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Abstract This paper explores the effectiveness of using three image features instead of synthesized human motion data by
using the real video sequence. We have compared three algorithms that recognize the observed action generated by an
unknown person, who is not included in the database. We tested the 4 methods using 3 single image features with 4 human
actors and 5 classes of action. In addition, we proved all the three method are useful for the human action recognition.
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1. Introduction

During the last two decades, detecting and recognizing
human motions from video sequences is very important
and became popular in the field of motion-based
recognition. Although the field of action and activity
representation and recognition is relatively old, it is still
challenging. We can see that the pattern recognition and
computer vision community have demonstrated a great
and growing interest in human motion analysis from all
the above activities. It means that human action
recognition is still immature research field area. Thus,
we are challenged to find a new method.

The aim of our research is to accurately classify the
action being performed by an unknown human from real
video sequence using a computer vision based approach,
where the unknown human is not included in the database
used for the classification process.

Our group has developed a tensor decomposition based
method to modify Vasilescu’s[1] tensor decomposition
approach, But these methods have limitation that only
works on motion capture data or synthesized human
action sequences. Concerning the application needs,
motion recognition technique should work with real
images, because putting magnetic sensor to a human to be
observed not only disturb the person but also seem
unnatural. Therefore, in this paper we try to uses real
human motion video sequences.

To verify the effectiveness of the features and motion
recognition methods, the three kinds of image features
(It-s feature, projection feature and mesh feature) and
four recognition algorithms are testified by using Matlab.

2. The overview of approach

To clarify both the effectiveness of different kind of
image features, we extract image features from real video
sequence, where the image features should represent
different human body shapes quantitatively.

This thesis explores three kinds of image feature, i.e.,
Lt-s feature, projection feature and mesh feature. We test
all single feature to find out which image feature can
bring us the best results of the experiment.

We divide our approach into three steps. The first step
is pre-processing, which is carried out before computing
the features. The second step is extracting the image
features (Lt-s, Projection, Mesh) based on the human
silhouette and bounding box. The third step is the
recognition process using different recognition algorithms,
which we want to compare in this research.

Our approach is depicted in fig.1.
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Figure 1. Conceptual Model of our Approach
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3. Image Features

In this section, we describe the images features

compared in our research.

3.1. Lts-feature

Lt-s feature is a set of the distance between the
centroid of the human silhouette and each contour pixel
of the silhouette. Basic concepts of Lt-s feature are as
follows: video sequence is acquired, and then each frame
extracted. Silhouette image is obtained by subtracting the
original image from background image and thresholding
the subtracted image. The center of mass C is obtained
by computing the mean of white pixel in the human

silhouette.

To obtain the distance d; between centroid and each
pixel along image contour is in Fig. 2, we start obtaining
P, as start point by scanning a pixel from the centroid
vertically. Let A be a contour pixel; then, Lt-s = CA +
P,A. By computing the distance at each contour pixel, we
obtain the Lt-s curve. Then, the Lt-s data in each frame
are stored as feature vector. This process is continued
until the end of all frames of video sequence.
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Figure 2. Method to Obtain Lt-s Feature Data.

3.2. Mesh feature

To get mesh data, as shown in Fig. 2, suppose we have
MxN pixel in the bounding box Aj; then divide A into
The size of each sub-block is M/m by
N/n pixels. On each sub block, the ratio of human

mxn sub- blocks.

silhouette pixel’s number over the number of pixels in the
Let ag; (i=1,...m,j=1...n) be the
ratio of the sub-block i. Then, f(a;1,213....,25,) is the

sub-blocks is computed.

mesh feature vector.
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Figure. 3. Method to Obtain Mesh Feature Data.

3.3. Projection feature

To obtain projection feature data, suppose we have the
size of bounding box is MxN pixels. Then, as shown in
Fig. 3, in each horizontal line, the number of human
silhouette pixels is counted. Similarly, in each vertical
line, the number of silhouette pixels is counted.
Suppose Phi (i=1...N) and Pvj (j=1,..M)
number in i-th horizontal line and in the j-th vertical line,
respectively. Then, fp=(Ph;,Ph,....Phy, Pv,,Pv,...Pvy) is

are the pixel

the projection feature vector.
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Figure 4. Pixels Calculation for Projection Feature

4. Tensor Decomposition

Basically, tensors are a generalization of the concept of

a vector. A tensor can be considered to be a
multi-dimensional or N-way array of data and as such is
useful for the description of higher order quantities e.g.
multivariate data [2]. In this thesis, we denote vector
quantities by bold lower case letters (a, b), scalar
quantities by lower case letters (a,b), matrices by bold
uppercase (A,B), and

calligraphic letters (4 #). Generally unless explicitly

letter tensor quantities in
stated throughout this thesis i, j refer to indices (counters)
and I, J.K,L denote index upper bounds.

