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われわれの研究室では，形状計測装置を気球に吊るして空中から計測をおこなうシステム（FLRS :
Floating Laser Range Sensor）を開発し，大規模物体の計測をおこなっている．この方法により，通常の
計測では困難であった地上から計測できない部分に対して，広範囲にわたって計測することが可能となっ
たが，移動型計測システムを使用することによる問題が新たに発生した．それは計測時間中にセンサその
ものが運動し，結果として得られた形状データが歪んでしまうことである．本論文では，レンジセンサを
移動させながら形状データを取得する手法と，そのレンジセンサから得られる歪んだ形状データを本来の
正しい形状に復元する手法について述べる．形状の復元手法に関しては，２種類の手法を提案する．ひと
つは，FLRSにビデオカメラを搭載し，得られた画像列と歪んだレンジデータそのものを用いて，センサ
の運動を高精度に推定する手法であり，もうひとつは，運動パラメータの時間遷移を多項式で近似し，他
のレンジセンサから得られたデータをもとに歪んだデータを復元する手法である．われわれがおこなって
いる大規模文化遺産のデジタルコンテンツ化であるデジタルバイヨンプロジェクトにおいて，実際に本手
法を適用し，実験結果によりその有効性を示す．
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Abstract ”Modeling from Reality” techniques are making great progress because of the availability
of accurate geometric data from three dimensional digitizers. These techniques contribute to numerous
applications in wide area. Among them, one of the most important and comprehensive applications is
modeling cultural heritage objects. For a large object, scanning from the air is one of the most efficient
methods of obtaining 3D data. We have been developing a novel 3D measurement system, the Floating
Laser Range Sensor (FLRS), in which a range sensor is suspended beneath a balloon. The obtained data,
however, have some distortion due to movement during the scanning process. Then we propose two novel
methods to rectify the shape data obtained by a moving range sensor. One method rectifies them by
using image sequences and another one rectifies the data without images. We are conducting the Digital
Bayon Project, in which our algorithms are actually applied for range data processing and the results
show the effectiveness of our methods. Both methods are applicable not only to our FLRS, but also to a
general moving range sensor.

1. Introduction

1. 1 Background

Nowadays, many researches on real object model-

ing are making great progress because of the avail-

ability of accurate geometric data from three dimen-

sional digitizers. The techniques of real object mod-

eling contribute toward numerous applications in wide

areas such as academic investigation, industrial man-

agement, and entertainment.

Among them, one of the most important and com-

prehensive applications is modeling cultural heritage

objects. Modeling these heritage objects has great sig-

nificance in many aspects. Modeling them leads to dig-

ital archives of the object shapes. Utilizing these data

enables us to restore the original shapes of the heritage

objects, even if the objects have been destroyed due to

natural weathering, fire, disasters and wars. In addi-

tion, we can provide images of these objects through

the Internet to people in their homes or in their of-
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fices. Thus, the techniques of real object modeling are

available for many applications.

We have been conducting some projects to model

large scale cultural heritage objects such as great Bud-

dhas, historical buildings and suburban landscapes [21]

[16]. Basically, to scan these large objects, a laser range

finder is usually used with a tripod positioned on stable

locations. In the case of scanning a large scale object,

however, it often occurs that some part of the object is

not visible from the laser range finder on the ground.

In spite of such a difficulty, we have scanned large ob-

jects from scaffolds temporally constructed nearby the

object. However, this scaffold method requires costly,

tedious construction time. In addition, it may be im-

possible to scan some parts of the object due to the

limitation of available space for scaffold-building.

We are now conducting a project [15] to model the

Bayon Temple [33] in Cambodia; the temple’s scale is

about 150 × 150 square meters with over 40 meter

height. Scanning such a huge scale object from sev-

eral scaffolds is unrealistic. To overcome this prob-

lem, several methods have been proposed. For exam-

ple, aerial 3D measurements can be obtained by us-

ing a laser range sensor installed on a helicopter plat-

form [31]. High frequency vibration of the platform,

however, should be considered to ensure that we ob-

tain highly accurate results. To avoid irrevocable de-

struction, the use of heavy equipment such as a crane

should be eschewed when scanning a cultural heritage

object.

Fig. 1 The FLRS and the Bayon Temple

Based upon the above considerations, we proposed

a novel 3D measurement system, a Floating (or Flying)

Laser Range Sensor (FLRS) [14] [36]. This system dig-

itizes large scale objects from the air while suspended

from the underside of a balloon platform (Fig.1). Our

balloon platform is certainly free from high frequency

vibration such as that of a helicopter engine. The ob-

tained range data are, however, distorted because the

laser range sensor itself is moving during the scanning

processes (Fig.2).

Fig. 2 An sample snap shot and the distorted range data

obtained by the FLRS.

1. 2 Our Contributions

In this study, we propose two methods to rectify

3D range data obtained by a moving laser range sen-

sor. Not only is this method limited to the case of

our FLRS, but it is also applicable to a general moving

range sensor.

In fact, several attempts have been made to rectify

the deformed FLRS data. The following three strate-

gies have been considered to solve this problem:

• Window matching-based method [36]

• 3D registration-based method [14] [20]

• Structure from motion-based method

In the first strategy, under the assumption that

translation of the balloon is very small and within a

plane parallel to the image plane without any rotation,

the shape is recovered by using a video sequence image.

Then supposing that the changes in sequential images

are very small, the balloon motion is estimated by a lo-

cal window matching technique. This method is very

fast, but it restricts the balloon to a simple and small

motion.

In the second strategy, the balloon motion is

parametrized motion beforehand (e.g. the velocity vec-

tor for a linear uniform motion or a constant angular

velocity). Then, an extended ICP algorithm is applied

to align the deformed model obtained by the FLRS

with the correct model obtained by a range sensor lo-

cated on the ground. This method does not require

image sequences, but it assume the simple motions.

