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Abstract In this paper, we introduce a class of multi-resolution optical flow éomputation algorithms. The
Lucus-Kanade method with the pyramid transform (the LKP in abbreviation) is a promising method of the
optical flow computation. This algorithm is a combination of variational method and multi-resolution analysis
of images. There are possible extentions to the LKP. The first one is to adopt the other optical-flow computation
method in each layer. For instance, we can adopt the Horn-Schunck method, the Nagel-Enkelmann method,
correlation method, and block-matching method. The second extention is to compute optical flow from a pair
of different resolution images. If the resolution of each image is higher than the previous one, the resolution of
images in a sequence increases. We address the second extention of the Lucus-Kanade method with the pyramid
transform.

1 Introduction us to compute small and fast displacements
of an object in a region of interest very fast.

In this paper, we introduce a class of multi-resolution

optical flow computation algorithms. The basic con-
cept of the algorithms was formulated during Dagstuhl
seminar by Reinhard Klette, Leo Dorst, and Atsushi
Imiya in a working group meeting. An early version of
the algorithm is mathematically formulated to answer
the following question.

If the resolution of images in a sequence is
increasing, is it possible to compute optical
flow?

asked by Reinhard Klette. The practical motivation
of the question comes from the following problem.

Starting from a low resolution image and in-
creasing the resolution, the algorithm allows

Beyond engineering applications, the answer of the
question might clarify a relation between motion cog-
nition and focusing to a attention field. For instance,
we human being see a moving object in a scene which
is an observation of the environment around us. If we
realise a moving object is important for cognition of
the environment, we try to attend on the object and
start to watch it by increasing the resolution to it lo-
cally.

The Lucus-Kanade method with the pyramid trans-
form (the LKP in abbreviation) is a promising method
of the optical flow computation. This algorithm
is a combination of variational method and multi-
resolution analysis of images. The main part of the
LKP is to use optical-flow computation in a low reso-
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lution layer to an initial estimation of the flow vectors
of the higher resolution layer. For the LKP, the pyra-
mid transform is applied to each of a pair of successive
images in an image sequence to derive low resolution
images. Since the image sizes of low resolution im-
ages are smaller than the sizes of the original images,
it is easy to compute optical flow for these images.
The result of computation is, however, an approxima-
tion solution. Therefore, this approximation solution
is used to as initial data to refine optical flow for the
lower resolution image pair.

There are possible extensions to the LKP. The first
one is to adopt the other optical computation method
in each layer. For instance, we can adopt, the Horn-
Schunck method, the Nagel-Enkelmann method, cor-
relation method, and block-matching method [1]. The
second extension is to compute optical flow from a pair
of different resolution images. If the resolution of each
image is higher than the previous one, the resolution
of images in a sequence increases. In this paper, we
address the second extension.

Section 2 sumerises the basic properties on optical-
flow computation. In section 3, we briefly describe
some classes of T,. In section 4, we introduce the
basic algorithms and a variation when T, is the classi-
cal regular pyramid transform. In section 4, we show
some numerical results for our two new algorithms.
Comparative studies with the traditional LKP are also
given. In section 5, we discuss mathematical proper-
ties of our algorithms.

2 Optical Flow and Regularisa-
tion

Setting f(z — u,t + 1) and f(z,t) to be the images
at time t + 1 and ¢, the small displacement u of each
point x is called optical flow of the image f.

For a spatio-temporal image f(z,t), z = (z,y)"
the total derivative is given as

Ofdz 9fdy Of dt

d
@ Tma T ya tod 0
where v = (z,9)7 = (‘fi—f,%)T is the motion u =

& = (,9)" of each point = (z,y)7. Optical flow

constrain [2, 3, 4]

d

Zf=0 2

i @)
implies that the motion of the point w = (&,3) " is the
solution of the singular equation,

fa2+ fyy+ fi = 0. (3)

Setting f(x —u,t+1) and f(x,t) to be the images at
time ¢t + 1 and ¢, for the small displacement u of each
point x, we have

J@—ut+ 1)~ @) 2V Tt = S5 @)

Therefore, we accept solution of eq. (2) as u
To solve this equation, the regularisation method is
employed

