The points-to-point mapping based on the random
sampling of a pair of points yields a meaningless point
in the continuous Hough space if the selected two
points do not lie on the same great circle. To eliminate
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Table 3: Algorithm 3: RHT-based method for
great-circle detection with prescreening based
on collinearity

i Repeat for a predetermined number of iterations N,

For three randomly selected points, test the
collinearity.

If the three points are collinear, operate the
points-to-point mapping

using Eqs. (42) and (48)

ii Operate clustering of a point cloud on Si.

iii Repeat M times for the number of clusters M,

Compute a centroid of a cluster and output
the centroid as a parameter of a great circle
on the original spherical image.

meaningless sampling, we adopt the idea of three-point
Hough transform [4]. This prescreening process tests
the collinearity of three sample points on the origi-
nal image. The collinearity is evaluated by the scalar
triple product for the three sample points z;, x; and
x, € S% as

(47)

If the selected three points are collinear, we map a
point a;j; to the continuous Hough space Si as

G(zi,zj,xi) = |(z; x ;) xp-

1
Qi = —(aij + ajr + aki). (48)

3
For o, 8 € {i,j,k}, aqp is computed using Eq. (42).
This prescreening process for eliminating meaningless
sampling leads to the algorithm in Table 3.

4.4.3 Numerical Examples

We employed Algorithm 3 for the detection of great
circles on a sphere. Figure 15 shows the results of
great-circle detection on a sphere. Sample points on a
sphere are prepared using a hyperbolic-camera image.
The original hyperbolic-camera image is acquired us-
ing a SOIOS-55 CAM whose mirror is hyperboloidal.
The original catadioptric image has 640 x 480 pixels.
We extract 2236 edge points from the original image
using a Laplacian filter. The extracted edge points are
transformed onto a unit sphere as sample points. Fig-
ure 15 (a) shows the sample points and the eight great
circles detected by our RHT-based method for great-
circle detection. To evaluate our result on the original
image, the detected great circles are back-projected to
the original image, as shown in Fig. 15 (b).

Figure 16 shows the results of great-circle detec-
tion on a sphere. Sample points on a sphere are pre-
pared using a fish-eye-lens-camera image. The origi-
nal fish-eye-lens-camera image is acquired using Nikon

Figure 15: Results of numerical experiments using the
spherical image transformed from a hyperbolic-camera
image. (a) Using edge points extracted by the Lapla-
cian filter, eight great circles are detected on the spher-
ical image. (b) The great circles back-projected onto
the original image.

Figure 16: Results of numerical experiments using
the spherical image transformed from a fish-eye-lens-
camera image. (a) Using edge points extracted by the
Laplacian filter, 20 great circles detected on the spher-
ical image. (b) The great circles back-projected onto
the original image.

Coolpix 950 and a Nikon Fisheye converter FC-ES,
which is a fish-eye-lens converter. We extract 5572
edge points from the original image using a Laplacian
filter. The extracted edge points are transformed onto
a unit sphere as sample points. Figure 16 (a) shows
the sample points and the 20 great circles detected by
our RHT-based method on the spherical image. In
the same manner as in the experiment for the cata-
dioptric image, to evaluate our result on the original
image, the detected great circles are back-projected to
the original image, as shown in Fig. 16 (b).

These experimental results lead to the conclusion
that our RHT-based method is applicable to differ-
ent types of central-camera images since the algorithm
is achieved on the basis of images on a sphere. Fur-
thermore, our method semi-automatically detects the
number of clusters, that is, the numbers of great cir-
cles. Moreover, the results show that the great circles
are robustly distinct from background noise.
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5 Multiple View Geometry for
Spherical Cameras

In this section, we formulate multiple-view geometry
based on the spherical-camera model defined in Sec-
tion 3. We deal with two-view, three-view and four-
view geometry since there exist multilinear constraints
up to four views [11]. The multiple view geometry
based on the spherical-camera model naturally rep-
resents geometric constraints in the dual space. On
the basis of the analysis of the geometric constraints
in the dual space, we derive the epipolar circumcircle
constraint.

5.1 Two-View Geometry for Spherical
Cameras

5.1.1 Epipolar Geometry for Spherical Cam-
eras

Setting C and C' to be centers of spherical cameras,
points X € R® and X' € R® are mapped to points x
and x' € S? on the spherical camera images as shown
in Figure 17. We assume that C = O, and R and ¢ ex-
press the transform of the camera coordinates between
C and C'. The mappings are expressed as follows,

Az =X, \eR (49)
Ne'=X'"=RX +t, N eRr (50)

Therefore, we have the equation,
Na' — ARz —t =0. (51)

In the same manner as the epipolar geometry based
on a pinhole camera model [5, 11], since the vectors
', Rz and t are coplanar, we obtain the epipolar con-
straint on the spherical-camera model, that is,
z'Exz =0, E=[t]«R, (52)
where [t]x is a skew-symmetric matrix. The 3 x 3
matrix E is linearly computed using eight pairs of cor-
responding points on the spherical images.

