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Abstract - We propose a novel evidence accumulation framework that accurately estimates the positions
of humans in a 3D environment using camera networks. The framework consists of a network of distributed
agents having different functionalities. The modular structure of the network allows scalability to large
surveillance areas and robust operation. The framework does not assume reliable measurements in single
cameras (referred to as ’sensing agents’ in our framework) or reliable communication between different
agents. There is a position uncertainty associated with single camera measurements and it is reduced
through an uncertainty reducing transform that performs evidence accumulation using multiple camera
measurements. Our framework has the advantage that single camera measurements do not need to be
temporally synchronized to perform evidence accumulation. The system has been tested for detecting
single or multiple humans in the environment. We conducted experiments to evaluate the localization
accuracy of the position estimates obtained from the system by comparing them with the ground truth.
We also developed a system capable of tracking and interacting with humans in motion to support human
activities.
keywords: camera networks, distributed processing, evidence accumulation, uncertainty reduction.

1 Introduction

The largest advantage of multi-camera surveillance
networks over single camera systems is their abil-
ity to combine information from different cameras
into scene-level representations which give an en-
hanced awareness of the monitored environment.
This ability depends critically on how the informa-
tion is combined from the different cameras. We ob-
viously need an evidence accumulation framework
that is well-principled with regard to combining the
uncertainties in the information gleaned from each
camera. We also want such a framework to scale
up easily, as more and more cameras are added to
the network. As the camera network grows large, it
is extremely difficult to synchronize the image cap-
ture by multiple cameras. Therefore, the framework
should also be able to combine information from dif-
ferent cameras taking into account the uncertainty
in image acquisition times. The goal of this paper
is to present such an evidence accumulation frame-
work suitable for practical scalable systems.

Our proposed framework consists of a hierarchy
of agents. The lowest level of this hierarchy has
’sensing agents’; they perform extraction of candi-
date shapes and features. Higher levels of the agent
hierarchy deal with 1) local accumulation of sup-
porting evidence for the shape/feature hypotheses
that are output by the sensing agents; 2) aggrega-
tion of the hypotheses at more global level. Note

that the candidate shapes/features that are out-
put by the lowest level of the agent hierarchy suf-
fer from high false-positive rate because of complex
backgrounds, occlusions, and rather limited fields of
view of individual cameras (Figure 1). It is the ac-
cumulation of evidence at the higher levels of the
hierarchy that progressively eliminates such false
positives and provides accurate estimation of hu-
man positions in a monitored environment.

Many evidence accumulation schemes have been
proposed in the multi camera visual surveillance lit-
erature [2], [12], [3], [6], [11], [8], [10], [9]. In [2]
and [5], a person’s 3D location is estimated by tri-
angulation of 3D rays directed along the line join-
ing camera focal points and the person’s centroid
in 2D image planes. Bayesian networks have also
been used for multi-camera evidence accumulation
([6, 4, 13]). In [6], the Bayesian network fuses inde-
pendent observations from multiple cameras by it-
eratively resolving independency relationships and
confidence levels within the network. [14] addresses
the problem of selecting the best camera position
for extracting the desired human motion informa-
tion. The human position, body orientation and
body-side estimation is performed by determining
camera viewpoints where these features can be eas-
ily estimated and maximizing the joint probabilities
of observations obtained from multiple cameras.

Our work reported here takes a different ap-
proach to estimating multiple humans, by constitut-
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Figure 1: Images from a multi-camera test sequence with complex background. They were acquired at approwi-
mately same time by different cameras. Red circles depict the detected head candidates (both true heads and false
positives). Even though there are large number of false positives due to complex background, the proposed evidence
accumulation scheme generates accurate 8D head positions.

ing a framework of agents with heterogeneous char-
acteristics. These agents cooperate to estimate 3D
human positions in real time, followed by determi-
nation and visualization of their trajectories. This
modular agent-based processing architecture makes
the proposed framework well-suited to large-scale
surveillance applications since new agents can be
integrated seamlessly. The evidence accumulation
scheme works well even when different cameras are
not synchronized in image acquisition times. This
paper is an extension of our earlier work on cam-
era networks [7] by more intensively analyzing the
system performances through multiple human de-
tection and tracking experiments. In the following
sections, we will describe our proposed architecture,
and will then show the experimental results to ver-
ify the performances.