[ ek i+ fiPdedy + ol dody, (5)

where H(z,y) is an appropriate positive bilinear func-
tion of z and y.
If H(-,-) is in the form [3]

H(i,9) = tr(Vi' AVi+ Vii' AVy), (6)

where A is positive definite such that 0 < p(A4) < 1,
the Euler-Lagrange Equation of the energy function
eq. (5) is

V' AVu = é(vthv)Vf, (7N

forv=(u',1)T and V,f = (Vf", f:)T. Therefore,
the embedding of the Euler-Lagrange equation to the
PDE is

3] 1.
—u=V'AVu - =(V,fT0)VFf. (8)
or a

If A = I, we have the Horn-Schunck regulaiser. Fur-
thermore, the Nagel-Enklemann [3, 4] regularisation
term for optical flow detection is expressed as

A (VAT + 220). 9)

1
TV +2x2
Setting R? = (J];Z; D(;) to be a non-overlapping
decomposition of R?, we call x;; the seed of decom-
position. If the flow vector is picewise-constant, that
is, w = c in the interior each D(z;;), the constraint
define by eq. (6) is zero. Therefore, setting

Lij(u) = // IV Tu+ fil?de.  (10)
D(=:;)
we have the minimisation problem
Lij(w) »min 1<i<m,j<j<n. (1)
For each L;;(u), we have the relation
L(u) = Z v;Si,-'vij (12)
ij=1
where
S = / / V. fV.flde (13)
D(=:;)

for vtf = (fzvfyv ft)T- -

Therefore, the vector v;; is the eigenvector of S;;
associated to the smallest eigenvalue. For the compu-
tation of the optical flow. vector of each lattice point,
we achieve appropriate decompositions to all lattice
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points. This method is a mathematical formulation
of the Lucus-Kanade method from view point of do-
main decomposition. The Lucus-Kanade method is an
approximation of the variational energy-minimisation
procedure with the piecewise constant assumption.
For large n, the Lucus-Kanade method is an appro-
priate method and for small n, the Horn-Schunck and
Nagel-Enkelmann methods are preferable methods for
the computation of the detailed motion. Moreover,
since the parameter o should select to satisfy the con-
dition

=0(V{. (14)
Therefore, we can control the sequence of a,, as
Op1 > (15)
since
ITZf TN f), 0 < |Te| < 1. (16)

For an appropriate decomposition of D;;, we can ac-
cept the Lucus-Kanade method as a relaxation method
for the Horn-Schunck and Nagel-Enkelmann methods.

3 Smoothing Operation
We define a class of smoothing operation T, as
Tt = [ [ wle-uy-v0)fuvdud. (17
R2

for a non-negative function w(z,y) such that

//R2 w(z,y)dzdy = 1.

The continuous version of the classical pyramid trans-
form is achieved, setting

wle) ={ 57

The other traditional smoothing is the convolution
with Gaussian

(18)

[z} <o, |y] <o,

otherwise. 19

G(z,y) = % exp (— x22—:2y2) . (20)
For the sampled function f;; = f(i,7), eq. (17) is
expressed as
Tpfmn =Y Wi mjnfmn (21)
We write
Tof = foy T3 f =To(T2F) = fopniny- (22)

4 Dagstuhl Algorithms

The classical pyramid-transform-based method uses
the optical flow u,(t) computed from a pair T f(z, t)
and T f(x,¢ + 1) as the initial estimation of w,_1(t)
and refine u,1(t) from 77~ f(x,t) and TP f(z —
Un_1(t),t + 1). The operation

Waf(z)

= fl@ - d) (23)

is called warp, or the warp of f by the vector d. Usu-
ally the vector d is shift-variant vector function.

On the other hand, we propose to compute 4,1 (t+
1) from T2~ f(z, t+1) and W(TP L f(@ —wn_1(2),t+
2)).
Setting
fe =17 f(=, k),

0<n<N, (24)

the classical pyramid-based optical-flow computation
algorithm is described in the following. In this algo-
rithin, data are successive images

f,ﬁV f,ﬁl
: : (25)
f)? fl(c)+1

and u =: u, the operations are

and
W k+17fk) fkﬂ( k+ 1)
Data: f¥---f?
Data: fJ¥, - fo
Result: optical flow u$
n:=N;

while n # 0 do
ug = u(f7 7fk+1) 5
fk+1 = (fk+1 L uR)
d" = u(f,c
uy~ ' =uy + d"
up =y +d;‘1 ;
n:=n-1

end

Algorithm 1: The Classical Pyramid Algorithm

k+1)?

