FEFEN SR
IPSJ SIG Technical Report

W

2007—CVIM —157
200771712

Multiple-Tracking of Crowds Based on a Leader/Follower
Strategy and the Dropping-Pebbles Method

J. Vergés-Llahi*, T. Wada'*, S. Nishio®,
N. Babaguchit*, N. Hagita*

* ATR Intelligent Robotics and Communication Laboratories, Kyoto 619-0288, Japan
Email: {jverges, nishio, hagita} @atr.jp
f Dept. of Computer & Comm., Wakayama University, Wakayama 640-8510, Japan
Email: babaguchi @comm.eng.osaka-u.ac.jp
% Grad. School of Engineering, Osaka University, Osaka 565-0871, Japan
Email: babaguchi@comm.eng.osaka-u.ac.jp

Abstract

Recent approaches to tracking a certain number of
interacting targets have suggested the use of multiple-
target tracking provided by particle filters which run in
the joint configuration space. In practice, these algorithms
unfortunately suffer from an increase in complexity in the
number of tracked targets that can make them unusable in
real cases, despite several approaches have been proposed
to avoid this limitation. In this paper we suggest a novel
way of sampling states from the joint particle filter which
reduces the required number of particles. This is attained
by collecting targets into groups based on a leader-
Jfollower strategy. States are asynchronously passed from
leaders to followers by the new approach named dropping-
pebbles method, which consists in attaching states to posi-
tions. This way, a distribution of the target states is created
which works as a map suggests likely states to targets.
This scheme has been successfully applied to synthetic data
simulating the movement of people in crowds.

Index Terms— joint particle filters, multi-target tracking,
leader/follower interaction.

1. Introduction

Tracking human in video sequences is an important and
basic tool in the analysis of human behaviour. There has
been a considerable work in tracking people and other
objects in recent years [1]. Usually those approaches deal
with the problem of tracking isolated objects, which can be

fairly reliably performed by some systems [2]. Neverthe-
less, our main interest is that of tracking people in crowds.
This is a challenging problem deserving more research
since a high number of people is present in the scene and
their movements exhibit different degrees of occlusion and
interaction, impeding an individual treatment.

Focusing our attention onto crowds, we have observed
in video sequences that people usually tend to gather
in groups that move as flocks. This suggests that their
movements are somehowrelated each other and that there
is a tendency in people belonging to the same group to
move in a similar way, mimicking the movement of some-
body before. Moreover, since the extraction of individuals
is difficult when it comes to crowds, we plan to study
the movement of smaller components instead of whole
individuals. Therefore, one single person can give birth
to several components that will show a similar behavior.

Recent approaches to tracking a certain number of
interacting targets have suggested the use of multiple-target
tracking provided by particle filters running in the joins
configuration space [1]-[3]). In practice, these algorithms
unfortunately suffer from an increase in complexity in the
number of tracked targets that can make them unusable in
real cases, despite several approaches have been proposed
to avoid this limitation, such as clustering of particles to
biding them to targets, probabilistic exclusion, or different
types of MCMC! sampling.

Two are the contributions suggested in this work. First,
a novel approach to deal with the problem of tracking

IMarkov Chain Monte Carlo.

—225—

(30)

multiple targets which exhibit a degree of interaction. This
is perceived as groups moving similarly to some previous
targets to whom the group is following. In order to attain
this goal, we adapt a conventional joint particle filter
framework to incorporate a leader/follower strategy in the
prediction of the states of followers.

Secondly, we introduce the dropping-pebble method,
which will allow an asynchronous transmission of infor-
mation between targets in the joint particles. Apart from
the synchronism of available methods, where simultaneous
states are shared to evaluate their interaction, in our case
it is more suitable that followers may access to previous
leader states corresponding to similar situations. Thus, a
map of behaviors is thus generated by attaching those states
to a grid which will be employed by the particle filter to
sample new states for followers.

II. Independent PF vs. Joint PF

Recently, the use of joint particle filters (JPF) has been
suggested in the case of multiple target tracking by a
number authors [1]1-[3], reporting examples of approaches
that deal with this problem in areas such as that of data-
association [3], targets interaction [2], or the cases where
a joint model of targets is computed [1]. The use of joint
particle filters is justified by the fact that both association,
interaction, and multiple targets can be easily interpreted
in terms of the joint configuration space, i.e., the state
including the states of all targets.