In this study, we adopt two strategies for the rec-

tification. Firstly, we adopt the third strategy among

the methods listed above, and propose a method with

image sequences and destorted range data by FLRS.

Next, we adopt the second strategy.
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In the first method based on ”Structure from Mo-

tion”, we use distorted range data obtained by a mov-

ing range sensor and image sequences obtained by a

video camera mounted on the FLRS. The motion of

the FLRS is roughly estimated only by the obtained

images. And then the more refined parameters are es-

timated based on an optimization imposing some con-

straints, which include information derived from the

distorted range data itself. Finally, using the refined

camera motion parameters, the distorted range data

are rectified.

In the second method based on ”3D registration”,

we adopt a method similar with [14] [20], but supposing

smooth and more generalized balloon motion.

These methods are not limited to the case of our

FLRS but also applicable to a general moving range

sensor that has smooth motion. In this thesis, we do

not utilize physical sensor such as gyros, INS and GPS

for estimation of self position and pose. We try to solve

our problems only by range sensors and video cameras

through the techniques of ”Computer Vision”.

This paper is organized as follows. We briefly ex-

plain our FLRS system in Section 2. In Section 3, we

explain a full perspective factorization, which is uti-

lized as the initial value for the camera motion. We

use a weak perspective factorization iteratively for the

perspective projection camera model. In Section 4, we

describe our proposed algorithm for refinement of the

parameters. Our method applies three constraints for

the optimization, which are tacking, smoothness and

range data constraint. Implying these constraints and

optimizing the cost function, we can estimate more

precise parameters. In Section 5, we describe another

method for shape rectification which need not any im-

age sequences. Instead of using images, this method

requires range data obtained by another range sensor

fixed on the ground. In Section 6, we evaluate our al-

gorithms with known models. Constructing a virtual

FLRS in PC by using CG model, we estimate the ac-

curacy of our method. In Section 7, we show several

experimental results conducted in the Bayon Temple in

Cambodia. Now, we are conducting the Digital Bayon

Project, in which our algorithms are actually applied

for range data processing. Finally, we present our con-

clusions and summarize our possible future works in

Section 8.

2. FLRS

FLRS(Floating Laser Range Sensor) has been de-

veloped to measure large objects from the air by using

a balloon without constructing any scaffolds (Fig. 3).

Fig. 3 The FLRS (25m sensor)

We have two types of FLRSs. Each FLRS is com-

posed of a scanner unit, a controller and a personal

computer (PC). These three units are suspended be-

neath a balloon.

The scanner unit includes a laser range finder, es-

pecially designed to be suspended from a balloon. Fig-

ure 4 shows the interior of the scanner unit. It con-

sists of a spot laser radar unit and two mirrors. We

chose the LARA25200 and LARA53500 supplied by

Zoller+Fröhlich GmbH [1] as laser radar units because

of their high sampling rate. Each laser radar unit

is mounted each FLRS scanner unit. Two systems

equipped with Lara25200 and LARA53500 are respec-

tively referred to as ”25m sensor” and ”50m sensor”.

The specifications of two units are shown in Table 1.

Table 1 The specifications of the 25m (LARA25200) and

50m (LARA53500) Sensors

25m Sensor 50m Sensor

Ambiguity interval 25.2 m 53.5 m

Minimum range 1.0 m 1.0 m

Resolution 1.0 mm 1.0 mm

Sampling rate <= 625,000 pix/s <= 500,000 pix/s

Linearity error <= 3 mm <= 5mm

Range noise at 10m >= 1.0 mm >= 1.5mm

Range noise at 25m >= 1.8 mm >= 2.7mm

Laser output power 23 mW 32mW

Laser wavelength 780nm 780nm

Both sensors have the similar mirror configurations.

There are two mirrors inside each unit to give a direc-

tion to the laser beam. One is a polygon mirror with

4 reflection surfaces, which determines the azimuth of

the beam. In normal use, the polygon mirror, which

rotates rapidly, controls the horizontal direction of the

laser beam. Another is a plane mirror (swing mirror)

which determines the elevation of the beam. The plane

mirror swings slowly to controls the vertical direction

of the laser beam.
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Fig. 4 The interior of scanner unit (25m sensor)

The lase beam emitted from the LARA is hit on a

surface of the polygon mirror at first. Then the poly-

gon mirror reflects the laser beam into the plane mir-

ror. The plane mirror also reflects the beam into the

outside of the unit(lower of Fig.4).

The combination of two mirror demonstrate the

specifications as in Table 2.

Table 2 The specifications of the 25m sensor and 50m sen-

sor

25m Sensor 50m Sensor

Angle Resolution

Horizontal 0.05 deg 0.05 deg

Vertical 0.02 deg 0.02 deg

Horizontal field <= 90 deg <= 90 deg

Vertical field <= 30 deg <= 30 deg

Scanning period/range image <= 15 sec <= 1 sec

3. Full Perspective Factorization

Estimations of the shape of an object or of camera

motion by using images are called ”Shape from Mo-

tion” or ”Structure from Motion”, and are main re-

search fields in computer vision.

The factorization method proposed in [32] is one of

the most effective algorithms for simultaneously recov-

ering the shape of an object and the motion of the

camera from an image sequence. Then the factoriza-

tion was extended to several perspective approxima-

tions and applications [8] [23] [7] [25] [12] [11].

In [25], they also presented perspective refinement

by using the solution under the para-perspective fac-

torization as the initial value. In [12] a factorization

method with a perspective camera model was pro-

posed. Using the weak-perspective projection model,

they iteratively estimated the shape and the camera

motion under the perspective model.

3. 1 Weak-Perspective Factorization

Given a sequence of F images, in which we have

tracked P interest points over all frames, each interest

point p corresponds to a single point ~Sp on the object.