The first dynamic algorithm computes optical flow
using f;} and fk";ll. The second algorithm computes
optical flow using f;* and fk ‘- In these algorithms,
the resolutions of images depend on the frame number
k.
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Data: f---f0 1<k<N

Result: optical flow u
n:=N;
k:=0;

while n # 0 do
k= u(fk?fk+1) )

fk+1 = (fk+1’uk)§
‘“(fk k+1);
%1—%+W
n:=n-1;
ki=k-1
end

Algorithm 2: Dagstuhl Algorithm 1

Data: f---f 1<k<M M>N
Result: optical flow u$

n:=N;

k:=0;

while [ # 0 do
dp = “(fk»fk+l) 5

fk+l = (fk+17uk);
(fk k+1)?
uZ b=l +d" ;
n:=n-—1
end

Algorithm 3: Dagstuhl Algorithm 2

Figure 1 shows the time-charst for three algorithms.
The classical pyramid-based algorithm computes opti-
cal flow from all resolution images of fixed successive
times as shown in (a). The Dagstuhl algorithm 1 prop-
ergates the flow vectors to the next successive frame
pairs as shown in (b) The Dagstuhl algorithm 2 com-
putes the flow vectors controlling the intervals between
a pair of images as shown in (c).

(2) (b) (c)

Figure 1: Layer-Time Charts of Algorithms. (a)
The classical pyramid-based algorithm computes op-
tical flow from all resolution images of fixed successive
times. (b)The Dagstuhl algorithm 1 propergates the
flow vectors to the next successive frame pairs. (c)The
Dagstuhl algorithm 2 computes the flow vectors con-
trolling the intervals between pairs of images.

Figures 3, 4 and 5 show the results for these three
algorithms for Marble Block sequence, Yosemite se-
quence, and our real image sequence captured by the
camera mounted on a mobile robot. In these exam-
ples, IV is three, the size of window is § x 5, and the

algorithms extracted the flow vectors whose lengths
are longer than 0.03. These results show the almost
same results in appearances. We analyse mathemat-
ical properties of these three algorithms in the next
section.

5  Mathematical Properties of
Algorithms

The energy functional
E(u,n,t; f) = // {Df,(n, )+ aP(u)} dz

(26)
for

D(f,u)= (Vi u+fo), P(u)=

is a convex if @ > 0. For this energy functional, we
define

Vu' AVu, (27)

U, = argument (min E(u,n, t; f)) . (28)
Optical flow u, is the solution of the equation
1
VT AVu, = ED(fa(n)7un)vfa(n)' (29)

Multi-resolution optical-flow computation estab-
lishes an algorithm which guarantees the relation

lim u,(t) = u(t), (30)
n—0
where u is the solution of
VTAVu = %D(f, u)Vf. (31)

Since E(u,n,t; f) is a convex functional for a fixed
f, this functional satisfies the relation

E(un,n,t; f) < E(u,n,t; f), (32)
for u,, # u. Therefore, we have the relation
B(un_1,n =1, f) < E(un,n-1,%f).  (33)

This relation implies that it is possible to generate a
sequence which reaches to E(ug, 0, t; f) from E(u,,n—
1,1; f), since

E(un—hn_lyt;f) S E(unyn_lvt;f)
E(un—lvn_2vt;f) S E(un:n_27t7f)
: (34)
E(u,1,t;f) < E(us, 1,4 f)
E(U0,0,t,f) S E(u1707t1f)
for a fixed f, setting
Up = Up 1+ dn—h (35)
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Figure 2: A Series of Convex Energy Functionals. The
minimum of a fixed resolution derives an approxima-
tion of the minimum for the next fine-resolution for
the optical flow computation

for a fixed time ¢ where |d,_1| < |u,|. Figure 2 shows
the sequence of minimums which derive approxima-
tions for the next fine-resolution images for the optical
flow computation.

