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Spatial and Frequency Domain Cues
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The performance of detection and tracking systems greatly depends on the quality of its

information sources.

For tracking humans in crowded environments, this becomes especially

important due to the additional challenges of heavy occlusions and the sheer number of target
objects. Recent works based on feature point tracking and clustering have already begun to use
motion cues in conjunction with spatial cues, and have been met with varying levels of success
and improvement. We now propose the use of a third class of cues based on frequency domain
analysis to enable a better understanding of human activity in crowded scenes. We present a
system that takes advantage of multiple domains of information by using domain-specific methods
such as motion trajectory and gait frequency analysis. The advantages of our method shall be
shown as well through presentation of experimental results.

1. Introduction

Detection and tracking is a field with more than 20
years of research and development history [1]. Enabled
by the emergence of more powerful computing
technology, detection and tracking systems in the
present day have potential use in the modem day
industries of logistics and security, and other relevant
fields.

From a technical standpoint, the specific problem
of detecting and tracking humans in highly crowded
situations, despite its significance in modern day
industries, still poses a high level of complexity since it
involves several challenges at once, such as occlusion,
multiple tracking, and difficulty of segmentation. It
differentiates itself from other detection and tracking
tasks in a very important regard: the sheer number of
objects. As a direct result, problems that could have
been negligible in the case of single or sparse detection
become major issues in the context of crowds.
Occlusion happens on a constant basis, segmentation
techniques and background subtraction become of little
use, and the large number of objects necessitates careful
consideration with regards to computational load.

Thus, an effective system would be resilient to the
inherent complexities posed by the crowd-tracking
problem, and at the same time be computationally
effective and elegant to simultaneously handle multiple
objects with acceptable time complexity.

The techniques that have been proposed thus far to
solve this problem cover a wide variety of approaches
and design philosophies. Works such as those of Zhao
and Nevatia [2,3] and Ramanan and Forsyth [4] rely on
detailed geometric models of the human anatomy to

effectively identify and track the motion of humans.
One disadvantage for works of this nature is their
inherent inability to identify humans and human
activity that fall outside of the internally defined shape
and motion state models. To attempt to empower such
a system with such robustness to handle a wide variety
of human motions would entail introducing more and
more complexity on the internal system model.
Furthermore, it would be difficult, to extend these
models to identification and motion tracking scenarios
that deal with other general types of objects, such as
insects, microorganisms, or vehicles, since the main
computational modules would be tied to a very specific
type of target object.

On the other end of the design philosophy
spectrum, systems have been introduced that extract
only general spatial and motion information, and base
their conclusions and results only on such generic cues.
These systems, while not being able to match the
potential for detection and tracking accuracy afforded
by using target-specific models, have the potential of
being able to handle arbitrary motion patterns for any
specific target object, and in some cases, even able to
handle arbitrary shapes and objects. In most of these
works, clustered feature points are used as the basic
indicator of an instance of a target object in the scene.
Tu and Rittscher in their work [5], for example,
performed a geometry-based clustering operation using
their own Emergent Labeling technique on a weighted
graph constructed from vertices derived from the results
of simple background subtraction.

The works of Rabaud and Belongie [6] and
Brostow and Cipolla [7], considered to be the main
inspirations for this work, fall under the second class of
tracking systems as described above. In both of these
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works, motion data derived from Optical Flow tracking
[8] of Shi-Tomasi-Kanade feature points [9] is used to
construct a weighted graph that would describe the
relations of points with respect to belonging to the same
target object. The concept behind the utilization of
weighted graphs shall be discussed in detail in section
2.2.

Rabaud and Belongie in their system assert that
feature points sharing the same affine motion have a
high likelihood of belonging to the same object, and
perform RANSAC clustering based on that assumption.
Brostow and Cipolla, on the other hand, use a Bayesian
clustering scheme mainly based on the assertion that
feature points belonging to the same object would
exhibit little variance in their point-to-point distance
while tracing their motion trajectories.

Our system adopts the same general methodology
of feature point tracking and clustering. Like previous
related works, we utilize spatial and motion cues such
as bounding box constraints and motion trajectory
analysis. However, we introduce a new class of cues
based on frequency domain analysis, which we believe
will be able to provide better clustering and
segmentation performance than with motion-based data
alone. For human beings, this is especially true since in
casual scenarios, walk cycles differ from person to
person, even if they are walking in the same general
direction. Two people walking together may be easily
mistaken as one entity by virtue of motion analysis
alone, but may be successfully separated by applying
frequency analysis on their individual walk cycles.