In image coordinates, the trajectories of each inter-

est point are denoted as {(ufp, vfp)|f = 1, ..., F, p =

1, ..., P, 2F >= P}.
Using the horizontal coordinates ufp, we can define

an F × P matrix U . Each column of the matrix con-

tains the horizontal coordinates of a single point in the

frame order, while each row contains the horizontal co-

ordinates for a single frame. Similarly, we can define

an F × P matrix V from the vertical coordinates vfp.

The combined matrix of 2F × P becomes the mea-

surement matrix as follow.

W =

(
U

V

)
(1)

Each frame f is taken at camera position ~Tf in the

world coordinates. The camera pose is described by

the orthonormal unit vectors ~if , ~jf and ~kf . The vec-

tors ~if and ~jf correspond to the x and y axes of the

camera coordinates, while the vector ~kf corresponds

to the z axis along the direction perpendicular to the

image plane (Fig.5).

Fig. 5 The Coordinate System: ~Tf denotes the position of

the camera at time of frame f. The camera pose is

determined by three unit basis vectors.

Under the weak-perspective camera model, a single

point in the world coordinates ~Sp is projected onto the

image plane f as (ufp, vfp).

ufp =
f

zf

~if
t · ( ~Sp − ~Tf ) (2)

vfp =
f

zf

~jf
t · ( ~Sp − ~Tf ) (3)

where zf = ~kf
t · ( ~C − ~Tf ) (4)
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The vector ~C is the center of mass of all interest-

ing points. Without loss of generality, the origin of the

world coordinates can be placed at the centroid, that

is ~C = 0. Then this means that zf = − ~kf · ~Tf to sim-

plify the expansion of the following formulation. To

summarize,

{
ufp = ~mf

t · ~Sp + xf

vfp = ~nf
t · ~Sp + yf

(5)

where ~mf =
f

zf

~if , xf = − f

zf

~if
t · ~tf

~nf =
f

zf

~jf , yf = − f

zf

~jf
t · ~tf

Using that the center of all interest points is the

origin,

P∑
p=1

ufp =

P∑
p=1

~mf
t · ~sp +

P∑
p=1

xf = Pxf (6)

similarly,

P∑
p=1

vfp = Pyf (7)

We obtain the registered measurement matrix W̃ ,

after translation W̃ = W − (x1 x2 . . . xF y1 . . . yF)t

(1, . . . 1) as a product of two matrixes M and S.

W̃ = M · S (8)

where M : 2F × 3Matrix S : 3× PMatrix

The rows of the matrix M represent the orienta-

tion of the camera coordinates axes throughout the se-

quence, while the columns of the matrix S represent the

coordinates of the interest points in the world coordi-

nates. Both matrixes are at most rank 3. Therefore,

by using the Singular Value Decomposition (SVD), we

can find the best approximation to W̃ .

3. 2 Extension to Full-Perspective Factoriza-

tion

The above formulation is under the weak perspec-

tive projection model, which is a linear approxima-

tion of the perspective model. Next, using an iterative

framework, we obtain approximate solutions under the

non-linear, full perspective projection model.

Under the perspective projection model, the projec-

tive equations between the object point ~Sp in 3D world

and the image coordinate (ufp, vfp) are written as

ufp = f
~if

t · ( ~Sp − ~Tf )

~kf
t · ( ~Sp − ~Tf )

(9)

vfp = f
~jf

t · ( ~Sp − ~Tf )

~kf
t · ( ~Sp − ~Tf )

(10)

Replacing zf = − ~kf
t · ~Tf , we obtain the following equa-

tions.

(λfp + 1)ufp =
f

zf

~if
t · ( ~Sp − ~Tf ) (11)

(λfp + 1)vfp =
f

zf

~jf
t · ( ~Sp − ~Tf ) (12)

λfp =
~kf

t · ~Sp

zf
(13)

Note that the right hand sides of Eq.11 and Eq.12

are the same form under the weak-perspective model

(see Eq.2 and 3). This means, multiplying a image co-

ordinate (ufp, vfp) by a real number λfp maps the coor-

dinate in the full perspective model space into the co-

ordinate in the weak-perspective model space. Solving

for the value of λfp iteratively, we can obtain motion

parameters and coordinates of interest points under the

full perspective projection model in the framework of

weak-perspective factorization.

The entire algorithm of the perspective factorization

is as follows:

Input: An image sequence of F frames tracking P in-

terest points.

Output: The 3D positions of P interest points ~Sp. The

camera position ~Tf and poses ~if , ~jf , ~kf at each frame

f.

（ 1） Given λfp = 0

（ 2） Supposing the Equations 11 and 12, solve for

~Sp, ~Tf , ~if , ~jf , ~kf and zf through the weak perspective

factorization.

（ 3） Calculate λfp by Equation 13.

（ 4） Substitute λfp into step (2) and repeat the

above procedure.

Until: λfp’s are close to ones at the previous iteration.

3. 3 Tracking

As input stuff, we need P interest points at each

frame whole a sequence, which are tracked identified

points in the 3D world. There are several methods to

derive interest points of images [22] [29]. Among them,

we adopt Harris operator [13] and SIFT key [18] for

derivation of interest points. SIFT key is robust for

scale, rotation and affine transformation changes. The

main reason why we adopt the method is its stability

of points derivation and usefulness of the key, which

has 128 dimensional elements and can be used for the

identification for each point.

4. Refinement

Without noise in the input, the factorization

method leads to the excellent solution. As a result,

the rectified 3D shape through the estimated camera
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parameters is valid. Real images, however, contain a

bit of noise. Therefore, it is not sufficient to rectify

range data obtained by the FLRS only through the fac-

torization. For the sake of a more refined estimation

of motion parameters, we impose three constraints: for

tracking, movement, and range data. The refined cam-

era motion can be found through the minimization of

a global functional. To minimize the function, the so-

lution by the full perspective factorization is utilized

as the initial value to avoid local minimums.