The use of JPF might seem unnecessary since the use
of independent particle filters (IPF) might suffice. When
targets do not interact, we can run multiple IPF. In this
case, in each of the particles, the state is simply the state
of one target. Because each particle samples in a small state
space, a good approximation of the posterior for the single
target is obtained. However, this approach is susceptible to
tracking failures when interactions do occur [2].

JPF suffers from a curse of dimensionality [3]. As the
number of targets increases, the size of the joint state space
increases exponentially. In spite of this a priori limitation,
approaches based on JPF have been applied to tracking a
small number of identical targets either by binding particles
to specific targets or by using a mixture of particles filters
along with a particle clustering step {2]. The work in [2]
tries to overcome the exponential complexity using MCMC
instead of SIR? since the former samples more efficiently
high-dimensional state spaces than the latter.

In this work we focus on JPF and establish a novel way
to ease their complexity in the task of tracking multiple
targets in the case there exists interaction between follow-
ers and leaders targets. As it can be inferred from these

2Sequential Importance Resampling.

categories, while leaders behave independently, follower
states will be conditioned by their leaders. This way, more
samples should be generated near the correct state space
regions, lesser the number of particles needed.

III. Bayesian Multi-Target Tracking

In what follows, we adopt a Bayesian approach to multi-
target tracking. The Bayesian approach offers a systematic
way to combine prior knowledge of target positions, mod-
eling assumptions, and observations to the problems of
tracking multiple targets [4]-[6]. A brief description of the
Bayesian sequential estimation framework and its Monte-
Carlo (MC) approximation, i.e., the particle filter (PF),
is given in this section since its a core component of the
algorithm described in Sect. IV.

We will describe the framework for a generic model
parameterize by a state xi, where k denotes the dis-
crete time index. For tracking, the distribution of interest
is the posterior p(xx|zo.x), also known as the filtering
distribution, where zo.x = [zo,...,7x] denotes all the
observations up to the current time step. In the Bayesian
sequential estimation framework, the filtering distribution
can be computed according to the two step recursion

Prediction:

p(Xx|Zok-1) = /P(Xk|xk-1)P(Xk—1izo:k—1)ka—1
&y
Filtering:
p(zk|%5) p(xk|Z0:k-1)
p(2x|Z0:6-1)

The recursion requires the specification of a dynamic
model describing the state evolution p(xy|xx_1) and a
model for the state likelihood in the light of the current
measurement p(zx|x;). Both dynamic and likelihood mod-
els rely on the Markov assumption [4]-[6].

The tracking recursion yields a closed-form expression
in only a small number of cases, i.e., the Kalman Filter
for both linear and Gaussian dynamic and likelihood mod-
els. For general non-linear and non-Gaussian models, the
tracking recursion becomes intractable and approximations
techniques are required, such as sequential Monte-Carlo
methods, otherwise known as PE. For a complete review
on such issue we suggest to refer to [4]-[6].

Accordingly to the MC approximation, at a certain time
k, the posterior distribution p(xg_1|Zo:x—1) can be ap-
proximated by a weighted set of samples {x%_,,wi_,} 7,
[6]. New samples are generated from a suitable designed
proposal distribution, which may depend on the old state
and the new measurement, i.e., x}, ~ m(xglx%_;, 25}, =
1,..., Np, where N, is the number of particles. In order to
maintain a consistent sample, the new importance weights

p(xk|z0.x) =)

—226—

are set to
p(zk|x}) - p(xgIxE_1)
(XX, 7)

Wi oxwl g 3
where proportionality is up to a normalized constant.
The new set of particles {xi,wi,}v? is then ap-
proximately distributed according to p(xx|zo.x). Approx-
imations to the desired point estimate can then be
obtained by the MC technique, i.e., p,(Xkl|Zo.x) 4

Yo W By (xk) & p(xkfz0.1).
A. Sequential Importance Resampling

Many are the choices when selecting an algorithm
for sampling from an arbitrary distribution in MC-based
Bayesian filtering. Just to mention the most important ones,
we refer to the rejection sampling, Metropolis-Hastings
(MH) algorithm, and importance sampling (IS) [4]-[6].
Since rejection sampling is typically inefficient and MH
requires a substantial burn-in period and generates depen-
dent samples, both techniques are unsuitable for online
applications. Therefore, we will rely on importance sam-
pling as a better option for these applications, especially
its sequential extension, which is equivalent to the PF.

