2007—CVIM—160
20077974

FEFEN SR (42)

IPSJ SIG Technical Report

W

YNVF Tz = ANy akFELK
WENRN—AATY =7 NFRFIE

7S5y Jx VT A YRA HEAE s
BERBEARYE KER BEY AT AEFEN

HoE L FEBRABINLEENS, FIRHRTEIILRA TV V2 HBRATIEHREEERTS. BEFH
TRATY2I MR BROEESERLEELT, ILEEBRIACOEBEZERPLBRINTVELEX, UTD4
T7x—AEFCEENOA TV P2 EFWICHETS. (1) E<ORGEERALE 7S5 ARIILTHRSE2RET 5.
Q) HHINABEEEEECI>THHEUTIRMVNITITSE, 3) EETIHAREIIARZILTATI VY M
MEMBTS. (4) EREBFELU ATV VEREBRROSEA TV AR LTHIETS. BEVATAL
Tk, EED4 ATy TEIRTNY VaBEEECTHESERTS. B2, BHO 3 7 = — Xk LSH(locality-sensitive
hashing) D& 582 —2Z7) v REFIZBIZNY Va2l k> THBEXN, B4 72— AEBEDONY V2ild>TE
HIND., ZOXIIIATV I PRRIEBIIEAARL =3 VBN Y VaBiBOATERTE S WaE%2 R LA
RPREFHEORETHS. AFERNY YaGBHUNHALRNAD, BRICEETES. X5, FXavE—X
v MNEADOEELAERBREEREVOT, 4 72— ATREE, FABEHIIHLTONAMNERA 7Y 27 b 2XR
TE5. ZRIZLVBRFHEOENELRT.

Component-Based Automatic Object Discovery
Using Multiple Phase Hashing

Gibran Fuentes Pineda, Hisashi Koga, and Toshinori Watanabe
Graduate School of Information Systems
University of Electro-Communications

Abstract This paper proposes a component-based method to discover objects automatically without examples
from segmented images. Our approach deems an object as combination of components, where each component
consists of near pixels with the same color. The object discovery is realized in four phases: (1) discovery of com-
ponents by gathering close pixels with the same color, (2) labeling of components by gathering components with
similar attribute values, (3) discovery of object candidates by gathering close components, and (4) determination
of valid objects among candidates, such that if the same kind of object candidates appear multiple times, they
are regarded as meaningful objects. The primary contribution of this approach is to demonstrate that several
essential functions in object discovery can be implemented only by hashing techniques. Especially, the first three
phases rely on a hashing on Euclidean space like locality-sensitive hashing. The final fourth phase uses standard
hashing technique. Since the algorithm only uses hashing techniques, it is easy to implement. Our system is
robust against various parameters (rotation, translation, etc). The experimental results under different scenes
and patterns present the validness of the method.
1 Introduction structed from examples given a priori. In the neu-
ral network, a computer maintains the knowledge
acquired by learning image database. In the object
recognition systems, the models are created manu-
ally in the sense that the target objects are teached
from examples, which seems not likely to be scal-
able in the future when we are forced to deal with
extremely large image databases. Hence, the pur-
pose of our research is the automatic acquisition of
models from given images.

In order for computers to discover objects, the ob-
jects should be modeled by some means so that
computers can handle them. For example, an ob-
ject may be represented as a graph which describes
the interrelation between its components and the
graph matching is used to detect objects. Instead,
feature vectors are often computed from images and
the similar objects are identified by the distances
between their feature vectors. While this example

associates the models in computers with the actual
objects explicitly, there are some examples in which
the association is rather implicit. In the Bayesian
inference method, a statistical hypothesis is con-

1.1 Outline of the paper

In this paper, we present a component-based sys-
tem to discover objects from segmented images by