4. 1 Tracking Constraint

As the most fundamental constraint, any interest

point ~Sp must be projected at the coordinates (ufp, vfp)

on each image plane. This constraint is well known as

Bundle Adjustment [5]. When the structure, motion

and shape have been roughly obtained in the mean-

time, this technique is utilized to refine them through

the image sequence. In our case, the constraint con-

ducts the following function:

FA =

F∑
f=1

P∑
p=1

((
ufp − f

~if
t · ( ~Sp − ~Tf )

~kf
t · ( ~Sp − ~Tf )

)2

+

(
vfp − f

~jf
t · ( ~Sp − ~Tf )

~kf
t · ( ~Sp − ~Tf )

)2

)
(14)

The minimization of FA leads to the correct track-

ing of fixed interest points by a moving camera. How-

ever, we can see that the presence of parameters we

are trying to estimate in the denominator makes this

equation a difficult one. We have to seek the optimal

solution via some non-linear minimization techniques.

Then, suppose that instead, we consider the following

function:

F ′A =

F∑
f=1

P∑
p=1

((
~kf

t · ( ~Sp − ~Tf )ufp − f · ~if
t · ( ~Sp − ~Tf )

)2

+
(

~kf
t · ( ~Sp − ~Tf )vfp − f · ~jf

t · ( ~Sp − ~Tf )
)2

)
(15)

The term ~kf
t · ( ~Sp − ~Tf ) means the depth, the dis-

tance between the optical center of camera f and a

plane, which is parallel to the image plane and include

the point ~Sp. The cost function FA is the summation

of squared distances on the image plane while the cost

function F ′A is estimated on the plane of the point ~Sp.

It is true that we can only observe the image points on

the image sequence, therefore the noise occurs on these

images. However it is also true that the cost function

FA does not assure that the reconstructed points are

close to the correct ones in the real 3D world.

Based on the above consideration, we choose to min-

imize the cost function F ′A for the facility of the differ-

ential calculation.

4. 2 Smoothness Constraint

One of the most significant reasons for adopting a

balloon platform is to be free from the high frequency

that occurs with a helicopter platform [14]. A balloon

platform is only under the influence of low frequency:

the balloon of our FLRS is held with some wires swayed

only by wind. This means that the movement of the

balloon is expected to be smooth. Certainly, the move-

ment of the balloon is free from rapid acceleration,

rapid deceleration, or acute course changing. Taking

this fact into account, we consider the following func-

tion:

FB =

∫ (
w1

(
∂2 ~Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2
)

dt (16)

Here, ~Tf denotes the position of the camera; t is

time; w1, w2 are weighted coefficients; and qf is a

unit quaternion that represents the camera pose. The

first term of the above integrand represents smoothness

with respect to the camera’s translation while the sec-

ond represents smoothness with respect to the camera’s

rotation. When the motion of the camera is smooth,

the function FB becomes a small value.

We implement in practice the following discrete

form:

F ′B =

F∑
f=1

(
w1

(
∂2 ~Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2

)
(17)

4. 3 Range Data Constraint

Taking a broad view of range data obtained by the

FLRS, the data are distorted by the swing of the sen-

sor. We can find, however, that these data contain

instantaneous precise information locally; that infor-

mation is utilized for refinement of the camera motion.

The FLRS re-radiates laser beams in raster scan or-

der. This means that we can instantly obtain the time

when each pixel in the range image is scanned because

the camera and the range sensor are calibrated (Fig.6).

If the video camera is synchronized with the range sen-

sor, we can find the frame among the sequence when

the pixel is scanned. With the video camera calibrated

with the range sensor, we can also obtain the image

coordinate of each interest point in the 3D world with

respect to the instantaneous local coordinate.

Considering this constraint, we can compensate the

camera motion.

At time t, suppose that the sensor position is ~T (t)

and the 3 bases ~if , ~jf , ~kf are described as ~i(t), ~j(t),
~k(t). At this moment, suppose that the range sensor

output ~x(t)(in the local coordinate) as the measure-

ment of the point ~X, which is described in the world

coordinate, the following equation is obtained.
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Fig. 6 Finding the time when a pixel in the picture is

scanned by the range sensor.

~X = x~i+y~j+z~k+~T =
(
~i ~j ~k

)



x

y

z


+~T = R~x+~T (18)

When the range sensor scans interest point ~Sp, we

can conduct the third constraint to be minimized as

follows:

FC =

P∑
p=1

∥∥ xfp −Rt( ~Sp − ~Tfp)
∥∥2

(19)

Here, the index fp denotes the frame number when the

range sensor scans interest point ~Sp. It is very signifi-

cant to note that xfp is the 3D coordinate values not

described in the sensor-oriented coordinate system but

in the camera-oriented one, which is rewritten based

on the range data and camera-sensor calibration. In

practice, we find sub-frame fp by using a linear in-

terpolating technique for the motion of interest points

between frames. The main purpose of the above con-

straint is to adjust the absolute scale.

As xfp = (xfp, yfp, zfp), the above function can be

rewritten as the stronger constraint:

F ′C =

P∑
p=1

((
xfp − ~ifp

t · ( ~Sp − ~Tfp)
)2

+
(
yfp − ~jfp

t · ( ~Sp − ~Tfp)
)2

+
(
zfp − ~kfp

t · ( ~Sp − ~Tfp)
)2

)
(20)

4. 4 The Global Cost Function

Based on the above considerations, it will be found

that the next cost function should be minimized. Con-

sequently, the weighted sum

F = wAF ′A + wBF ′B + wCF ′C (21)

leads to a global function. The coefficients wA, wB and

wC are determined experimentally and we are going to

discuss them later.