Algorithm 1 Generic Joint Particle Filter
INPUT: {xi——lawkw-l}i\r:puzk
FORi=1,...,N,
FORj=1,..., N
Draw Xjj ~ m(XjklXjk-1,25.k)

END FOR
Compute wj with to Eg. (5)
END FOR
FORi=1,..., N,
Normalize &} = w: -
j=1 %k

END FOR
Compute Ness using Eq. (8)
IF Ness < Nenr THEN
i iV i =iV,
{xk,wj}ily = RESAMPLE[{R}, 0} };.2]
ELSE
N i N
{xh, w3k = {Zh, o hh
END IF
N
OUTPUT: {x},w;}; ™

Fig. 1. Pseudo-code of a generic joint particle
filter using the SIR algorithm.

The sequential importance resampling (SIR) algorithm
is the sequential extension of the IS algorithm that will
allows us to approximate posterior densities of the form
p(Xk|Zo.k), as required for Bayesian filtering, since it is

generally impossible to sample from it directly. Recursive-
ness of SIR comes from the form the proposal distribution
in Eq. (3). The generic scheme of the SIR algorithm for a
JPF can be seen in Fig. 1.

On how to choose a proposal distribution 7, despite the
possibility of choosing other more optimal expressions, a
popular choice is the so-called prior distribution

m(xn|xE_y, 26) = p(xklxk_;))

Sampling from the prior is often straightforward, for ex-
ample in the case of an additive noise model, as described
in the next section, since sampling from p(xx|xt_;)
amounts to sampling from the noise distribution. Further-
more, the update Eq. (3) assumes an even simpler form

wj, = wh_1 - pzk|x}))

The election of the prior as the proposal distribution is
suboptimal because it does not take the measurement zj
into account. In cases where the variance of the system
noise is significantly greater than the variance of the
measurement noise, this could lead to poor estimations.

In this work, we assume a fixed number of N, targets
to be tracked. Each target is parameterized by a state
X4k, where j = 1,..., Ny. The combined state is con-
structed as the concatenation of individual target states,
ie, Xg = [X1,k...,XN, k). The individual targets are
assumed to evolve independently according to Markov
dynamic models p(x; x|x;jk—1)- In Section IV-A, the case
where targets are engaged in a leader/follower behavior is
discussed.

This implies that the dynamics for the combined state
factorizes over the individual targets as

Ny
P(Xp|xXp—1) = HP(Xj,k\Xj,k—l) 6)
i=1

Accordingly, the weight update Eq. (3) factorizes as

N,
p(zlxi) = [] p(zs6l%) Q)
=1

Finally, it is necessary to resample particles to avoid de-
generacy of the importance weights w. This procedure es-
sentially multiplies particles with high importance weights,
and discards those with low importance weights. Our
approach uses importance resampling [5] that computes
an effective number of particles Nef ¢ to establish how
many of them are useful and those that need resampling

- 1

Neff = ®)

—227—

B. System Model

In this section, the model of the system used to simulate
the behaviour of targets is described. The assumptions
necessary for recursive Bayesian filtering are maintained,
that is, Xg. is Markovian and zg. is conditionally in-
dependent given xg.x, which means that for a dynamic
system, noise vectors {vi}, {ny}, and the initial state
Xo are both individually and mutually independent for all
k. Therefore, we assume that the system model takes the
linear Gaussian form

X =
2 =

where vy ~ N(0,Qi), and n; ~ N(O,Ry) are
white zero-mean Gaussian noise, and Fj and Hj are
known linear functions represented by matrices. Specifi-
cally, matrix Hj, is taken to be the identity, while Fy =
diag[F1k,...,Fn, k] is assumed to be a block diagonal
matrix, where each block F; 5, corresponds to the j** target
and follows a constant velocity (CV) model below.