Also, in this work we demonstrate the usability of
object detection as a suitable replacement for
background subtraction in cases where the latter is
difficult, if not impossible, to implement.

2. Proposed Method
2.1. A Clustering-Based Approach

Our system uses weighted graphs as the main
abstract representation of humans in a clip of motion
video. We define two graphs, Gy = {V,E;} and Gr =
{V,Eg}, as the initial hypothesis and final configuration
that describe the distribution of humans in any single
frame of motion video. In this notation, V represents
the set of labeled vertices that correspond to and
contain information on each tracked feature point as
described in section 2.2. The set of weighted edges Ej,
on the other hand, is the set of point-to-point
relationships during the initial hypothesis with respect
to their likelihoods of belonging to the same human,

while Er represents the non-weighted edges defining
the final configuration. G; and Gy are related by an
overall clustering function C, which shall be defined in
later sections. Each connected component in the result
G is then considered to correspond to a single instance
of a human being in that particular video frame.
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Figure 1: (Left) The clustering process. (Right) Figurative
and actual illustrations

2.2. Features and Trajectory Generation

Before the actual clustering operation, needed
information to construct the initial hypothesis Gy is
obtained. Each element v; of the vertex set V
corresponds to a feature point and its relevant
parameters, notably, but not limited to, its spatial X and
Y locations. Feature points in this work are defined as
synonymous to Tomasi-Kanade features, and are
obtained using the technique described in [9]. Aside
from spatial information, motion-related parameters are
also obtained through tracking and trajectory tracing,
using a standard implementation of Lucas-Kanade
optical flow [8]. Occlusion and drifting during the
tracking of each feature are then handled by a template
matching based consistency check between the image
window around the feature for the current frame and the
corresponding image window in the frame in which the
feature was first detected, as illustrated in Figure 2.

Figure 2: Each feature point’s flow computation is further
validated by comparing it with its initial state. Top left: Start
frame. Top right: Current frame. Bottom row: image
windows subject to normalized crosscorrelation.

—218—



Each feature point’s trajectory is traced forwards
and backwards in time for 2N+1 frames, e.g., 129
frames in our experiments. The availability of future
frames for forward tracing is emulated by implementing
a delay buffer of length N for the video frames, and
performing clustering operations on a delayed frame
rather than the present frame, as is shown in Figure 3.

Video Frames

[ Trajectory S

>

“Present”, delayed frame

Time |

Past frames “Future”, current frame

Figure 3: Emulation of future frames through the use of a
delay buffer.

We use a trace length of 129 frames as a balance of
having a long-enough length for improved analysis and
having a short-enough length to avoid unnecessarily
discarding shorter yet perfectly suitable trajectories.

2.3. Object Detection Foreground Mask

To reduce the noise involved in selecting irrelevant
features from the background, we make use of a
foreground-background mask during the feature
detection process. For this study, we make use of an
object detector as a replacement for traditional
background subtraction in constructing the selection
mask. This is to compensate for the difficulty in
obtaining background images from crowded scenes.
We use an implementation of the hierarchical cascade
of boosted Haar-like classifiers as described in [10,11],
which in turn uses the Adaptive Boosting framework
first introduced in [12]. A cascaded classifier trained
for human heads from all views was synthesized, with
the detector output interpreted as a mask image. This
result is modified to include a region of pixels below
every detected instance of a human head; i.e., the pixels
occupying the corresponding human torso. While this
method could not be compared with traditional methods
in terms of background-foreground segmentation
accuracy, it has been seen to be more suitable for our
specific purpose.
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Figure 4: (Left) Set of Haar-like features for object detection
(top row), and an example of its applications. (Right) Human
head detection results as selection mask.

2.4, Weighted Edges and Scoring

Each edge weight ¢;,, corresponding to the edge
with endpoints v, and v, in graph G} is computed as the
result of an overall weighting function of the properties
of each vertex. In this work, we denote each edge
weight as a product of different weighting components
(interchangeably referred to as “scores”) as follows:

€; =S5

i,pa — S pq.space S

pg,motion - pq. fourier (])
Each score s, represents the relation of vertices v, and
v, by virtue of spatial, motion, and Fourier analysis,
respectively, and is computed using related properties
such as spatial distance, frequency, and phase.

For both sets Ej and Ep, a nonzero value for e,,
denotes the existence of the edge, while zero would
denote its nonexistence. For Ej, each component score
and edge weight is real-valued from 0 to 1.