To minimize this function, we employ Fletcher-

Reeves method or Polak-Ribiere method [26] [17] [30],

which are types of the conjugate gradient method (in

the next section, we explain the conjugate gradient

method briefly). Then, we use the golden section

search to determine the magnitude of gradient direc-

tions. For optimization, Levenberg-Marquardt method

[19] is generally employed to minimize a functional

value. Levenberg-Marquardt method is very effective

to estimate function’s parameters, especially to fit a

certain function. However in our function, it is not

a parameter fitting problem to minimize the value of

F ′B . What we only have to do is to decrease F ′B simply.

Therefore we adopt the conjugate gradient method.

4. 5 Shape Rectification

After the refinement, we possess the vector ~Tf and

three bases ~if , ~jf and ~kf at each frame. That means

we know the position and pose of the camera at dis-

crete time. To rectify the deformed shape data by us-

ing these extrinsic parameters quantized with respect

to time, these parameters have to be interpolated. To

be more precise, we have to interpolate three compo-

nents with respect to translation ~Tf = (Txf , Tyf , Tzf ),

and three components with respect to rotation qf =

((sf , ) uf , vf , wf ). Each parameter’s variation with re-

spect to time is, therefore, approximated by a polyno-

mials. In this study, we adopt 7-order polynomials.

In this method, we use a calibrated camera-sensor

system as a precondition. Then a robust method for

the calibration is described in the next section. More-

over, we show that this method is applicable for uncal-

ibrated system too.

5. Shape Rectification without Im-
ages

The method mentioned so far does not need another

range data set. We can rectify distorted range data by

using only a single range image and an image sequence.

In actual cases, however, there should be some avail-

able range data sets taken by another range sensor fixed

on the ground. Our FLRS is originally devised to com-

plement the measurement for the region that is invisi-

ble from the ground.

Some parts of a range image taken by the FLRS are

also taken by another range sensor fixed on the ground.

Based on these overlapping regions, we propose an-

other algorithm which rectifies the distorted range data

obtained from the FLRS. In this method, we do not use

any image sequences.

5. 1 Basic Idea

Originally ICP(Iterative Closest Point) algorithm

[3] [6] was developed to align two shapes. In a range

image, coordinates of 3D points are described in the

sensor-oriented coordinate system. Two range images
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from different viewpoints, therefore, have different co-

ordinate systems. To unify two shapes, two data sets

have to be described in the unified system. In order

to do that, we apply a coordinate conversion to one

data set. When there are some overlapping regions in

the two data sets, we apply a transformation of the

coordinate system in order to coincide them.

To simplify the transform procedure, we assume

that one shape is fixed and another can move. We call

the fixed shape the ”model shape” and the movable

one the ”data shape”. Rotating and translating the

data shape aligns two shapes. In overlapping region,

a point on the model shape has a corresponding point

on the data shape. Which point is the corresponding

point, however, is usually unknown. We resolve this

correspondence problem by an iterative method. Ini-

tially a temporal corresponding point is assumed. A

movement is determined so as to minimize an objective

function, which is defined by distances between the cor-

responding points. The temporal correspondences are

changed after the movement. Then a new movement

is determined under the new temporal correspondence.

This procedure is repeated until the total distance con-

verges. The objective function, which should be mini-

mized for the alignment, is defined as

f
(
R, ~T

)
= f

(
q, ~T

)
=

∑
i

‖ R(q)~xi + ~T − ~yi ‖2 (22)

This objective function indicates the summation of

distances between all pairs of corresponding points. If

two shapes coincide, the function takes a low value.

There are many variations of ICP algorithms [28].

For example, while we estimate the cost function as the

total distances of point-to-point pairwise [3] [35], some

methods adopt the distance between a point and its

mate’s tangent plane [6] [24].

For corresponding points, there are several meth-

ods to determine them. Some methods search the cor-

responding point along the ray [4]. In this thesis, we

adopt the nearest neighbor points as the corresponding

points. We speed up searches for the nearest neighbor

point by using KD-tree [9].

We use quaternion to minimize the objective func-

tion f . By substituting quaternion q to rotate matrix

R, motion vector ~T can be found as follows.

{q, ~T , } = arg min
q,~T

f
(
q, ~T

)
=

∑
i

‖ R(q)~xi+~T−~yi ‖2(23)

In the conventional ICP algorithm mentioned

above, it is assumed that both shapes are obtained

by fixed range sensors. On the other hand, in our sit-

uation, the model shape is obtained by a fixed range

sensor while the data shape is measured by a moving

sensor. Therefore we have to take account into the

motion of the range sensor.

The motion of the sensor is expected to be smooth,

as mentioned in the previous chapter. It is, there-

fore, proper that the traces of the motion parameters

are approximated by some polynomials with respect

to time. Consequently, we approximate six parameter,

three translational elements and three elements of the

quaternion, by following polynomials.

~T (t) = ~T0 + t ~T1 + t2 ~T2 + · · · =
N∑

n=0

tn ~Tn (24)

q(t) = q0 + tq1 + t2q2 + · · · =
N∑

n=0

tnqn (25)

where { ~T0, ~T1, · · · , ~TN ,q0,q1, · · · ,qN} are the param-

eters that describe the sensor motion. Then we formu-

late a new cost function including the above forms.

5. 2 Extended ICP Algorithm

Instead of Eq.22, we have to set up a new cost func-

tion. First, we will change the index of points of data

shape, ~xi. Our sensor measure the distance to a point

in the raster scan order. Therefore, all points on the

data shape, which are measured by the moving sensor,

are distinguishable by time t. According to the time

factor, the corresponding points on the model shape

~yi, which are obtained by a fixed sensor, are described

as functions ~y (~x(t)).