The CV model is fitted to represent the movement of
slowly manoeuvring targets in the zy plane. Target ac-
celeration is modeled as zero-mean white Gaussian noise.
The state of a single target comprises its position and
velocity in the zy plane®, ie., xx = [Tk, &k, Uk, Uk -
Assuming a uniform discretization with a sampling period
of T seconds, matrix F in the state evolution equation in
Eq. (9) is

_{ For 02 (1T
F= (O2x2 ch » where FCV - 0 1 (10)
where 0, x,, denotes the n X m matrix of zeros. The state

evolution noise v is assumed to be a zero-mean Gaussian
with fixed and known covariance matrix Q

2 S
UzQCV 02,2 3 =

Q= Quw = 11

{ 022 02Qq } R { I {4n

2

Fr - xg—1 + v

H; - x; +nyg ©)

where o is a parameter controlling the noise for the model.
Under these assumptions individual target dynamics are
linear, Gaussian, and non-singular.

IV. Asynchronous Multi-Target Tracking

Let us consider the problem of tracking multiple targets
that shares a leader/follower relationship. In order to attain
this goal, first we regard the problem of sampling states for
those targets behaving as followers as well as introducing
the method of dropping pebbles that assists the particle
filter to hold nonsimultaneous state information. The final
algorithm is a modification of the one described in Fig. 1
and has been summarized in Fig. 5.

3The image plane, in our tracking applications.

A. Leader/Follower Interaction

One contribution of this paper is the computation of the
next state x,’: of a follower not only from the previous state
xﬁfl, as in Eq. (4), but also taking into account the state
x! of the leader being pursued by the follower. The idea
is that the state x£ is conditioned by its leader, i.e., :'c{ ~
w(xi\xifl,xl) as depicted in Fig. 2 (Up). The closer a
follower is to a leader’s previous position, the more intense
this effect appears. The problem then is how to mix these
two states in order to sample x£ and to what extent.

To answer the first question, we suggest to imagine a
field of vectors around the position corresponding to the
target as shown in Fig. 2 (Down). Those vectors represents
the variation Ax that has to be added to a state x;_; to
get the next one, that is, x; = xx_1 + Axg. As explained
in Sect. III-B, we can compute the next state of any target
using Eq. (9). Accordingly, the increment* A% as

A%, =
= Fp-Xp 1+ Vi1 —Xp1 (12)

Xk — Xk—1

This computation is independently performed for both
the leader and the follower, i.e., AxfC and Axi, and then
combined as follows

Axf =a AZ] +(1-a) A%, (13)

where the variable o represents the extent of the effect of a

leader onto its follower. This interaction takes into account

the credibility of such information according to Eq. (16)

in the Sect. IV-B. Then, the conditioned probabilities
f i 2f |d ;

p(x;,_,|x;_,) and p(X; |x;_,) combine as

o= fcred'p(xi—llecfl) (14)
ferea p(x]_y[xE_)) + p(R]Ix]_))

This ratio weights the relative importance of)'ci being a
consequence of i{hl with respect to x/ being a follower
of x!. Fig. 2 (Down) pictures the interaction between
leader and follower targets. The vector field on the leader
decreases its action on a follower because of « as the
states are more divergent, up to the extreme case where
no interaction occurs (independent follower).

As a result, the final follower next state x£ can be
computed from xi_; and x,f%1 as

x£ = x£71 + Ax£
= xl +a- AR+ (1-0a). A% (15)
Incase a =0, x£ is computed only with the follower
state, while if « = 1, it is done with the leader.

“The tilde on A% and % means that they are intermediate estimations.

—228—

Leador Effects _ . _Grid
[

Fallowers

Grid

LoaderFoliower

Interactiare. - . Leader Path o

Petibles /

_Follower

42
Soo . Independent
~Leader/Follower

Fig. 2. (Up) Leader’s effect regions. (Down)
Leader/Follower State Combination.

B. Dropping Pebbles Method

To sample target states in the way explained in
Sect. IV-A, where leaders affect followers, it is necessary
to get for each time step the state of leaders in a nearby
position. So far, interaction between targets has been per-
formed using simultaneous state information. Nevertheless,
in our case this information can be outdated (leader moved)
or lost (leader left the scene). Consequently, we need an
asynchronous kind of interaction between targets.

Fig. 3. Leader dropping pebbles in the grid.

Here, we propose a novel method to manage previous
leader states in a way that can be posteriorly used by
followers as described in Sect. IV-A. We call pebbles to the
testimony of the pass of a given leader through a position
in the zy space. In order to keep these pebbles associated
to a certain place, the xy space is divided forming a grid
(Fig. 3) where bins represent the area in the space where
pebbles will exert their effect.