Figure 17: Epipolar geometry for spherical cameras.
For a pair of points & € S? and =’ € S? correspond-
ing to a point X € R3, the points x, ', X and the
spherical camera centers C and C' are coplanar.

Figure 18: Epipolar circumcircle for spherical cameras.
(a) The geometric duality of points and great circles
on a sphere derives that points & and &' € S? draw
great circles C' and C’, respectively. The intersection
of the planes 7 and 7', that include C and C’, yields a
line in R®. (b) The six points X, x, ', C, C' and X
exist on the same epipolar plane. The four points X,
C, C' and X are on a circle on the epipolar plane.

5.1.2 Geometric Aspect of Two-View Geome-
try Based on Duality

The geometric duality of points and great circles on a
sphere derives that points © and =’ € S? draw great
circles I and I’ on spherical images, respectively. Since
I and I’ are on planes 7 and 7’ in R? that pass through
the centers of cameras C and C’, the intersection of
these planes yields a line L in R? as shown in Figure 18
(a) 1. Furthermore, we set X to be a point of inter-
section of the line L and the epipolar plane on which
x, ' and X are included. Since we select the points
x and &’ corresponding to the point X, the six points
Xo, z, ', C, C' and X exist on the same epipolar
plane as shown in Figure 18 (b). Moreover, since X
is the intersection of lines, which pass through C and
C’ and are perpendicular to « and ', on the epipo-
lar plane, the four points Xg, C, C' and X are on
a circle on the epipolar plane as shown in Figure 18
(b). On the other hand, the convex polygon formed by
these four points has a circumcircle. We call this circle
as the epipolar circumcircle. This circle has a center
eo = 5(Xo+ X) and a radius e, = 1|(X¢ + X)|. The
epipolar circumcircle clarifies the geometric relation of
a point at infinity and the epipole. If X is a point at
infinity, X is on the epipole and 7 and 7’ become an
identical plane. On the other hand, if X is a point at
infinity, X is on the epipole and m and 7' are parallel.

4Notice that the direction vector of this line L corresponds
to the normal vector of the epipolar plane. Therefore, we have
the relation,

_ @' xRx  txRx ' xt
T |® xRe| |t x Re|  |@’ xt|

P (53)
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5.2 Three-View Geometry for Spheri-
cal Cameras

5.2.1 Trifocal Tensor for Spherical Cameras

We express a line in a space by parametric form L :
X;+np € R where X; € R3, p € R® and 5 €
R. Setting C, C' and C" to be centers of spherical
cameras, lines L, L' and L" € R® are mapped as great
circles [, I’ and I"" € S? on the spherical camera images
as shown in Figure 19. We assume that C = O at the
origin of world coordinates. R’ and ¢', and R” and
t" express the transforms of the camera coordinates
among C and C’, and C and C", respectively.

Figure 19: Three view geometry for spherical cameras.
A line in a space is mapped as great circles on spherical
images.

According to the geometric duality between a great
circle and a point on a sphere, the great circles I, I’
and {" equivalently denote points a, a' and a" € S2.
It is possible to express the relations among the lines
L, L' and L" in a space and the points a, a’ and a"
on a sphere, such that,

a'L =0, (54)
aITLI — aIT (RIL + tl) — 0’ (55)
aIITLII — auT (RIIL + tll) =0.

Using 3 x 4 matrix M, we can express these equations
as the following form,

ML = O, (57)
where
a’ 0
M=| a™R'" a''t |, (58)
aIITRII a/thu

and L' = (L",1)T. When this equation implies a line
in a space, rank(M) = 2. Setting M " = (my, m2, m3),

mi = ams + fms. (59)
Since myy = 0, @ = kt"Ta" and B = —kt'"a' where
k € R Again, in the same manner as the trifocal

tensor based on the pinhole camera model [11], up to a
homogeneous scale factor, we can express the relations

among a, a’ and a” using tensor notation, such that,

OéRITaI + BRI/Ta/l
_ (tnTau)RlTa/ _ (t/TaI)RHTaH

a =

= (a""t")R'""a' —(@'"t)R"Ta". (60)
For ith element of this vector,
ai = a""(t"RINa' —a' T (t'R!T)a"
a"(R"t")a" —a'T(t'R!'")a", (61)

where R{ and R{" are the ith column vectors of R' and
R". We have the trifocal tensor [T1, Ty, T3] which are
the set of matrices T; = R{"t" — ¢'R{'". Rewriting
Egs. (61) and (60), we have the equations,

a; =a'"Tia", (62)
a' =a'"[T}, Ty, Tsla". (63)
Since a point  on a great circle a satisfies
x'a=0, (64)
we have point-line-line correspondence, such that,
3
a'T(Z z'Ty)a" = 0. (65)