2 Problem Description

Our overall goal is to develop a cooperative process-
ing architecture for detecting and tracking multiple
humans in an environment and visualizing their tra-
jectories. The work presented in this paper solves a
sub-problem of the human tracking problem: First
to detect the human positions in the environment
using individual cameras and, then to effectively
combine their information to achieve higher local-
ization accuracy of estimated positions and the re-
duction of false detections. In solving the detection
and localization problem, we have made the follow-
ing assumptions:

e The environment is defined in terms of the
world coordinate frame.

o All cameras are calibrated with respect to the
world coordinate frame.

o Image capture in different cameras is not syn-
chronized, although images are acquired with
time stamp information.

o Multiple humans may exist in the environ-
ment viewed by the network of cameras.

Cluster #3 Cluster #1

@ '

Cluster #3 Cluster #1

Cluster #2 Cluster #0

Cluster #2

Cluster #0
(a) (b)

Figure 2: Camera configuration for evidence accumula-
tion framework: There are 12 cameras grouped into four
clusters each monitoring a small part of a rectangular
area.

3 Agent Based Architecture

The cooperative processing architecture consists of
the following agents:

e Sensing Agent

o Cluster Leader Agent
o Monitoring Agent

e Visualization Agent

These agents are software processes running on PC’s
that are connected by wired or wireless network and
multiple agents may run on a single PC. The agents

—118—



[Visualization|
Agent |
trajectories

L
validated position estimate:

[ Ciuster ]
| Head#s |

osition

position
estimates

Cluster :
Head#5 | position
estimates

. Cluster
| _Head #3

measurgment:

| [ss] [s] |

Sensor Agents (Sensor Nodes)

(a) Logical view

, |
4L Elc

Alert and Head Position

Visualization
et

o tra_tectones T PGH PCH?
. PC#0 ymms‘ : . HunanPo:turel :
Agent (% ,.Agen(w(zb) Agent #1(3D) | -
validated M
position Result of Analysis
estimates !
{ 'T:l"uaﬁr“““‘i‘
| Leader#d | -
position
estimates

© [ Cter ]
- Lisaderss |

{ Cluster
{Leader#2 | '
| mehsufements |
(p se eptimites)

=

1 ] o

(b) an implementation example

Figure 3: Agent based hierarchical processing architecture for human detection.

may also control hardware such as cameras for im-
age capture or display devices for visualizing the
trajectories of detected humans. Figure 3(a) shows
the logical view of an agent based architecture and
Figure 3(b) shows an implementation example, ex-
plaining how the system is currently set up in our
laboratory.
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Figure 4: Data transmitted from a sensing agent to the
cluster leader. Cluster leaders also transmits the data in
the same format, which ensures a reconfigurable agent
architecture.

3.1

The sensing agents are situated at the bottom of
agent-based hierarchy. Ideally, in distributed sen-
sor networks, sensor nodes consist of sensors, a pro-
cessing module and a communication module. In
our current setup, we simulate a sensor node by
a sensing agent. It is a software agent running
on a PC, that utilizes an IEEE 1394 firewire cam-
era for image capture, performs local processing
on the acquired images and sends some data to
other agents (specifically the cluster leader) at the
next higher level of hierarchy. The images are cap-
tured with time-stamp information. Local process-
ing involves detecting human-head like object re-

Sensing Agent

gions (also known as ’head region candidates’) in
the scene using the output of a background subtrac-
tion algorithm. Since sensing always involves false
detections, a sensing agent is not expected to always
successfully detect the human heads. Its responsi-

bility is only to detect the head region candidates.
In the following discussions, we will therefore refer

to single camera head region candidates as ’mea-
surements’.

The sensing agent then sends a mes-
sage including the measurements to cluster leader.
Figure 4 shows the data structure that the sens-

ing agent sends to a higher level of agents including

cluster leaders.

3.2 Cluster Leader Agent

A cluster leader implements our evidence analysis
and accumulation algorithm to unify the informa-
tion received from lower level agents in the agent
hierarchy. Note that the hierarchical organization

of the agents shown in Figure 3(a) allows for the

node below a cluster leader to be either a sensing
agent or another cluster leader agent. A cluster
leader agent receives messages containing measure-
ments or position estimates from lower level agents
and uses them to accumulate evidence for accurate
3D position estimation. There are two types of po-
sition estimates:

1. Candidate position estimate (CPE): This is
generated in the cluster leader as a result of
integrating one or more measurements received
from different sensing agents. It is represented
by (P, S), where P is the mean vector repre-
senting the candidate position and S is the
covariance matrix representing position un-
certainty. p and S are specified in 3D world
coordinates.