For the computation of u,_1, the algorithm min-
imises

E(dn-1,t9) =//R2{(VgTU+gt)2+P(dn—1)}d~’ﬂ»

(36)
for

i

g(w+dn—lat+1) Wunfanvl(w_dnflat'i'l)
fa(n—l) (m — Un,l+ 1) (37)

g(:z:,t) = fa(nfl)(wﬂt)a (38)

since Up = Up_1 +dp_1.
It is also possible to use the solution of the parabolic
equation

% =V AV, y +D(un 1)D'(un 1) (39)
with the initial condition
un-—l(w70) = Un- (40)

We introduce the following definitions for the
optical-flow vector u.

Definition 1 If the flow vectors satisfy the condition
lu| < A, we call the flow vector is A-stationary.

Definition 2 For sufficiently small positive constant
B, if the optical-flow vector u satisfies the relation
|%‘—t‘| < B, we call the flow field is §-time stationary.
Specially, if 3 = 0, the flow field is stationary in the
temporal domain.

Definition 3 For sufficiently small positive constant
v, if the optical-flow vector u satisfies the relation
[Vu| < v in domain Q, we call the flow field is ~-
spatial stationary. Specially, if v =0, the flow field is
stationary in the domain.

Next, we introduce the cross-layer relation of flow
vector.

Definition 4 For

__ 1 /
U, = | updzx (41)
12l Jo
if
1)
fun — 7] < 2, (42)
3
. )
[Tt —Un| < 3 (43)
)
|un71 - unfll S 57 (44)
we call u,, the §-layer stationary.
Furthermore, setting
At (,t) = un(x,1) ~ un_1 (2, ), (45)

we have the lemma.

Lemma 1 If u,, is the é-layer stationary, the relation
[Apun(x,t)| < d is satisfied.

If w,—1 is the A-stationary, that is, |u,—1| < a, we

have the relation |u,] < §. Since

[Un_1—Un| < |Un_1 —Tn—1|+ [Un1 — Ty +|tn —Tnl,
(46)
we have the relation
|1 —un| <46 47
This relation leads to the next theorem.

Theorem 1 If the optical flow vectors are §-layer sta-
tionary, the traditional pyramid algorithm converges.

Furthermore, since
Un—1(t + 1) — un(t)
=Up1 P+ 1) —up(t+ 1) +un(t + 1) — un(t)

=—Anun(t+1)+ ?—un7 (48)

ot

we have the relation

|un_1(t+1)—un(t)|§6+‘%un <p+4  (49)

This relation leads to the next theorem.

Theorem 2 Setting T, to be an image transform to
derive a low resolution image from image f, the low
resolution images are expressed as T, f. Here, we as-
sume that T, stands for the shift-invariant operations.
The regular pyramid transform, Low-pass filtering, and
convolution with Gaussian are examples of this oper-
ator T,. For the pyramid transform aend convolution
with Gaussian, o is the element of the non-negative
integers N1 and non-negative real numbers Ry, re-
spectively. & 1is sufficiently small and the motion is
B-time stationary for sufficiently small constant, the
algorithm 1 proposed in the previous section converge.
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Furthermore, since

un(m’t) - un—l(mzt + k)
=u,(x, 1) —un(x,t + k)

+un(x, t+ k) — wn_1(x,t + k) (50)
and
Un(®,t) — un(x,t + k)
k-1
= {un(z,t +14) —un(x,t + (i + 1))}, (51)
=0
we have the relation
|tn (@, t) — Un—1(z,t + k)| < ky+ 4. (52)

This relation leads to the next theorem.

Theorem 3 9§ is sufficiently small and the motion is
B-time stationary for sufficiently small constant, the
algorithm 2 proposed in the previous section converge.

Since the energy functional of the Lucus-Kanade
method is convex, this energy functional generates a
sequence of the solutions which converge the solution
of the Lucus-Kanade method for the original images.
Since physically

min B(u,n,t; f) < min Blu,n - 1L, f),  (53)
it is not easy to reach to u from ux using minimisation
strategy.