Furthermore, setting ' and y’, and =" and y” to be
the points on great circles @’ and a”, respectively, we
have the relations,

o' =kz' xy =kz]y, (66)

all — kllxll X yll — kll[mll]xyll, (67)

where k' and k" € R are selected so that a’ and a"
are on S%. Eq. (65) is now represented as

a'T(Z 2Ty [x"]«y" =0, (68)

ynT[mn](Z :L’iTi)[m"]Xy” —0.

Since ' and x" are independent to ¢y’ and y", respec-
tively, we have point-point-line and point-point-point
correspondence as follows,

(69)

a'T(Z ' Ty)[z"]x = 013, (70)

2"} T[] = Os (71)
Noting that, for the derivations of point-point-line and
point-point-point correspondence, homography is not
used because the homography among spherical images
are not well-defined.
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5.2.2 Geometric Aspect of Three-View Geom-
etry Based on Duality

In this section, we describe the epipolar circumcircle
constraint for the three-view geometry based on the
spherical-camera model. For three cameras C,, C}
and C., setting x,, s and . € S? to be a triplet
of corresponding points to the point X € R3, respec-
tively, there exist three epipolar planes ., 7. and
Teq as shown in Figure 20 (a). The duality of a point
and a great circle on a sphere yields planes &,, & and
&, for &,, &, and . € S2. The intersections of ¢, and
&, & and &, and &. and &, yield lines Lg;, Ly, and
L., € R3, respectively. Furthermore, we set X 45, X pe
and X ., are the points of intersection of L, and map,
Ly and 7, and L., and 7¢,.

For the triplets C,, C} and X o3, Cy, C. and Xy,
and C., C, and X.,, there exist three epipolar cir-
cumcircles ey, epe and e.q, respectively, as shown in
Figure 20 (b). Obviously, since we assumed the triplet
of points are corresponded, the three epipolar circum-
circles intersect the point X in a space. This intersec-
tion of epipolar circumcircles is the geometric aspect
of three-view geometry based on the duality.

Figure 20: Epipolar circumcircle constraint for spher-
ical cameras. (a) For three cameras C,, C} and C.,
the triplet of points x,, z; and . € S? corresponding
to a point X € R? yields three epipolar planes map, Tpe
and 7.,. The intersections of &, and &, & and &., and
& and &, yield lines Lgy, Ly, and L., € R?, respec-
tively. Furthermore, we set X5, X and X, are
the points of intersection of L., and 7,5, Lp. and mp.,
and L., and 7.,. (b) For points C,, Cj and X 45, Cp,
C. and X, and C., C, and X .,, there exist three
epipolar circumcircles eqp, €5 and e.,, respectively.

5.3 Four-View Geometry for Spherical
Cameras

5.3.1 Quadrifocal Tensor for Spherical Cam-
eras

In the same manner as the formulation of quadrilin-
ear relationship and quadrifocal tensor on the pinhole-

camera model [11, 13], we formulate the four-view ge-
ometry on the spherical-camera model.

Setting C, C', C" and C"" to be centers of spher-
ical cameras, [R,t], [R',t], [R",t"], and [R"',t""] ex-
press the transform from the camera coordinates to
the world coordinate systems. For a point X € R?, we
have the four equations \e = RX +¢, Nz’ = R’ X +¢/,
g = Rllx_'_tII’ AN g — RIIIX+tIII’ where ), )\/’ A\
and A" € R, and x,z’, 2" and ' € 52 on the spher-
ical images, respectively. We can re-write the equa-
tions,

[ I tl U,1 1
Iy t2 U,2
r3 t3 U3
r, ] u'l X
rh th u”? 1
ry th u® -2 | _ 0
rlll tlll uul Y — Y%
I"2' t12/ u1/2 —_\
I'g tg UIIB _)\/u
rllll tllll w'
I"2” t/21/ UIII2
i rgl tg/ ulll3 ]
(72)

where r;, r}, v/ and r}’ are the i-th row vectors of the

matrices R, R/, R" and R, ¢;, t}, t!/ and ¢!’ are the
i-th element of the vectors ¢, t', t"" and ", and u?, u'?,
v and v are the i-th element of the vectors z, ',
z" and z'", respectively.