The main propose of a pebble is to maintain and
asynchronously transfers information about a leader that
was before in that position. It could be argued that a state
holding some previous states might solve that difficulty.
Nevertheless, one such approach has many side problems
such as defining the temporal window and also the increase
on the dimensionality of those states.

Specifically, our approach suggests the use of a grid G
where to attach the states of leaders as they evolve in the
image space. These states can be accessed and updated as
they are used. A pebble px corresponds to a state x that
a leader deposit in the grid G. The usefulness of a pebble
Ppx is defined by a measure of credibility fcreq as

Atdrop)
Nvotes

where fcreq depends on the age of the pebble, i.e., the
time Atgrop elapsed since the pebbles was last accessed
(dropped or read), and its usage Nyotes, that is, the number
of times the information has been read. Credibility fereq
captures the certainty of the information carried by the
pebble as a mean to predict the behaviour of a follower
from its leader state. All this information is included in
each pebble as px = [X, Atgrop, Nuotess fered)-
Three actions can be performed on a pebble, namely

ferea = ezp('_kcred (16)

Drop At each step k, leaders will drop their states xé-
as pebbles Pxi in the bins in grid Gi_;, as in
Fig. 3. We note the dropping of pebbles as G, =
Gr-1 GB;V;I Dyt » Where IV} is the number of lead-
ers. If the bin afready contains a pebble belonging
to the same leader, the state xé is updated as

L = 1 I i
xj,new = Nootes+1 (Nvotes . xj,old + x_:). Then,

usage Nyotes i increased by one and Atgyrop
reset to zero.

Read Whenever it is required, giving a position in the
grid or a follower state x/, the corresponding
pebble py so as to (xf ~ x!} is recovered’.
Consulting a pebble updates Nyotes and tgrop as
before.

Delete As the usage of a pebble pyx decays or its age
increases, its credibility will decrease, in accor-
dance to Eq. (16). Whenever fcr.q is too low, the
pebble will be erased from the grid G.

3(xf ~ x!) means that x/ follows x'.

—229—

C. Lost Followers

The correspondence between a follower x/ and its
leader x¢, ie., (x/ ~ x!), can be lost in two different
cases, as depicted in Fig. 4. Whenever the follower differs
too much from its leader, this is considered as a lost
follower which needs to find a new leader. If none, the
target becomes a new leader itself (upper diagram in
Fig. 4). However, it may also happen the disparity differs
just temporally and the follower resumes to the leader after
a short period of dissent (lower diagram in Fig. 4).

We compute the probability p;,s; that a given target is
really lost as the combination of the two former notions,
expressed as a probability dependent on the time Atjost
since the follower is apparently lost and the probability
(1 — p(xf ~ x!)) that target x¥ is actually not following
its leader x!, that is

Atyos
Plost = (1 — €Tp (_#>) (1 “p(xf ~ xl)) (17)

lost
where At is the time elapsed since the follower is being
detached from its leader.
The probability p(x/ ~ x') that a certain follower x/
is after a leader x/ is computed as

—_ d? 1
p(xf wxl) _ exp(%7) ifd <30 as)
0 otherwise

where d = |xf — x!| and ¢ = R/2 are the differ-
ence between follower and leader states and the variance
measuring the spread of the distribution, respectively. R
is the radius where the leader exert influence onto its
followers (see Fig. 4) and relates to the size of bins in
the grid G. Distribution p(xf ~» x!) is truncated to avoid
computations farther than 3o, since this is the 99.73% of
the area under the Gaussian in Eq. (18).

Grid

Follower become Leader Palh,
- A - L o

aleader &
*

Lead

-
-, .
Followey/
Lont .
N

Fig. 4. Leader dropping pebbles in the grid.

Algorithm 2 Joint Pebbles Particle Filter
INPUT: {x}_y,wi_1}n0, 2k, Gro1
FORi=1,...,Np
FORj=1,...,N;
Get Pebble x' from Ge—;
%5 4~ w5 (k1 1, %)

END FOR
Compute wj with Eq. (5)
END FOR
FORi=1,...,N,
Normalize &} = —
Np i
=1 %k

END FOR

FORi=1,...,Np
Compute p(xf ~ x!)
Compute Piost
Update Gi_1

END FOR
Compute Nesy using Eq. (8)
IF Neps < Ninr THEN
SN si ~i N
{xi,wikidy = RESAMPLE[{X}, & }.01]
ELSE
N e N
{xk,wi b = {&k, Gr b
END IF

N
OUTPUT: {x},w}};.", Gk

Fig. 5. Pseudo-code of asynchronous joint
particle filter.