Spatial Score and Initial Graph

The spatial score S, qu. is implemented as an
initialization for the hypothesis graph G;. It is a simple
constraint similar to the bounding box defined in [6],
and serves to reduce the computational load of later
stages by eliminating highly unlikely feature pairs. The
bounding box criterion states that two points are
possibly connected if their distances from each other
along the X and Y axes (which are denoted by [v,,-v,.|
and |v,,-v,,[) are less than the target object’s expected
dimensions, here denoted by Xpoums a0d Ppouna-

1 "vp,x “Vox Yoy T vq‘y’ < Vbound

- 2

pq,space .
0 ,otherwise

<x bound

Motion Analysis

The base concept for motion analysis is that any
two points on the same rigid object undergoing pure
translational motion would maintain a constant
separation from each other at any given frame of time.
This definition is analogous to that of parallel lines, and
this similarity indeed manifests itself in during
trajectory visualization. We consider two main
arguments in the computation of the motion analysis
score.
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Coherent Motion

We measure coherence of motion by utilizing the
set of feature point trajectories as exemplified by Figure
5. We take the standard deviation a,, in pixels of the
distance 1,, between the two feature points in question
as they move across the scene (Equation 3), during the
time window from ¢, to #;in which they have coexisted
(illustrated in Figures 6 and 7). This is a direct measure
of the points’ deviation from the previously mentioned
ideal description of constant separation.

3

The standard deviation o, is then assigned to a
likelihood score Spyconerence USing a simple mapping
function (Appendix A).

t t
Figure 6: Left: Constant distances imply high likelihood of
belonging to the same object. Right: high deviation implies
different objects.
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Figure 7: The standard deviation is computed only for the

time window in which the two feature points have coexisted
(highlighted region).

Coexistence

Unlike related works that artificially extend the
length of trajectories through extrapolation techniques
[6,7], the coherent motion score in our study is
computed using trajectory data only for the frames in
which the two feature points have coexisted. This was
done to eliminate any errors or discrepancies that may
arise from the data estimation involved in extrapolation.

However, this would imply that trajectories would
have varying coexistence intervals (¢f). Furthermore,
smaller values for (¢-f) imply that the source
trajectories contain less information, and would
therefore entail less reliable results for coherent motion
analysis. Thus, we introduce an additional score that is
the result of using the coexistence interval (¢-¢) as a
weighting metric. As with the coherent motion score
Spg,conerences W assign the coexistence interval (¢-1) to a
likelihood score $pg coexistence Using the common mapping
function described in Appendix A. The value of
Spq,motion 15 then obtained as a simple product of the two
component scores.

N

S pq.motion =S5 pq.coherence : pq.coexistence (4)

Fourier Analysis

Aside from physical separation and differences in
general trajectories, one key parameter that can be
exploited is the set of frequency domain characteristics
of the gaits of individual humans. OQutside of
coordinated and deliberately synchronized movement,
humans generally exhibit different frequencies and
phase during their walk cycles. This periodic motion
becomes evident in visualizations of feature point
trajectories, as was seen previously in Figure 5.

As was explained earlier, the inclusion of a set of
scores based on frequency analysis would enable the
system to handle the scenario in which two people are
walking closely together and towards the same general
direction. While motion analysis alone might manifest
their differences as nonzero but negligible standard
deviation values, frequency analysis would be able to
reveal any significant differences in the frequencies of
their individual and unique walk cycles despite the fact
that they were moving in the same direction.

The Fourier analysis score consists of two
components, corresponding to the gait frequency and
phase.
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s Pq,phase (3)

s pq, fourier =S8 pq, frequency

Before the computation of the two component
scores, each feature point’s trajectory data is
preprocessed for frequency analysis. Input arrays for
Fourier transform computation are filled with each
feature point’s X and Y positions as functions of time,
starting at the current frame assigned to the array’s
middle position, and stretching forwards and backwards
through time up to the array’s extents. Feature points
with trajectories that could not be able to fill the array
are considered too short and are discarded; otherwise
their trajectories are conditioned for Fourier analysis as
illustrated in Figure 8.

An array length of 64 frames was seen to be a
balanced value that is long enough to provide sufficient
time frames for analysis while being short enough to
accommodate an adequate number of trajectories.
Setting the array length too high would lead to
unnecessarily deleting shorter but suitable trajectories,
so care was taken in choosing this number. This is
equivalent to about 1 second of motion video, or about
1.5 to 2 gait oscillations.

J 1T

time

2. fill input array

time time

4. remove regression
line bias

3. obtain regression line

Figure 8: Preprocessing a trajectory for Fourier analysis

The complex Fourier transforms for the waveforms
for each feature points’ X and Y coordinates are then
computed. For each transform result, two values are
obtained: the location f,, of the peak complex
magnitude Z,,,, and the complex phase at the peak
location, denoted by @heu-

1. obtain transform peak

2. obtain phase

Figure 9: lllustration of the frequency analysis process

Scores Spgfrequency N Spy prage are then computed
based on the differences Af,.. and Ag,, of the
frequency and phase values respectively for each
waveform pair using a suitable mapping function as
described in Appendix A.