Then, the cost function for the extended ICP algo-

rithm is described as follows:

f
(

~T0, ~T1, · · · , ~TN ,q0,q1, · · · ,qN

)

=
∑

t

‖ R (q(t)) ~x(t) + ~T (t)− ~y(~x(t)) ‖2 (26)

We take a summation form with respect to time t

in spite of the continuity of time. Since it is only nec-

essary to pick up the moments when the point on the

data shape is actually scanned.

To minimize the above function, the parameters of

the sensor motions are estimated.

{ ~T0, ~T1, · · · , ~TN ,q0,q1, · · · ,qN} =

arg min f
(

~T0, ~T1, · · · , ~TN ,q0,q1, · · · ,qN

)
(27)

If we assume N -order polynomials, the number of

unknown valuables is 6(N + 1). We minimize the

cost function through the steepest descent method and

Golden section search. Furthermore we adopt a robut

estimation, M-Estimator ( [27] [10] [34]) to decrease the

influence of outliers; the cost function Eq.26 is rewrit-

ten as follows:

arg min
~T0, ~T1,···, ~TN ,q0,q1,···,qN

∑
t

log

(
1 +

1

2σ2
zt

2
)

(28)

where zt = R(q(t))~x(t) + ~T (t)− ~y(~x(t))
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6. Evaluation

6. 1 Benchmark Shapes

To evaluate our rectification algorithms quantita-

tively, the most efficient method is to check them for

given models in advance.

In order to do that, we construct a virtual FLRS

system on a PC and obtain the distorted range data

and the image sequences for known model. Motion

parameters are know completely. Also, we rectify the

distorted range data through our two proposed meth-

ods.

The rectified shape data are, eventually, compared

with the correct shape data, and the results are evalu-

ated numerically.

We use the following CAD models as a benchmark

for the evaluation (Fig.7). The benchmark has a large

depth, which has a strong perspective effect. For refer-

ence, the height of the pyramid is 0.6, that of the side

wall is 0.78 and the thickness of the side wall is 0.2.

The equation of the back plane is z = 0 and that of

the floor is y = 0.

Fig. 7 The benchmark shape for the evaluation.

Then, we map textured pictures onto the surfaces of

the benchmark shapes to detect many interest points

for tracking.

After that, we provide three sensor motions for vir-

tual measurements.

（ 1） Pure translation along the x direction (parallel

to the image plane).

（ 2） Pure translation along the −z direction (per-

pendicular to the image plane).

（ 3） Translation and rotation around the y axis.

6. 2 Evaluation of Our Algorithm with Im-

ages

Case 1:

In this case, the FLRS simply moves during the

measurement process toward the horizontal direction

with respect to the camera-oriented coordinate system.

The motion path is parallel to the image plane and the

back plane of the benchmark model.

Some example images of the sequence are shown

in Fig.8. These images look like pictures obtained by

simple parallel stereo vision since there are not any

rotational elements in Case 1.

Fig. 8 Some sample images of the sequence Case 1. (top

left → top right → bottom left → bottom right)

The distorted shape which is obtained by the vir-

tual FLRS is shown in the left of Fig.9. Especially, it is

found that the top region of the side wall is skewed to

the right side. On the other hand, in the right shape,

which is the rectified shape by our algorithm, the side

wall stands perpendicular to the ground. For the time

being, the shape seems to be rectified properly by our

method. The numerical evaluation for the rectified

shape is show at the end of this section.

Fig. 9 The original and rectified model of Case 1.

Figure 10 indicates the estimated x position and the

ground truth. In Case 1, we set a uniform straightly-

line motion and the result shows it. The difference

between the estimated velocity and the ground truth

is only 6.4%.
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Fig. 10 The camera path and the ground truth in Case 1.

All parameters, three components of translation and

three components of camera pose, through the scan-

ning period are shown in Fig.11. As the translational

components, the position at f = 0 is set as the ori-

gin. The left figure shows that the FLRS moved only

along the x direction, which corresponds to the ground

truth. In addition, the right figure shows that the mo-

tion did not have any rotational component, which also

corresponds to the ground truth.

Fig. 11 The all camera parameters in Case 1.

Case 2:

In this case, the FLRS moves along the optical axis,

which is perpendicular to the image plane.

The distorted shape which is obtained by the virtual

FLRS is shown in the left of Fig.12. When the virtual

FLRS scans the top region of the scene it is located far

from the scene. Then the closer the FLRS moves, the

lower region it scans. Therefore, the obtained shape

seems as though it is skewed backward. As with Case

1, the right side of the figure shows the rectified shape,

which looks like the proper shape.

Fig. 12 The original and rectified model of Case 2.

Figure 13 indicates the estimated z position and the

ground truth. The difference between the estimated

velocity and the ground truth is 13.4 %. While the es-

timated error is larger than that of Case 1, the motion

of Case 2 is wider than that of Case 1. The virtual

FLRS’s speed in Case 2 corresponds to about 3.0 m/s

in terms of the real FLRS scale. It is thought that the

our algorithm can rectified the distorted shape in spite

of the wide motion.

Fig. 13 The camera path and the ground truth in Case 2.

All motion parameters are shown in Fig.14. The left

figure which shows the translational components shows

that the FLRS moved only along the z direction. And

the right figure shows that the FLRS was keeping the

same pose during the scanning process. These figures

indicate that the parameters are estimated properly.

Fig. 14 The all camera parameters in Case 2.

Case 3:

In this case, the virtual FLRS motion has two trans-

lational components, x and z. In addition, the FLRS

rotates 3◦ around the y axis during the scanning pro-

cess.

The distorted shape obtained by the virtual FLRS

is shown in the left side of Fig.15. As in Case 1, it is

found that the top region of the side wall is skewed to

the right side. The right side of the figure shows the

rectified shape, which looks like proper shape.

Fig. 15 The original and rectified model of Case 3.