2. Validated position estimate (VPE): When a
CPE is able to accumulate evidence from three
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or more measurements, it is said to be vali-
dated and is then called as a validated position
estimate (VPE). The integration and valida-
tion of position estimates is performed using
Mahalanobis distances and weighted recursive
least squares technique [1]. A VPE is also de-
noted by (P, S). A CPE may or may not rep-
resent an actual human head depending on
how many measurements are integrated into
it but a VPE represents the position of actual
human head.

Once the VPEs are generated, “unnecessary” mea-
surements are eliminated within the cluster leader,
to avoid data redundancy and to ensure that each
measurement is associated with a unique VPE. The
cluster leader then sends message to a higher-level
cluster leader to notify the VPEs and also the CPEs
which it could not validate. If a cluster leader at
the topmost level can not validate any of the CPEs,
they are discarded. This cluster leader sends all the
VPEs to Monitoring agent and Visualization agent
for generating the trajectories and visualization of
detected human heads. Note that the cluster leader
maintains data structures for keeping track of the
CPEs and VPEs. The data structures are exactly
the same as those for sensing agents as shown in
Figure 4, which therefore ensures the reconfigura-
bility of our cluster leader architecture.

3.3 Monitoring and Visualization
Agents

The Monitoring Agent is responsible for monitoring
the object/humans found in the environment by as-
sociating tracking labels with such objects and also
generating trajectories of such objects in motion.
The Visualization Agent provides a user interface
for visualizing the 3D environment along with the
objects/humans found.

3.4 Connectivity and Communication
Issues

In a distributed network (wired or wireless), relia-
bility or lack thereof is an important issue. We do
not wish to assume a reliable network and we want
our framework to allow for fault conditions such as
some sensor nodes going down or some communi-
cation links failing during a detection and tracking
task. To realize an unreliable network, we use the
UDP messaging protocol rather than the TCP pro-
tocol. A cluster leader integrates the information
received from the lower level nodes.

3.5 Configuring Agent Hierarchy

Depending on the number of sensing agents in the
camera network, there may be one or more cluster

leaders and they may be arranged in multiple layers
of the agent hierarchy. There is a trade-off involved
between the numbers of levels of the hierarchy in the
architecture versus the communication delays in the
network. On the one hand, the sensing agents and
the cluster leaders may be configured in multiple
layers as shown in Figure 2 (a), so that there are
multiple clusters of sensing agents and each clus-
ter’s data is processed by one cluster leader. Such a
configuration will have higher cumulative communi-
cation delays compared to a simple network where
all the sensing agents are directly connected to a
single cluster leader that does all the integration
and validation processing. On the other hand, it is
typical of wireless sensor networks that the sensing
agent nodes may have limited communication range
and so may not be able to send their data to a single
cluster leader. Therefore, the formation of multiple
clusters may be necessary.

If a multiple-cluster formation is allowed, each
cluster may be able to cover only a portion of the
entire monitored area. In our current system imple-
mentation, a cluster leader requires measurements
from three or more sensing agents to obtain a VPE.
As shown in Figure 2(a), the cluster leader for clus-
ter #3 can validate all the locations within the area
A. However, the area B (Figure 2(b)) cannot be cov-
ered by sensing agents of any single cluster; so no
single cluster leader can validate the locations in
this area. The cluster leaders corresponding to all
the four clusters need to send their position estimate
data to a higher level cluster leader to perform sec-
ond level of integration. This scenario justifies the
need for having multiple levels of cluster leaders in
our architecture.

4 Single View Head Detection
in Sensing Agent

The human head detection in a single camera image
involves contour analysis of foreground silhouettes
that may correspond to human objects in the scene.
Our algorithm first applies a background subtrac-
tion algorithm to a given scene image to obtain fore-
ground silhouettes. It then applies a shape decom-
position algorithm [15] to extract head-like circular
regions by analyzing the contours of the given sil-
houettes, as shown in Figure 5. Once we obtain
such head-like circular regions (head candidates),
we estimate a rough distance d from the camera to
head candidate in the 3-D world frame, assuming
that a head is modeled by a sphere of radius r in
the 3-D world frame as:
D
d=F a2

where F' is the focal length of the camera, r the
estimated radius of the head region candidate, and
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D the diameter of the average human head. This
equation indicates that |Ad| =~ (27/r)d implying
that uncertainty in d is large for a person far away

from camera.
&

™

S
Y
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Figure 5: Zhao’s Shape Decomposition (from [15]): (a)
the original image, (b) line approzimated contour of

foreground person, (c) computing the negative curvature
minima (represented by small circles) and the cuts (rep-
resented by red lines) (d) the edge segments (represented
as red colored patches).