These score computations are done for movements
in both X and Y components. Thus, the final frequency
domain analysis SCOIe Spysourier i the product of four
separate values, as shown in Equation 6.

Spq,foun'er = Spq,frequency,X ' Spq,phase,X ’

(6)

S g, frequency,y * S pg, phase,¥

2.5. Betweenness Centrality Clustering

After obtaining the scores necessary to construct
the initial hypothesis graph Gy = {V,E}, it is clustered
based on the measure of betweenness centrality [13]. In
general, the centrality of a vertex or an edge in a graph
is a numerical representation of its performance or
importance in the context of flow and connection.

es(p)= m(p) (7

seV eV ,peE n.vt

The edge betweenness centrality cg(p) for an edge
p in graph G={V,E} in which V and E are vertex and
edge sets is defined in equation 8. The value ny(p) is
defined as the number of shortest paths from vertices s
and ¢ passing through edge p, while ng is the overall
number of shortest paths from vertices s and ¢. Real-
valued weighted graphs containing experimental data
often offer the simplest case as the shortest path from
any vertex pair s and ¢ is usually unique (there are no
parallel shortest paths). In this case, ng(p) and ng are
both equal to 1, thus making the edge betweenness
centrality in this case a counter of shortest paths within
the graph passing through edge p.
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Figure 10: A simple example of betweenness centrality
computation.

Figure 10 is a simple explanation of the
betweenness centrality computation. At the left, two
shortest paths exist between vertices s and . One of
them passes through edge p, so [rg(p)/ngl in this case is
0.5. The right hand diagram is the usual case for
weighted graphs, in which there is only one shortest
path between vertices s and ¢. This would give
[na(p)/ngd a value of 1.0 if the path passes through p,
which would make the summation in Equation 8 a
simple counter of all the shortest paths that pass
through edge p.

Our use of betweenness centrality is best explained
through Figure 11. Among other scenarios, high
betweenness centralities would manifest on bridge
edges, and edges with low weights, the latter’s reason
being that the computation of shortest paths is heavily
based on edge weights for edge-weighted graphs.

9 e

@ @@

Figure 11: Bridges and low-weighted edges have high
betweenness centrality.

In our system, low weights would manifest
between points that exhibit low likelihoods of
belonging to the same object, as detailed in previous
sections. Furthermore, residual bridge edges may also
appear, as shown in Figure 12. As shown, betweenness
centrality was successful in consolidating valid clusters
(colored lines) while discarding weak and bridge edges
(black lines).

LA

Figure 12: Bridge and weak edges..

In our system, we compute the betweenness
centrality of each edge in Gy and discard high centrality
values through application of a threshold. The
remaining edges would comprise the edges of the
output graph Gr.

1
Gp =C(G,)={veV,ef €k, le, :{0

»Cp (ei ) SCoumr
»Cp (ei ) > Chur

¥

After this clustering step, the resultant graph Gr
would not contain low-scored edges and bridges, and
would ideally consist only of connected components of
relatively strong connection.

3. Experimental Results

Our scheme was evaluated by measuring relevant
performance parameters while being applied to the
main interest region of a video clip of a typical crowded
scene.

We select the main interest region for our
experiment to be the main floor as illustrated in Figure
13.  All evaluations were performed only within this
region, and only humans standing on the main floor are
counted. We restrict our evaluation within this region
since we would want the evaluation environment to
have as much constant parameters as possible, most
notably lighting and level of occlusion. The source

video itself was taken using a prosumer level video
camera. Prior to processing, we have deinterlaced it to
produce motion video with 720x240 pixels at 60 frames
per second. The main interest region is populated by 10
to 20 people at a time.

Figure 13: Use of the scene’s main floor as the main
interest region. Humans are counted as long as their
feet touch the floor indicated by the shaded region.

3.1. Figures of Accuracy

We measure system performance using four
general parameters: Hit Rate, Fragmentation, False
Positive Rate, and False Negative Rate. We perform
our experiment by taking random frames and their
clustering results, and performing manual, by-hand
counting. We use a fully human-supervised data
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extraction method as opposed to automated methods to
prepare our data in an effort to reduce errors and
increase accuracy of results.  Furthermore, some
parameters, notably the fragmentation rate, can only be
measured using manual evaluation.