6 Discussion

If T, is a low-pass-filtering operation, the relation

T7f=Tofin>2 (54)
is satisfled. Therefore, we have the relation
min E(-,n,t; f) = min E(-, 1,1, f). (55)

This relation means that two layers are sufficient
for multi-resolution analysis. Furthermore, for the
achievement of multi-resolution analysis, the smooth-
ing operation must satisfies the relation

TPf#TS # £, m#n.

If an image is a collection of randomly moving
points, this images is expressed as

(56)

n

Fayt) =Y 1o —z:t) = = (zi,9:) 7,

i=1

(57)

for randomly moving point {z;}?_,. Generally this im-
age does not satisfy the convergence condition derived
in this paper.

The Lucus-Kanade method is an approximation of
the variational energy-minimisation procedure with
the piecewise constant assumption. For large n, the
Lucus-Kanade method is an appropriate method and
for small n, the Horn-Schunck and Nagel-Enkelmann
methods are preferable methods for the computation
of the detailed motion. Moreover, since the param-
eter a should select to satisfy the condition o =
O(|Vf]). Therefore, we can control the sequence of

Qp 88 Qp_1 > Oy, since
IT7fI <ITZIfl 0< [ To| < L. (58)

For the displacement vector u, we define the func-
tional

J(u)://R2|f(w—u,t+1)—f(:1:,t)|2. (59)
Since
J(u) = 2E — 2C(u), (60)
where
E://R |f(z — u,t+1)|%dx
- [ [ 1@oprds, (61)
R2

C(u) ://R2 flx —u,t+ 1) f(z,t)’dz,(62)

minimisation of J(u) is achieved by maximisation of
C(u). The functionals J(u) and C(u) are convex and
concave functionals, respectively. Therefore, we can
apply the multi-resolution method to minimise J(u).
Moreover, if the motion satisfies appropriate condi-
tions similar to these derived in the previous section,
the algorithm generates the converging sequence.

Same as warping in the algorithm, for the compu-
tation of d,,—1, we compute

d,_1 = argument(max C,_1(d)), (63)
where
Cry = // fa(n-—l) (Cl:,t)Wunf($ —-d,t+ l)dil:
R2
(64)

In the correlation-based method, the maximum of
the C'(u) is searched by decreasing the size of the win-
dow. This is a multi-resolution strategy. In this paper,
in stead of controlling the size of the windows, we pro-
pose controlling of the resolution of images [5].

The multi-resolution analysis in this paper is valid
for feature extraction from images, if the feature for ex-
traction is the solution of a convex optimisation prob-
lem. Therefore, we have the next assertion.

Assertion 1 If a feature for pattern analysis is the
solution of e unimodal optimisation problem, it is pos-
sible to construct a multi-resolution algorithm which
guarantees the convergence on a sequence of solution.
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Furthermore, if the energy functional of a discrete
problem satisfies unimodality, it is possible to com-
puter the minimum as the solution using appropri-
ate discrete optimisation technique [6]. For instance,
graph-cut solves optimisation problems in early vision
expressed as attribute graph labelling [6].

7  Conclusions

We have introduced a class of multi-resolution opti-
cal flow computation algorithm as extensions of the
Lucus-Kanade method with the pyramid transform.
These algorithms are a combination of variational
method and multi-resolution analysis of image. We
have shown the convergence property of the algorithms
for a condition.

In this paper, we accepted that the Lucus-Kanade
method is a relaxation for the variational energy min-
imisation. However, the approximation ratio of Lucus-
Kanade method to the variational energy minimisation
is not mathematically shown.
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(e)

Figure 3: Results (a), (b) Image Sequence Marble
Block. (c¢) The Classical Pyramid Method. (c) Al-
gorithm 1. (e) Algorithm 2.
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(d) (d)

(e) @

Figure 4: Results (a), (b) Image Sequence Yosemite. Figure 5: Results. Real Image Sequence captured by

(c) The Classical Pyramid Method. (d) Algorithm 1. @ Robot. (¢) The Classical Pyramid Method. (d) Al-
(e) Algorithm 2. gorithm 1. (e) Algorithm 2.
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