Since x, ', " and x'" correspond to the same
point X, this equation has a solution. The 12 x 8
matrix has rank at most 7. Therefore, all determinants
of the 8 x8 matrices which consist of eight rows selected
from the 12 x 8 matrix are zero. We set that €;;; is
the tensor as follows:

0 unless ¢,7 and k are distinct
€ijk = +1 if 4k is an even permutation of 123
—1 if ¢k is an odd permutation of 123.
(73)
Expansion of the determinant leads to a quadrilinear
relationship

(74)

where 0y2y- is a zero tensor with four indices w, z, y
and z, and the rank-4 tensor QP?"* is

P TS __
uiujukul 6ipwejqzEkryelszqu - szyz

r, 1

pars r, 1
Q = det " " (75)

r'f’ t'l"

r/sn t’s”

@P?¢ is the quadrifocal tensor for the correspondence
of four points on spherical images. Finally, we set that
a;, ai, a and a!' are the i-th element of great circles
a, a', a” and a'" on the four spherical images. The
quadrifocal tensor for great circles is expressed as

111 pgrs
apa,a,.a; Q) =0.

(76)
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5.3.2 Numerical Examples

Computation of Epipolar Geometry

We compute the epipolar geometry between two
spherical images. Figure 21 (a) shows a spherical im-
age transformed from a conventional pinhole-camera
image in Figure 21 (b). Figure 21 (c) shows a spherical
image transformed from a fish-eye-lens-camera image
in Figure 21 (d). Since Eq. (52) is algebraically equiv-
alent to the epipolar constraint on the pinhole-camera
models, it is possible to compute the essential matrix
E in the same manner with the classical methods [11]
for the computation of epipolar geometry based on the
pinhole-camera model. For the given eight pairs of
point correspondences between the two spherical im-
ages, we compute the essential matrix linearly. The
great circles on the spherical image in Figure 21 (c)
are the epipolar circles, which are the epipolar lines in
the pinhole-camera geometry.

Computation of Trifocal Tensor

We compute the trifocal tensor using great-circle
correspondences among three spherical images. Fig-
ures 22 (a), (b) and (c) shows spherical images trans-
formed from from fish-eye-lens-camera images in Fig-
ures 22 (d), (e) and (f), respectively. Since Eq. (63)
is algebraically equivalent to the trifocal tensor on the
pinhole-camera models, it is possible to compute the
trifocal tensor T in Eq. (63) in the same manner
with the classical methods [11, 12]. For the computa-
tion of the trifocal tensor using great-circle correspon-
dence, we detect great circles on the spherical images
using the RHT-based method proposed in Section 4.
Then, using the given 13 pairs of great-circle corre-
spondences, we compute the trifocal tensor from the
three spherical images linearly. Finally, the two essen-
tial matrices are extracted from the computed trifocal
tensor [11]. Using the extracted essential matrices, it is
possible to draw the epipolar circles. We select some
points on the spherical image in Figures 22 (a) and
draw the epipolar circles on the spherical images in
Figures 22 (b) and (c).

These experimental results lead to the conclusion
that it is possible to compute the epipolar geometry
and the trifocal tensor based on the spherical cameras.
The standardization of different types of central cam-
eras to the spherical cameras enables us to implement
the computation of multiple view geometry in a uni-
fied method. Furthermore, the use of the large-field-of-
view cameras enables us to obtain sufficient numbers
of great-circle correspondences for the computation of
the trifocal tensor practically.

6 Conclusions

In this paper, we mathematically analyzed central
camera systems for computer vision. The classifica-

Figure 21: Computation of essential matrix. (a) shows
a spherical image transformed from a conventional
pinhole-camera image (b). (c) shows a spherical im-
age transformed from a fish-eye-lens-camera image (d).
The great circles on (c) are the epipolar circles which
correspond to the points selected on (a).

tion of central cameras and mathematical definitions
of camera models imply to define a spherical camera
model as a standard camera model for all central cam-
era systems. Using the spherical camera model as a
standard camera model of central camera systems, we
developed the basic algorithms for computer vision.
The numerical examples of 3D reconstruction promise
that the spherical cameras are the essential tool for 3D
reconstruction. Furthermore, the proposed algorithm
for detecting great circles on a sphere is a fundamental
pre-processing for 3D reconstruction. Moreover, it is
possible to implement the proposed algorithms for the
camera, systems which are constructed from different
types of central cameras.
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