Figure 6 presents an idealized representation of
the head candidate detected by a single camera for
a single human in its field of view. The head can-
didate is represented in camera coordinate frame
by (u,v,d) where (u,v) are the pixel coordinates of
the head candidate region mean and d is its distance
from the principal point of the camera. The ellipse
in the figure represents uncertainty in d.

The candidate position measurement (u,v,d) ob-
tained from single camera image is transformed to
world coordinate frame p = (z,y, z). Since there is
always an uncertainty in (u, v, d) obtained from the
camera measurement, the uncertainty involved in
(u,v,d) can also be transformed into the 3-D world
coordinate frame that is represented by its mean
position p and covariance matrix S. For the details
of the representation, see our earlier work [7].

The measurement from a single camera may not
represent the actual position of a human head. That
is why we refer to a detected region as a head can-
didate rather than a head. The reason is that cer-
tain non-human objects may appear circular in a
single camera view and may be mistaken for a hu-
man head. Even if the detected regions actually
represent human heads, there is uncertainty in sin-
gle camera position estimates due to sensor noise
and due to assumption about the head size stated
previously in this section. This necessitates the evi-
dence accumulation from multiple sensing agents to
integrate their measurements to obtain a VPE.
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Figure 6: Single Camera Head Detection.

5 Multi-Camera Evidence Ac-
cumulation in Cluster Leader

When a cluster leader receives a new measurement

from a sensing agent, it attempts to update its set of
existing position estimates by integrating the new

measurement with any one of them. We now de-

scribe how this update is carried out using weighted

recursive least squares technique with minimum vari-
ance.

The human head position in the environment
at time ¢ is represented by the position estimate
p = (P,S) where P is the mean vector and S is
the covariance matrix representing position uncer-
tainty, as discussed in previous section. Let this
position estimate be currently stored in the cluster
leader. If a new measurement p’ = (p',.9’) is re-
ceived from one of the sensing agents around the
same time ¢, the cluster leader checks to see if this
measurement can be integrated with position esti-
mate p, by calculating the Mahalanobis distance
between them:

do=F-7)"(5+5)" (B-P).

If dy is less than a certain distance threshold
dthreshold and if the timestamps of p and p’ dif-
fer by less than a time threshold Tipreshotd, they
can be integrated. Experimental values of dihreshotd
ranged from 4.0 and 6.0 and Tipreshola = 1/7.5 where
the frame rate was 7.5 fps. Then p will be up-
dated, producing the updated estimate Pupdated =
(ﬁupdated, Supdated) as follows [1]:

1. pre-computation step
K=5(S+5)"" (update gain)
2. update step

P-K(P-P)
(I-K)S

pupdated
Supdated =

Since there is a timestamp associated with each po-
sition estimate, the time stamp for pupdated is calcu-
lated as the average of the time stamps for p and p’.
Integration of one or more measurements results in
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CPE and the cluster leader keeps track of how many
measurements are integrated into each CPE. In our
current implementation, if three or more measure-
ments can be integrated, a CPE becomes validated
and is called VPE. Upon validation, all the inter-
mediate CPEs that share any measurement with a
VPE are eliminated. This is done primarily to en-
sure that each measurement only contributes to one
VPE in order to minimize false detections. Addi-
tionally it leads to efficient memory usage in the
cluster leader and fast integration process because
there are less number of CPEs and VPEs to inte-
grate any new measurement.

p=(.5) comeraz

) measurement @

Updated uncertainty
"-.\'Pupmm: wapdakfsupded)
p=(.5) ™

Original uncertainty

Camera 1

Figure 7: Uncertainty reduction through measurement
integration.