Figure 16 indicates the estimated parameters and

the ground truths. In Fig.16, three parameters, x po-

sition (a), z position (b) and rotational component
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around y axis are shown. The difference between the

estimated velocity and the ground truth is 13.8 % with

respect to x and 15.0 % with respect to z. But the dif-

ference with respect to the rotational angle is within

5.6 %.

Fig. 16 The camera path and the ground truth in Case 3.

(a) x position (b) z position (c) Rotational com-

ponent around y axis

All motion parameters are shown in Fig.17. These

figures show that our algorithm works well on a case

with several motion components.

Fig. 17 The all camera parameters in Case 3.

Finally, Table 3 shows the errors in all cases. These

values are mean errors by point-to-patch distance. The

errors in ”Before Rectification” row are the mean errors

between the distorted shapes and the ground truth,

which are aligned by ICP algorithm [3] [6]. On the

other hand, the values in ”After Rectification” row are

the mean errors between the rectified shapes and the

ground truth. It is found that our method could de-

crease the errors in all cases. In the case of the real

25m FLRS, the maximum distance for scan is at most

25 meters while the distance to the backplane in the

benchmark shapes is about 3.5 in the CAD model scale.

Therefore, multiplying the values of Table 3 by at most

7 gives the estimated errors in practical measurement.

In almost data sets in the Bayon Temple, we measure

objects at a distance of 15 ∼ 18 meters. For example,

the estimated accuracy in Case 2 will be about 3 cm

in practice.

Table 3 The mean errors of the method with images.

case1 case2 case3

Before Rectification 0.01342 0.06632 0.03103

After Rectification 0.004990 0.006379 0.004268

6. 3 Evaluation of Our Algorithm without

Images

Next, we evaluate the method mentioned in Sec-

tion 5, which uses correct shapes obtained by other

fixed laser sensors without any image sequences. In

this section, the data sets are the same as in the pre-

vious section. Besides these, Case 4 is added, in which

the motion of the sensor contains only rotation with-

out any translational components. In fact, the method

with images failed in Case 4 since any disparities could

not be detected in images.

Case 1:

In Case1, the sensor simply moves toward the hori-

zontal direction.

Figure 18 shows the rectified model and the ground

truth.

Fig. 18 The ground truth and rectified model of Case 1.

The following figure, Fig.19, shows all motion pa-

rameters. All translational parameters change in time

although the ground truth setting moves the sensor

only along the x axis. In addition, the estimated veloc-

ity is not constant. Comparing it to Fig.11, it is found

that the graphs, especially in the left figure, differ from

those using the method with images. In spite of these

graphs, we can safely state that our method is effective.

This method places more emphasis on the minimiza-

tion of the geometrical error and less on the proper

estimation of sensor motion. For example, when the

FLRS scans a simple plane, many patterns of motion

can be right. Therefore, we consider that our method

could rectify the deformed shape properly.

The table of errors in all cases is shown at the end

of this section.
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Fig. 19 The all camera parameters in Case 1.

Case 2:

In this case, the sensor moves along the optical axis

at a fast speed.

Figure 20 shows the all motion parameters. Under

the ground truth configuration, only the x translational

parameter is supposed to change. In Fig.20, it is easily

found that almost all parameters fluctuate.

Fig. 20 The all camera parameters in Case 2.

Case 3:

In this case, the sensor motion moves within a plane

parallel to y = 0 and rotates 3◦ around the y axis.

Figure 21 shows the all motion parameters. Com-

paring it to Fig.17, the graphs in Fig.21 have simi-

lar properties. The translational graphs are, however,

curved and the y component, which is supposed to be

fixed, is moving.

Fig. 21 The all camera parameters in Case 3.

Additional Case (Case 4):

In this case, while the position of the sensor does

not change, it rotates 3◦ around the y axis. As men-

tioned in the previous section, the method with images

can not rectify the distorted model because it is impos-

sible to reconstruct the 3D model from images without

disparity.

The left side of the figure in Fig.22 is a comparison

between the ground truth and the original distorted

model while the right side of the figure is a comparison

between the ground truth and the rectified model. It

is found that the method without images can properly

rectify distorted models that are obtained from a sensor

only with rotation. Thus, this is the strong advantage

for this method.

Fig. 22 The ground truth and rectified model of Case 4.

Figure 23 indicates the estimated rotational angle

and the ground truth. The difference between the es-

timated angular speed and the ground truth is 15.4

%.

Fig. 23 The camera path and the ground truth in Case 4.

Figure 24 shows the all motion parameters. It is

found that the estimated position is moving, especially

with respect to the x component, although all param-

eters are supposed not to change.

Fig. 24 The all camera parameters in Case 4.

Table 3 shows the errors by the method without

images in all cases. These values are also mean errors

by point-to-patch distance. Overall, the method with

images is superior to the method without images in ac-

curacy. This table shows the worst result is obtained

in Case 2, which has a rapid sensor motion, and the

accuracy in the practical case is about 10 cm. On the

other hand, the accuracy of other test case results, es-

pecially in Case 1 and 4, are the same level as those by
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the method with images. This means that the method

without images is effective in the case of the sensor

motion only with rotation.

Table 4 The mean errors of the method without images.

case1 case2 case3 case4

Before 0.01342 0.06632 0.03103 0.04583

After 0.005561 0.01428 0.008894 0.005084

Finally, we have used the complete model as the

ground truth in this section. In practical cases, it is

expected that a correct shape will have many missing

parts and that we have to rectify the distorted shape

based on an incomplete reference. We are going to

demonstrate such cases in the following section.

7. Experiments

We have been conducting the ”Digital Bayon

Project”, in which the geometric and photometric in-

formation on the Bayon Temple is preserved in digital

form. With respect to the acquisition of the geometric

data, large parts of the temple visible from the ground

are scanned by range sensors placed on the ground. On

the other hand, some parts invisible from the ground,

for example, roofs and tops of towers, are scanned by

our FLRS system.