—265—

only using hashing techniques. Our approach deems
an object as combination of components, where
each component contains different attributes (color,
size, etc) and consists of near pixels with the same
color. The object discovery method is divided in
four phases: (1) discovery of components by gath-
ering close pixels with the same color, (2) label-
ing of components according to their attributes, (3)
discovery of object candidates by gathering close
components, and (4) determination of valid objects
among candidates, such that if the same kind of
object candidates appear multiple times, they are
regarded as meaningful objects. The primary con-
tribution of this approach is to demonstrate that
several essential functions in object discovery can
be implemented only by hashing techniques. Es-
pecially, we introduce a hashing on Euclidean space
like locality-sensitive hashing. This technique is uti-
lized in the first and third phases to gather near
points and components respectively whereas in the
second phase to gather similar components under a
single class. The final fourth phase is carried out by
normal hashing. Throughout this work, we assume
that segmented images are given as input to the
system, possibly as result of a preprocessing phase
composed by segmentation and quantization.

We strongly believe that the elemental functions
of pattern recognition can be consistently imple-
mented by hashing techniques, which indicates that
it is possible to adapt it to different pattern recog-
nition problems. Because our approach is a kind
of component based object recognition and does
not examine the rigorous location relation between
components, the same kind of objects are identified
as such robustly against rotation and slide opera-
tions.

In the remaining of Sect. 1, a brief review of the
related work is presented. In Sect. 2, the hashing
technique for finding approximated near neighbors
that motivates our work is introduced. Sect. 3 ex-
plains how to cluster near neighbor points obtained
by hashing. After that, we describe our automatic
object discovery system in detail in Sect. 4. In
Sect. 5 the evaluation result of our system is re-
ported. Sect. 6 mentions the conclusion and the
future work.

1.2 Related Work

About the automatic acquisition of models, find-
ing generating grammars from texts are known as
the grammatical inference in literature [2]. How-
ever the extension of this approach to images has
not succeeded yet due to the wide variety of objects.
With respect to the component-based object recog-
nition, some previous results are known in which
the recognized objectives are human faces [7] and

y
5
Hash Value Hash Value
() (11
y=3
Hash Value Hash Value
(00) (10)
L R
A|B
0 x=2 5 X

Figure 1: Space partition by a hash function in LSH

body [4]). In both cases, positive and negative ex-
amples are given to train SVM’s (support vector
machine). Similarly, some probabilistic approaches
[8][6] attempt to learn object models by employing
unsupervised training of given examples.

2 Locality-Sensitive Hashing

LSH [5] is a randomized algorithm for searching
approximated nearest neighbor points for a given
query point ¢ from a set of points P in a high-
dimensional Euclidean space. LSH uses a hash func-
tion satisfying the property that near points are
stored into the same entry (bucket) with high prob-
ability and narrows the range of search for the near-
est neighbors. In addition, LSH prepares multiple
hash functions to reduce probabilistic failure. We
explain this mechanism in detail from now on.

Let p = (%1,%2,...,%4) be a point in a d-
dimensional space. where the maximal coordinate
value of any point is limited to be less than a con-
stant C. We can transform p to a C'd-dimensional
vector v(p) = Unary(z;)Unary(zz)--- Unary(zg)
by concatenating unary expressions for every co-
ordinate. Here Unary(z) is a sequence of x ones
followed by C — = zeros. In LSH, the hash value
is computed by picking up k bits randomly from
these Cd bits and concatenating them, where & is
a parameter of this algorithm. In a word, this pro-
cess corresponds to cutting the d-dimensional space
into cells by k hyperplanes. Fig. 1 illustrates a two-
dimensional case such that C = 5 and k = 2. The
hash value of each point is shown, when the second
bit (i.e. the line z = 2) and the eighth bit (i.e. the
line y = 3) are selected from the total 2x 5 = 10bits.
This figure shows that near points tend to take the
same hash value. As k becomes large, remote points
are less likely to take the same hash value because
the sizes of generated cells grow small. We refer to
k as the number of sample bits hereafter.

By contrast, depending on the result of space di-

—266—

vision, near points may take different hash values
(e.g. point A and point B in Fig. 1). To exclude
this failure, multiple ! hash values hy, hg,- - hy are
prepared in LSH, expecting that two points close
to each other will take the same hash value at least
for one hash function. However, when ! becomes
large, the increase of overhead in computing hash
functions and memory consumption should be cared
about.