V. Simulation and Experiments

This section is devoted to consider the synthetic gen-
eration of data required to study the performance of the
particle filter described in previous sections in this work
and to the series of experiments that has been carried out
to support our statements.

A. Data Simulation

In order to study the behavior of the suggested asyn-
chronous joint particle filter (AJPT), a certain amount
of data has been synthetically generated resembling the
movement of people in crowds. Despite our goal is using
this algorithms with real data from images depicting their
movement, we are using synthetically generated data as a
starter. The great benefit of using such kind of data in the
preliminary stages of our research is that it can be easily
obtained, manipulated, and modulated to study different
aspects of the algorithm.

The kind of data generated consists of sets of trajec-
tories closely related to the apparent movement of people
in crowded sitvation. The parameters of those trajectories

have been changed as needed, varying the initial and final
points as well as the shape of the curves. Besides, since
we are interested in the dynamic of groups, the number of
trajectories that can be observed forming a group as well
as the number of such groups have also been varied. For
space reasons we only show Fig. 6 and Fig. 7 as examples
of such trajectories.

Since the time required by the particle filter to conclude
the computations is proportional to the number of targets
being followed, we have limited to 10 the number of them.
Therefore, the data sets generated consists in different
gatherings of targets up to that number. Accordingly, up
to 22 sets where targets collected in 1, 2, 3, 4, and 5
groups have been obtained. Fig. 6 exhibits one group of
trajectories including 3, 5, and 7 targets.

Fig. 6. Example of AJPF using trajectories in
the same direction with an increasing num-
ber of targets (3, 5, and 7).

B. Experiments

Experiments carried out consist in the application to
the sets of synthetical generated measures of two sorts
of algorithms, i.e., the generic joint particle filter (JPF)
and the asynchronous particle filter (AJPF). The goal of
these experiments is, first, to establish the validity of our
algorithm and then comparing it to the usual JPE. We want
to show how it works and that our approach is better.

To attain this goal, we have conducted a set of com-
putations where the precision, the required time, and the
least number of particles needed to reach them have been

Fig. 7. Example of AJPF using trajectories in
several directions with 9 targets.

studied. The last feature aims to decide which of the two
algorithms requires fewer particles to obtain reasonable
results. Because of the degeneracy inherent in SIR algo-
rithms, if the number of particles is diminished too much,
it can happen that at some point the particles in the filter
diverge and lose the targets.

Whenever the filter does not converge to any result, the
computations are redone increasing the number of parti-
cles. This way, an estimation of the number of particles
is obtained. As explained before, the main drawback of
JPF is its computational complexity, therefore, the lesser
number of particles required the better.

C. Results

First, let us consider the performance of our algorithm.
In Fig. 6 we want to illustrate the results obtained using
one single group of 3, 5, and 7 elements going in the
same direction depending on the distance where the leader
effect is applied. The circles represent pebbles dropped by
leaders. The thicker circle corresponds to the area inside
one ¢ in Eq. (18) and the thinner exterior one to a distance
of 3¢. The curves correspond to the computed trajectories
which overlay the real measured trajectories in black.

It can be seen in Fig. 6 how pebbles are dropped along
the trajectory. When trajectories start separating each other
and some follower is lost for too long, it becomes a leader
itself and new pebbles are dropped. That is why there are
two sets of pebbles as targets approaches to the rightmost
end of curves. In Fig 7 the behavior of pebbles in a more
complex set of trajectories is depicted. In general, it tends
to be one single leader per group until trajectories diverge
too much each other. These are examples on how the
dropping pebbles method works.

N [1 [2] 3] 4] s

Error(p) | 1.36 1.71 2.32 3.10 3.86
Time(s) | 0.92 1.98 3.13 4.14 5.30
TPS(s) | 0.7e-4 | l.4e-4 | 2.2e-4 | 2.9e-4 | 3.8¢-4
Np 100 100 100 100 100
N 6 7 8 9 10
Error(p) | 5.58 4.61 4.87 3.10 5.18
Time(s) | 6.31 | 38.53 | 55.50 | 120.81 | 418.13
TPS(s) | 4.5e-4 | 5.5e-4 | 5.6e-4 | 6.6e-4 | 7.4e-4
Ny 100 500 700 1300 3700

TABLE . Results of the asynchronous JPF.