In multilinear algebra an Nth order tensor is written as
A e R and its elements are indexed as aj; 5, v. An
Nth order tensor has N mode spaces, for example in the
case of a matrix, when N = 2, two mode spaces exist, a
row space and a column space. In tensor terminology a
matrix can be defined in terms of a set of mode-1 vectors

(column vectors) or as a set of mode-2 vectors (row
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vectors), e.g., Column-wise mode-1 representation B =
[b;....by], where an element of the matrix Bij, has a row
index i and column index j. Considering the case of a
third order tensor 7 € X", (N = 3), three mode spaces
exist where mode- 1 corresponds to column space, mode-2
to row space, and mode-3 to depth space.

4.1 Tensor Unfolding

The main idea of a N-mode SVD derivation needs to
consider an appropriate generalization of the link between
the column (row) vectors and the left (right) singular
vectors of a matrix. To be able to formalize this idea, we
define “matrix unfolding” of a given tensor, i.e., matrix
representations of that tensor in which all the column
vectors are stacked one after the other [3].

A tensor 4 e R™=-xv can be represented in matrix
form, A, which is the result of unfolding (flattening)
the tensor along dimension » where n = [, L.... Iy
Tensor unfolding can be considered as splitting a tensor
into mode-n vectors and rearranging these vectors
column-wise to form a matrix. In fig. 5, a visualization is
presented which demonstrates how a 3™ order tensor is
unfolded along mode-1 (/;), mode-2 (1) and mode-3 (I3)
dimensions to form matrices A,y with size [; x L3, A,
with size I, x I;1; and A, with size 5 x I, 5.
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Figure 5. Tensor can be unfolded in three ways to obtain
matrices comprising of its mode-1, mode-2 or mode-3

vectors.

4.1, Tensor Decomposition
4.2.1 Singular Value Decomposition (SVD)

Principal Component Analysis (PCA) is a version of
Singular Value Decomposition (SVD), which is a 2-mode
tool, commonly used in signal processing to reduce the
dimensionality of the space and reduce noise. The
singular value decomposition (SVD) of matrix A is
represented by (4.1).

A=uwv’ 4.1

The matrix U is an orthogonal  matrix, which spans
the row space of A. The matrix V is an orthogonal matrix,
which spans the column space of A. The column
eigenvectors vectors of matrices U (likewise for V) are
orthogonal to each other, describing a new orthogonal
coordinate system for the space spanned by matrix.
The columns ui and vi of the matrix U and V are called
the left and right singular vectors. The diagonal element
wi of matrix W are called the singular values, which are
non-negative numbers in descending order, all
off-diagonal elements are zeros.

The singular value decomposition has a variety of
applications in scientific computing, signal processing,
automatic control, and many other areas.

4.2.2 Higher Order Value

Decomposition (HOSVD)

Singular

In tensor notation, the N-mode tensor & that between
tensor _Z and a matrix %, is expressed as:
B=AX M “4.2)

In terms of tensor unfolding this can be solved as:
B, =M4 4.3)

(CH )

~ 1, B IO R SN ¢ . :
Where A, "% is the resultant matrix of

unfolding tensor 7 in direction n (mode-n), tensor @& is
founded by folding matrix By, back into tensor
representation. As stated previously, a matrix has two
associated modes, a vector row space and a vector column
space.

Application of SVD to a matrix, B, results in the
decomposition of the matrix into the product of an
orthogonal column space U/, a diagonal singular value
matrix and an orthogonal row space U2, which is written
as:

B=UZU, 4.4)

Using the mode-n product in Eq.(4.2) can be defined
without the need of a generalized transpose as:

B=3xU XU, (4.5)

For tensors, standard SVD cannot be utilized, therefore
for N>2 tensor @, by extension, higher order SVD
(alternatively known as N-mode SVD) can be used. Like
SVD which decomposes a matrix into 2 orthogonal spaces
and a singular value matrix; HOSVD decomposes a tensor
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into N orthogonal mode spaces Ui, Uz, ....UN and a core
tensor 2. Using HOSVD [7] a tensor can be represented
as the mode-n product between these N orthogonal
subspaces and core tensor 2 in Eq. (4.3).