After all, the procedure to find the nearest point
to ¢ from the set of points P is summarized as fol-
lows.

1. For each point in P, [hash values are com-
puted. As the result [hash tables are built.

2. Similarly, [hash values are computed for q.

3. Let P; be the set of points in P classified into
the same bucket as g on the hash table for h;.
In LSH, the points in P, UP, U--- U P, be-
come the candidates for the nearest point to ¢.
Among them, the nearest point to g is deter-
mined by calculating the distance to g actually.

3 Hash-based Clustering

This section explains our clustering algorithm that
makes use of the hash tables. This algorithm plays
an important role in our system for object discovery.
We remark that the description in this section is
only conceptual and not necessarily accurate. This
is because we add some modification to LSH later,
though the explanation assumes the original LSH
here.

Our algorithm is motivated the subsequent obser-
vation about LSH: On one hand, by increasing the
number of sample bits, points stored in the same
hash bucket will become close to one another. On
the other hand, by exploiting multiple hash func-
tions, near points will be stored in the same hash
bucket at least on one hash table. Supported by
this idea, our clustering algorithm adopts the next
rule.

Rule 1 Points stored in the same hash bucket at
least on one hash table are classified into the same
cluster.

Let us illustrate this with Fig. 2. Lets assume we
have two hash functions denoted by h; and hs. Sup-
pose that the points e and ¢ enter the same bucket
on the hash table of h; and that the points b and
¢ enter the same bucket on the hash table of hj.
Then, even if a and b are distributed to different
hash buckets by k4, a, b and ¢ form a single cluster
altogether. Therefore, like the single-linkage clus-
tering algorithm [1], our algorithm has the ability
to discover clusters in various shapes.

bucket for A1
[
o b
ec
bucket for h2

Figure 2: Our clustering algorithm

4 Automatic Object Discov-
ery Using Hashing

One successful tool for automatic knowledge dis-
covery is clustering which can classify data without
prerequisite information. For the above reasons, we
rely on clustering to achieve the discovery of objects
from segmented images. In designing this scheme,
we take notice of the next natural principle that:

o An object is formed from multiple components
that are close to one another.

¢ A component consists of multiple adjacent pix-
els.

Motivated by these principles, we designed the dis-
covery system to be performed into four fundamen-
tal phases described below.

1. Discovery of components by gathering near
pixels with the same color.

2. Classification of components according to their
attribute values. Each class is symbolized by a
label ID.

3. Discovery of object candidates by gathering
close components.

4. Determination of valid objects among candi-
dates such that, if the same kind of object
candidates appear multiple times, they are re-
garded as meaningful objects.

In Fig. 3 we illustrate the block diagram of our
system. The remarkable feature of our system is to
use the hashing technique through all phase, aiming
to be easily implemented. More precisely, the first
three phases utilize of the locality-sensitive hashing
that categorizes near points on the feature space
into the same cluster, and then the fourth phase by
standard hashing technique.

4.1 Discovery of Components

For each color, by applying our hash-based cluster-
ing to the (x,y) coordinates of pixels of that color,

—267—

INPUT IMAGE

OBJECT DISCOVERY

DiSCOVERED CLASSES
AND INSTANCES

[y

—____——ll

DETERMINATION
OF VALD
OBJECTS

+

CLASSIFICATION AND
LABELING OF
COMPONENTS

1
|
|
|
) |
|
!
1
|
|

SEGMENTATION

DISCOVERY
OF OBJECT
CANDIDATES

+

DISCOVERY
OF OBJECT
COMPONENTS

QUANTIZATION

| 4

Discovery Stage

Figure 3: Overview of the Object Discovery

original Image Derived
{set of pixels) Components
Hashing
red pixels
blue pixels

Hashing

Figure 4: Extraction of object candidates

we can get near pixels of the same color as a single
cluster. As the result, components of objects are
derived. See Fig. 4. In this example, three com-
ponents corresponding to “a roof of house”, “a wall
of house” and “a window of house” respectively are
derived from the source image deemed as a simple
set of pixels.