Finally, we will discuss the relative performance of the
AJPF with respect to the generic JPE. Table. I and Table. IT
summarize the results corresponding to the RMS error
between the computed trajectory and the real one (Error, in
pixels), the time elapsed during the filtering process (Zime,
in sec.), the time divided by the number of particles and
the number of times steps (TPS, in sec.), and the number
of particles required to obtain those results (V).

The set of trajectories in these computations are like
those in Fig. 6, where targets follow similar directions.
The number of targets NV, goes from 1 to 10, and the
maximum number of particles is 4000, due to memory
and time limitations. When this number is reached without
convergence, the corresponding place in the tables is left
empty, meaning that more particles would be needed.

From the results included in Table. I and Table. II some
facts can be drawn. First, differences in the precision of the
two PF are small, being AJPF slightly better. This seems
logic since both of them use the same kind of dynamics to
predict the movements of targets. Secondly, the use of the
dropping pebbles method does not suppose an extra burden
since TPS is fairly similar for both PF. In fact, AJPF seems
faster because of a smaller number of resampling steps.

Nevertheless, the important fact is that while there is
one point from where it is impossible to reach convergence
from the usual JPF, the AJPF is possible to obtain results
under that limit. Moreover, in cases where generic JPF also
converges, AJPF usually requires fewer particles. This is
pretty obvious as the number of targets increases.

N] 1 | 2 3 4 5 [
Error(p) 1.59 1.77 2.40 3.61 4.13
Time(s) 2.66 4.25 5.25 11.78 | 17.78
TPS(s) | 1.9¢-4 | 3.0e-4 | 3.7¢-4 | 4.2e-4 | 4.2e4
Np 100 100 100 200 300
N, 6 7 8 9 10
Error(p) | 4.51 4.95 - - -
Time(s) | 18.56 | 19.07 - - -
TPS(s) | 4.4e-4 | 4.5¢-4 - - -
Np 300 300 - - -

TABLE Il. Results of the generic JPF.

VI. Conclusions and Future Work

The main aim in the present work was the introduction
of two novel approaches to the problem of multiple target
tracking using joint particle filters in relation to the task
of extracting trajectories of people in crowds. First, in
order to better adapt the dynamic of targets to the real
movement of people in such situations, we suggest the
use of a leader/follower model of sampling target states.
This fact has lead us to the dropping pebbles method as
a way of performing asynchronous transmission of target
states as an alternative to the usual approaches where only
simultaneous states within the particle can be shared.

Our goal in this paper consisted in showing the fea-
sibility of this approach as well as the computational
advantages with respect to a usual joint particle filter. To
show this we have carried out a series of experiments with
synthetical data. Our approach is able to attain similar
results with less number of particles than a generic JPF
without any further increase in the computational burden.

The next work will include the extension of these ideas
to other algorithms apart from SIR, such as Metropolis-
Hastings, taking into account a variable number of targets,
and also the inclusion of data from real images of crowds.

Acknowledgments

This research was supported by the Ministry of Internal
Affairs and Communications of Japan.

References

[1] T. Zhao and R. Nevatia, “Tracking multiple humans in crowded
environment,” in Proc. Computer Vision and Pattern Recognition
(CVPR’2004), vol. 2, July 2004, pp. 406413,

Z.Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering
for tracking a variable number of interacting targets,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp.
1805-1819, 2005.

1. Vermaak, S. Godsill, and P. Perez, “Monte carlo filtering for multi-
target tracking and data association,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 41, no. 1, pp. 309-332, 2005.

C. Andrien, N. Freitas, A. Doucet, and M. Jordan, “An introduction
to memc for machine learning,” Machine Learning, vol. 50, pp. 5-43,
2003.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filter for online nonlinear/non-gaussian bayesian tracking,”
IEEE Trans. on Singal Processing, vol. 50, no. 2, pp. 174-188, 2002.
A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, pp. 197-208, 2000.

[2]

3

[4]

[s

[6