T T T T
A=2x U x U ..x U .x U (4.6)

The core tensor, Z, governs the interactions between
the subspace (mode) matrices and it is analogous to the
singular value matrix that results in standard SVD, but it
does not have a diagonal structure and is a full tensor. As
illustrated in Fig.6. HOSVD on a 3™ order tensor (N=3)
might be result in decomposing the tensor into 3
orthogonal mode spaces (U;, U, and U;) and a 3" order
core tensor (2).
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Figure 6. By N-mode SVD, N orthogonal vector spaces
associated with an order-N tensor (the case N=3 is

illustrated).

HOSVD
presented in [2] is given as:

For n=1 to N, 1) Unfold tensor, A, along dimension n
to find matrix A(n).2) Apply SVD to matrix A(n).3) Set
Un to the left-hand column space matrix of SVD. Solve

algorithm for tensor decomposition as

the core tensor using the equation:

Z=Ax U] x, U, ..x, Ul ..x, U,

N

@.1

4.2.3 Motion Tensor Analysis

Given motion sequences of several people, we define a

RNXMXT

data set tensor @, (€ ), where N (rows) is the

number of people, M (columns) is the number of action
classes, and T (depth) is the number of sequence samples.
We apply the N-mode SVD algorithm to decompose this

tensor as follows:

D=2x U x,U, x, U, (4.8)

1

By denoting U,, U,, Us as P, 4, F respectively, we get
the product of a core tensor, and three orthogonal
matrices as follows:

D=2ZX P x, 4, X, F3 4.9)

171

The people matrix in represented by

P=lpp,p,pT (4.10)

Where person specific row vectors pf span the space

of person parameters, and encode the per-person
invariance across actions. Thus people matrix P contains
the human motion signatures. The action matrix in

represented by

A= [alazn'am”'au]r (4.11)

. . T
Where action specific row vectors 4, span the space

of action parameters, and encode the invariance for each
action across different people. The row vectors of frame
matrix in represented by

F=[ff g h Y (*.12)

. T
Where specific row vectors fn span the space of

time series image features, and encode the invariance for
all actions across different people.
The tensor
B=2X, 4, X, F, 4.13)
contains a set of basis matrices for all the actions
associated with particular actions.
The tensor

C=2Zx P % F,

P (4.14)
contains a set of basis matrices for all the people

associated with particular people.

4.2. Algorithms of Human Action Recognition

Given motion sequences of several people, the database
is represented by a tensor where M (rows) is the number
of people, N (columns) is number of action classes, and T
(depth) is the number of sequence samples, as shown in
Fig.7.

Sequence Samples

Action Classcs

Figure 7. Motion Database Structure
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The observed motion sequence of unknown person is
represented by a tensor. Obviously, we do not know the
action of D unknown.

Therefore, we assume unknown's action is (je1,..,N)
one of the N actions to be recognized. all of this new
person's actions are synthesized. This process is repeated
for all the actions j = 1 through N.

The four recognition algorithms based on the database
tensor @ are detailed in the following.

4.3.1 Algorithm by using Core Tensor

As described in Section 4.1.3, using HOSVD any tensor
can be represented by a core tensor Z as indicated in Eq.
(4.8). This algorithm uses the core tensor 2 of the
database tensor O for obtaining the recognition result by
finding the best assumption for @ yknowa. However, if we
simply append the synthesized actions to the database
tensor @, the core tensors of @ and the appended tensor
cannot be compared, because the sizes of the two tensors
are different. Instead, one person's action in the database
tensor @D is replaced by the unknown action to get the
synthesized action data @y, so that the core tensor of D
and D have the same size. This replacement is repeated
for all the persons (M in total) in @, and the core tensor is
computed for each time. The difference between the new
and original core tensors is obtained by computing the
summation of the absolute values of element-wise
differences. The replacement that gives the minimal
difference could correspond to the case in which the
synthesized actions are very similar to the replaced
actions. Thus, the assumed action for this particular

replacement is determined as the recognition result.
4.3.2 Algorithm by Using Vector Distance Measures

In this algorithm we do not use the core tensor for
action recognition, to avoid computing the core tensor
M x N times. Instead, the motion vector A(m,ny in database
tensor & can be compared with the unknown action’s
vector a, (we assume the unknown action is one of the N
actions to be recognized.), because the two action vectors
have the same size. The Euclidean distance between two
vectors x,y is defined as:

Dis(a,,a,,) =, ~a_,[| = min (4.15)

Dis(a ,a_,) that gives the shortest distance in Eq.(4.15)

could correspond to the case in which the motion vector
in the database is very similar to the unknown action.
Thus, the assumed action is determined as the recognition
result.