We define deterministic hash functions in this
phase by selecting the sample bits at equal inter-
vals of a parameter I. Let X002 (Yinaz) denote the
number of columns (rows respectively) of the given
image. Then XM}‘”—YM sample bits are chosen in
total for a single hash function and we can prepare
I hash functions so that the sample bits of the I
hash functions do not coincide one another at all in
the following way.

Locations of sample bits

1st hash function: 1,7 +1,27 +1,---
2nd hash function: 2,7 +2,27 +2,---
I-th hash function: [I,21,31,---

Note that, since the locations of the sample bits
are slided by one dot both in the direction of the z
axis and the y axis, the resulting cells are slided in
the direction of a vector (1,1).

Now we discuss the accuracy of our strategy in
discovering components from the next two view-
points, that is, (I) two separate components are
not extracted as a single component falsely and (II)
a single component is extracted without separated
into pieces.

About the first viewpoint, as the cells generated
by our hash functions always become squares with
edges of length I, the next theorem holds. This
theorem claims that the parameter I specifies the
exactness of our algorithm.

Theorem 1 If the minimum distance between two
separate components of the same color exceeds /21,
these components are not extracted as a single con-
nected component falsely by our algorithm.

As for the second viewpoint, for any point (X,Y),
all of the four points (X +1,Y), (X -1,Y), (X, Y +
1) and (X,Y — 1) are guaranteed to be stored in
the same cells as (X,Y) for some hash functions.
Therefore,

Theorem 2 A single component is never divided
into multiple components falsely by our algorithm.

4.2 Classification and Labeling of
Components

Components found in the first phase are classified
and labeled according to their attributes (color,
size, etc). Thereby, similar components are gath-
ered into the same class by applying our hash-based
clustering to the attributes (size) of components.
To handle the relative difference between attributes
values, we select the sample bits in the LSH algo-
rithm at intervals proportional to its size in such
a way that we can group components with a dif-
ference smaller than a threshold fixed in relation
to their sizes as shown in Fig. 5. For example,
a; = 100 and a; = 110 are identically clustered as
a; = 1000 and a; = 1100 despite of the difference
between one an another case.

Instead of the clustering technique used in the
previous phases, the one presented in [3] is utilized.
This technique defines a cluster as a graph repre-
senting the relation between similar pairs. Thus, all
graphs are partitioned in such a way that in each

—268—

Figure 5: Selection of sample bits.

(a) (b)

Figure 6: Green components found and their con-
tour. ’

cluster there is a center and all the other nodes in
the cluster have an edge to the center.

After the labeling process, we define an order
of priority l3,ls,...,lyr among labels according to
their sizes, such that [; corresponds to the largest
size and Ips corresponds to the smallest size.

4.3 Discovery of Object Candidates

To discover object candidates, our system first com-
putes the contour of each component by the next
rule.

Definition 1 Let P = py,p2,...,pn be the set of
pizels in a component C. The contour of C is de-
fined by the subset of pizels in P with at least one
pizel in the J-neighbor different to P.

Fig. 6 illustrates the contour extraction from the
components in the left image. The contours are
shown in the right image. Then, by applying the
hash-based clustering described in Sect. 3 to the
coordinates (x, y) of all points on the contour of
each component, object candidates are found.

In Fig. 7 is shown an example of the extraction
of object candidates by gathering components with
near pixels surrounding their contours.

After all, an object candidate is depicted as a list
of classes of components.

4.4 Determination of Valid Objects

Among object candidates there can exist meaning-
less objects created erroneously. Therefore, we in-
vestigate how many times the same kind of object
appear in the image and “it is considered as a valid

Figure 7: Object candidates.

object if this kind of object is placed in the image
multiple times ”

Suppose that an object candidate O consists of
components, each of which is labeled among the set
of labels l1,ls, ...,l3. Thereby, we gather the same
kind of objects by using the next hashing function.
Let G(I;) be the number of components labelled as l;
in O, the hash value of O is formed by concatenating
each G(l;) expressed by k bits, therefore

hO) = G(L)G(l2) -~ Gllm) 1

Aiming to invalidate insignificant noise, the com-
parison for equality between object candidates uti-
lizes large components only, such that the sum of
the area of components used in comparison exceeds
80% of the total area of the object candidate they
belong to. The remaining extremely small compo-
nents are not used in comparison, if any.