7. 1 Shape Rectification with Images

Figure 25 shows a sample image of the sequence.

Fig. 25 A sample shot of the image sequence

Figure 26 shows a photo picture of the scanned area.

On the right side of Fig.26, the dense fine model is the

correct shape obtained by the Cyrax-2500 [2] fixed on

the ground.

The result is shown in Fig.27. The upper shape

in Fig.27 is the original one obtained from the FLRS.

It is found that the shape is widely deformed. In the

middle of Fig.27, the rectified shape by full-perspective

factorization is shown. With respect to motion param-

eters, the ambiguity in scale is removed manually. At

a glance, the factorization seems to rectify the shape

properly. In detail, however, the distortion in S shape

Fig. 26 A scene for this experiment

is still left. Especially, the shape of the entrance is

skewed. On the other hand, the lower shape is rectified

correctly by our method. It is clear that the distortion

in S shape is removed and the shape of the entrance is

correctly recovered into a rectangle.

Fig. 27 The upper figure shows the original distorted shape

obtained by the FLRS. The middle one shows the

rectified shape by the full-perspective factorization

without ambiguity in scale. The lower shows the

rectified shape by our method.

To evaluate the accuracy of our shape rectification

algorithm, we compare the rectified shape with other
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data, which are obtained by a range finder, the Cyrax-

2500, positioned on the ground. Aligning two data sets

by using the conventional ICP algorithm [3] [6], we an-

alyze the overlapping area.

Fig. 28 The upper figure shows the comparison between

the correct shape and the original distorted one

obtained by the FLRS. The green region indicates

where the distance of two shapes is less than 6.0

cm. The middle one shows the rectified shape by

the full-perspective factorization without ambigu-

ity in scale. The lower shows the rectified shape

by our method.

Figure 28 indicates the point-to-point distances in

the ICP algorithm. The region where the distances be-

tween them are less than 6.0 cm is colored light gray
（*1）. The area where the distances are further than 6.0

cm is displayed in dark gray. The upper figure shows

the comparison between the correct shape and the orig-

inal distorted one obtained by the FLRS. The middle

one shows the rectified shape by the full-perspective

factorization without ambiguity in scale. The lower

shows the rectified shape by our method.

At a glance, the light gray region is clearly expanded

by our rectification algorithm. Some parts of the rec-

tified shape are colored dark gray because of the lack

（*1）：In the previous section, we have approximated the ac-

curacy in the practical case as 3.0cm. Therefore, we set the

threshold as 6.0cm, twice of the estimated error.

of corresponding points. Taking account of the fact

the correct shape could not measure the parts invisible

from the ground, the proposed method could rectify

the 3D shape correctly.

Figure ?? shows several samples of the method with

images.

7. 2 Shape Rectification without Images

We also applied the method without images to the

real data set. As the reference shape, we also utilize

the shape obtained by the Cyrax-2500. There are some

blank parts in the reference shape because there are no

data set on the part that is invisible from the ground.

Figure 29 shows the sample snap in this experimental

case.

Fig. 29 A sample shot in this case.

In Fig. 30, the left figure shows the original shape

obtained by the FLRS while the right one shows the

rectified shape by our method.

Fig. 30 The original distorted shape (left) and the rectified

shape (right).

Figure 31 shows the comparison between the refer-

ence shape. The upper figure shows the original dis-

torted shape by the FLRS (sparse model) and the ref-

erence shape (dense model). The lower figure shows

the recovered shape and the reference one. It is found

that the rectified 3D shape is well-fitted onto the refer-

ence one, particularly the area of ellipses in the upper

figure, in spite of the blanks on the reference shape.

Finally, Figure 32 shows several results of the

method without images.
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Fig. 31 Range data before and after the rectification

method without images: the upper figure shows

the original distorted shape by the FLRS (white)

and the reference shape obtained by the Cyrax-

2500 fixed on the ground(blue). The lower fig-

ure shows the recovered shape in the lower figure

(pink) fitted onto the correct one.

Fig. 32 The original distorted data sets (left) and the rec-

tified sets (right)

8. Conclusions

8. 1 Conclusions

In this thesis, we have described FLRS system and

two proposed methods to rectify 3D range data ob-

tained by a moving laser range sensor.

We described how an outstanding measurement sys-

tem FLRS was built to scan large objects from the air.

This system allowed us to measure the large cultural

heritage objects by using a balloon. To rectify the dis-

torted shapes obtained from the FLRS, we proposed

two methods

• The rectification method based on the ”Struc-

ture from Motion” techniques by using image sequences

• The rectification method based on the extended

ICP algorithm by using another data set

In the first case, we described a method based on

”Structure from Motion”. We utilized distorted range

data obtained by a moving range sensor and image se-

quences obtained by a video camera mounted on the

FLRS. First, the motion of the FLRS was estimated

through full perspective factorization only by the ob-

tained image sequences. Then the more refined pa-

rameters were estimated based on an optimization im-

posing three constraints: the tracking, smoothness and

range data constraints. Finally, refined camera motion

parameters rectified the distorted range data. For this

method, while the calibrated range sensor and camera

system was originally assumed, we indicated that the

method is also applicable to the uncalibrated system.

In the second case, we proposed an extended ICP

algorithm without using any images. Assuming that

the motions of the sensor are smooth, we applied them

to polynomials. Then, we rectified the distorted range

data based on the correct model obtained by other sen-

sors fixed on the ground.

Both methods have shown proper performance and

practical utilities.

These methods can be generally applied to a frame-

work in which a range sensor moves during the scan-

ning process, and is not limited to our FLRS because

we impose only the smooth movement constraint.

Fig. 33 The Overview of the ”Digital Bayon”.
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