4.3.3 Algorithm by Minimum-Distance
Classifiers

using

In general, an action class, w,is characterized by its
mean vector m; . That is, we use the mean vector of each
population of training vectors as being representative of
that class of vectors:

1

m=—>x (;=12..W)
N o

(4.16)

Where N; is the number of training action vectors from
class = and the summation is taken over these vectors; W
is the number of action classes. One-way to determine the
class membership of an unknown action vector x is to
assign it to the class of its closest prototype. We then
assign x to class w; if d(mj,x) is the smallest distance.

d(m ,x)=min, {d(m ,x)} (4.18)

That is, the smallest distance implies the best match.
Suppose that all the mean action vectors & are

organized as columns of a matrix space 4 by flatten the
database tensor @ with action-mode. Then computing the

distances from unknown person’s action vector a, to all
the mean action vectors a is accomplished by using Eq.

4.16).

4.3.4 Algorithm by using Nearest-Neighbor of Core

Tensor

This algorithm uses Nearest-Neighbor classification
method, which is one of the most fundamental and simple
classification methods, to work out classification of all
the training actions. Then we use the core tensor concept
to find out recognition result without using the Euclidean
distance. For this aim, firstly we suppose that all the

mean action vectors a are organized as columns of a

matrix space 4 by flatten the database tensor @ with
action-mode. Therefore, we get average motion tensor 7,
and solve for the core tensor 2,

For each mean motion vector @ in tensor 7 replace with
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unknown action signature to get synthesized action data

An and solve for the core tensor Z,,. This replacement is

repeated for all mean motion vectors a in tensor _4,

fL]

and the core tensor is computed for each replacement. The
difference between the new and original core tensors is
obtained by computing the summation of the absolute
values of element-wise differences. The replacement that
gives the minimal difference could correspond to the case
in which the synthesized action classes are very similar to
the replaced actions. Thus, the assumed action class for
determined as the

this particular replacement is

recognition result.

5. Experimental Results
5.1. Data Acquisition

For the recorded video

sequences containing five kinds of human actions:

evaluation, we twenty
walking, jumping, crossing arms in front of body, sit
down and get up, waving arms over head, performed by
four actors. The human actors consist of three of young
people and an aged people. We choose four different
human models, because these human actors have different
physical characters, they also perform actions with
different styles both in form and speed. Therefore, there

are more realistic data for our experiment can be provided.

We used a static color CCD video camera with 30fps
frame rate, which is positioned on one side of a 5 meters
long walkway. The sequences were down sampled the
spatial resolution of 240 X320 pixels and have a length of
two seconds in average. The programs used MATLAB
R2006a to write and performed the applications for
realizing the motion recognition methods, which we need

to compare.

5.2. Recognition Results

After we create all the tensor databases, then we
continue to test the recognition process step. In this test

we use “Leave one-out” validation.

Table.l1 Comparison of the Accuracy among 4 different

Motion Recognition Methods

. Nearest
ethod Core Vector Minimum- Neighbor
Distance Distance
Tensor M Classifi Core
Features easure assifiers Tensor
Lt-s 85% 85% 85% 65%
Projection 60% 80% 80% 65%
Mesh 90% 85% 95% 70%

6. Conclusion

From all the recognition results above, we have some

notes for conclusion.

@ Each of the four algorithms by using the above
database in our experiment convergent to a desired
accuracy. It also demonstrated that all of these algorithms
and the approach are effective and efficient to human
motion recognition. However, it also shows that the
method based on Core Tensor was not robust to all the
image feature data.

@ The image features (Lt-s, Projection, Mesh) we used
in the experiments are useful for the motion feature data.
The mesh feature has the most significant results for
recognizing front-view motion image than the two others.
However, those experimental results are limited in this set
of data above.

& We also found that without Core Tensor, the other
two methods, that we used can shorten processing time so

that recognition process can work on real time.
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