4.5 Advantages and Characteristics

Owing to its architecture, our approach has some
interesting characteristics and advantages men-
tioned below.
Robustness against rotation and slide: Since
the method represents a component-based approach
and does not check the strict location relation, the
same kind of objects are ascertained to be identical
robustly against rotation and slide operations.
Robustness against noise: By ignoring small
components in comparing object candidates, our
system is able to see through the same kind of com-
ponents against small noises.
Flexibility: Since the method works in four inde-
pendent phases and manage the object attributes
separately, other approaches and/or attributes can
be easily incorporated to it.

In addition, our method is also applicable to the
object recognition problem in which already-known

—269—

3 I8

gtﬁ u,
1 f s
1,‘-.,‘ () AAR

3}

ol a?® %S

Figure 8: Experimental results: original and seg-
mented images (rows 1 and 2) and discovered ob-
jects class 1 and 2 (rows 3 and 4).

objects are searched from a given image. All we
have to do additionally is to compute the hash value
of the known objects by evaluating the hash func-
tion used in the fourth phase. Then, by examining
the hash bucket storing it, we can find the same
object from the image as the known objects. Thus,
our approach enables the unification of the knowl-
edge acquisition process and the pattern recognition
process.

5 Experimental Results

The input images were first preprocessed (seg-
mented and quantized) by using external programs.
In the first and second rows of Fig. 8 the original
image and the segmented image are presented re-
spectively. Third and fourth rows show the classes
and discovered object instances. The image consist
of five examples with different classes of objects and
instances, in the examples (a), (b), and (c) the im-
ages are artificial ((c) was created from a image se-
quence) whereas (d) and (e) are natural. As we can
appreciate, in all examples our system succeeded
discovering objects and classes against slides and
small noises. In Fig. 8 (c), we can clearly notice
the robustness of our method against rotation. Ex-
ample (b) is an interesting case which shows that
the system can be successfully and easily extended
to image sequences.

6 Conclusion

Essential functions required in the object discovery
can be easily implemented by only using multiple

phase hashing. The characteristics of the algorithm
due to its architecture based on components and
hashing techniques, make it very flexible, robust to
various parameters (rotation, translation, etc) and
easy to implement.

One of the future directions of this work is to use
attributes except the size. Another direction is the
automatic disposal of the background, and it is also
very important to research how to obtain segmented
images from real original images.

References

[1] M. R. Anderberg. Cluster Analysis for Applica-
tions. Academic Press, 1972.

[2] C. M. Cook, A. Rosenfield, and A. R. Aronson.
Grammatical inference by hill climbing. Infor-
mational Sciences, 10:59-80, 1976.

[3] T. H. Haveliwala, A. Gionis, and P. Indyk.
Scalable techniques for clustering the web. In
Proc. of the Third International Workshop on
the Web and Databases (Informal Proceedings),
pages 129-134, 2000.

B. Heisele, T. Serre, M. Pontil, and T. Poggio.
Component-based face detection. In Proceedings
of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 1,
pages 657-662, 2001.

[4

e}

[5] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of di-
mensionality. In Proc. of 30th ACM Symposium

on Theory of Computing, pages 604613, 1998.

—

[6] D. Liu, D. Chen, and T. Chen. Latent layout
analysis for discovering objects in images. In
Proc. of the IEEE International Conference on
Pattern Recognition (ICPR’06), pages 468-471,
2006.

{7

—

A. Mohan, C. Papageorgiou, and T. Poggio.
Example-based object detection in images by
components. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(4):349—
361, 2001.

[8] M. Weber, M. Welling, and P. Perona. To-
wards automatic discovery of object categories.
In Proc. of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR’00), volume 2, page 2101, 2000.

—270—