Hit Rate is defined as the ratio of the number of
humans correctly tagged with clusters to the total
number of humans in the scene. False Positive Rate is
defined as the ratio of the number of incorrectly formed
clusters without associated human targets to the total
number of clusters in the scene, while the False
Negative Rate is defined as the ratio of the number of
humans without any associated clusters to the total
number of humans in the scene.

We define Fragmentation in this work to be a
figure that describes the accuracy of the correspondence
of clusters to human targets. It is defined as the ratio of
the number of clusters that lic within humans, to the
number of humans that have been identified with at
least one cluster.

clusters _with _humans
Fragmentation = = = e

humans _with _ clusters

A fragmentation value of 1.0 indicates overall ideal
operation, in which each human being in the scene is
assigned to one unique cluster. Values less than 1.0
would be indicative of false negatives and cluster
merges (defined as the scenario in which multiple
humans are grouped into a single cluster and are
erroneously considered as a single entity), while values
above 1.0 would indicate the presence of multiple
clusters within the same human being. It was also
noted that almost all cases of multiple clusters were
related to articulation of the human body — i.e., separate
clusters were assigned to jointed body parts such as
arms, shoulders, and legs.

Figure 14: Most fragmentations are attributed to
human body articulations.

Table 1 is a summary of the final experimental
results, listing each performance parameter’s average
value for 100 randomly selected frames. Also, to
account for the existence of small-sized clusters — i.e.,
clusters that have only 4 or fewer vertices, we present
two versions of the fragmentation computation: one that
considers small-sized clusters as legitimate clusters
(“Fragmentation”), and another that treats them as noise
(“Modified Fragmentation™).

86.57% 13.43% 0.24% 125.51% 89.97%

Table 1: System Performance Parameters, averaged over 100
randomly-picked frames

3.2. Analysis

Table 1 can be considered as a numerical summary
of system performance. We see acceptable
performance especially in terms of false positives. The
main reason for this is seen to be the foreground
selection mask presented in section 2.3. The system’s
false negative rate is acceptable, with the feature point
selection scheme seen as the main factor affecting its
performance. In particular, humans facing away from
the camera and those wearing plain clothing would lack
enough texturedness as defined in [9]. They would
therefore have fewer, erratic feature points and thus
have edges of lower quality that are prone to deletion
during the clustering process.

Fragmentation is also satisfactory; with the main
cause for most cases of single person multiple clusters
being human body articulation.

As for the system’s ability to separate individual
humans, the use of Fourier analysis as one of the edge
metrics would be immediately evident upon observation
of individual frames. In Figure 15, we see humans
situated close together and moving in the same general
direction, but were still separated by virtue of the fact
that their gaits were independent of each other, and
hence exhibit different frequency domain properties.

Figure 15: Successful separation of humans by virtue
of the Fourier analysis scores

4. Conclusion and Future Work

We have presented a system that utilizes Fourier
analysis in addition to trajectory analysis during feature
point tracking and clustering. It has shown acceptable
if not good performance, especially in the specific
scenario in which two humans are walking close
together and towards the same general direction. This
sensitivity, however, has also led the system from time
to time to incorrectly classify separate human body
parts as separate objects. This phenomenon of multiple
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clusters, however, has been observed to be relatively
minimal and could be improved by further testing and
development.

There are numerous areas for improvement for our
system, especially in the areca of fragmentation
reduction, such as by utilizing a higher-level cluster
merging scheme not different from the one used by [7].
Of course, adding additional metrics and observations
for edge weights would also be a possibility.

Appendix
A. Mapping Functions

The mapping functions described in Section 2.4 are
functions that are selected to match our requirements
for mapping curve shapes. The input to such functions
would be values such as phase, frequency, or trajectory
standard deviation, and the output would be a score
ranging from 0 to 1. A maximum value for each is also
defined, such that any value outside of the range from
zero to the maximum would be mapped to a score of 0.

Furthermore, two types of mapping functions are
defined. A rising mapping would result in a score of 0
for a given input value of zero, gradually rising to 1 as
the value approaches the maximum. The rising
mapping function for this work was based on the
squared sine function. The coexistence metric uses the
rising mapping type.

A falling mapping value, on the other hand, would
result in a score of 1 for a given input value of zero,
gradually falling to 0 as the value approaches the
maximum. The falling mapping function for this work
was based on the squared cosine function. Metrics that
use this type are the coherent motion metric and the
frequency domain analysis metrics.

A : ~- . st 7

Figure A-1: Left: Falling mapping plot based on
squared cosine function. Right: Rising mapping plot
based on squared sine function.
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