6 Experimental Results

6.1 Evaluation of Localization Accu-
racy

Our agent-based architecture was implemented us-
ing standard PCs (Pentium 4, 3.2 GHz) and 12 cam-
eras (640 x 480 pizels, Dragonfly2, Point Grey Re-
search Inc.) whose spatial configuration and net-
work interconnections are shown in Figures 2 and
3(b) respectively, where experiments were made in
an indoor rectangular area (8m x 5m). In order
to evaluate our system for human head detection,
we acquired a video sequence approximately 2 min-
utes long (frame rate = 7.5 fps), where upto three
persons are moving around in the rectangular mon-
itoring area. To analyze the head detection perfor-
mance, three scenarios were considered where either
only one, two or three persons were present in the
monitoring area. 30 frames (time duration = 4 sec-
onds) were extracted from the video sequence for
each of these scenarios. Therefore in total, we used
90 frames of data which corresponds to 12 second
interval.

For comparison purposes, ground truth was gen-
erated by manually overlaying circles on human heads
in single camera images, which were then integrated
to generate ground truth 3D positions using weighted
recursive least squares with minimum variance. Since
each person was assigned a unique identity in the

ground truth data, we generated motion trajecto-
ries of the individual persons by linearly interpolat-
ing between the ground truth 3D positions. Two
different configurations of sensing agents and clus-
ter leaders were considered during the experiments:
(a) Configuration 1: A flat structure where all the
12 sensing agents were connected to single clus-
ter leader and (b) Configuration 2: A hierarchical
structure where the 12 sensing agents were divided
in four clusters of three agents each as shown in
Figure 2 and 2 (b). Each of the four clusters has
its own cluster leaders and these cluster leaders are
connected to a second level cluster leader.

The numerical detection performance of the sys-
tem is presented in terms of 1) false positive com-
parison before and after measurement integration
and validation in cluster leader, 2) percentage of
true positives after measurement integration and
validation process and 3) localization accuracy of
correctly detected heads.

-~

(a) 1 person (b) 2 persons (c) 3 persons

Figure 8: Ground truth trajectories and detected head
positions reported by system. Black circle represent
false positives.

Table 1: False positive comparison before/after mea-
surement integration and validation.

Configuration 1 Configuration 2
before | after | reduction | before | after | reduction
1 19 6 68.4 % 19 11 42.1 %
L 2 39 14 64.1 % 39 18 53.8 %

Figure 8 graphically illustrates the head detec-
tion results for the three scenarios. The solid curves
represent the trajectories generated from ground
truth positions and circles represent the head de-
tections reported by the system after measurement
integration and validation. The black circles denote
the false positives. For the two- and three-person
scenarios, there are some instances of missed detec-
tion. This is because of the complicated background
in our test environment which results in many spu-
rious contours in foreground objects, and hence the
single camera head detection algorithm performs
sub-optimally.

Table 1 presents false positive comparisons be-
fore/after measurement integration and validation.
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Table 2: True positive performance after measurement

integration and validation in cluster leader.

Configuration 1
validated heads % true positives
1 56 (50) 89.3%
2 72 (58) 80.6%
Configuration 2
validated heads % true positives
1 75 (64) 85.3%
2 85 (67) 78.8%

The reduction in false positives for Configuration
1 is approximately 64-70 % for the three scenar-
ios and for Configuration 2, it ranges from approxi-
mately 42-64 %, indicating that there is a significant
decrease in the false detections as a result of accu-
mulating evidence from multiple sensing agents. In
Table 2, we present the true positive detection per-
formance. The cluster leader integrates the mea-
surements received from sensing agents and gener-
ates validated position estimates (VPEs). Not all
of these VPEs will be actual human head positions
because sometimes false positive 2D measurements
may get integrated to give a false positive VPE. But
as the high true positive percentages in the table in-
dicate, the system is very effective in filtering out
false positive 2D measurements. The reason is that
the system needs evidence from at least three sens-
ing agents for generating a VPE. Even if one sensing
agent generates a false positive measurement, if it
is not corroborated by two other false positive mea-
surements from other sensing agents, it will not sat-
isfy the integration and validation conditions. Ta-
ble 3 summarizes the mean localization error of the
correctly detected heads in world coordinate frame.

From the results, we can observe that both con-

figurations have comparable detection performances.

The choice of which configuration to use depends on
the extent of monitoring area, scalability, and real
time performance. For small monitored areas, few
sensing agents are required and therefore we can
opt for Configuration 1 due to its simple implemen-
tation. In contrast, large monitoring areas with a
large number of sensing agents may require Config-
uration 2. Since the measurement integration and
validation process in our system is O(n) for Con-
figuration 1 and O(logn) for Configuration 2, the
latter configuration is preferable for real time per-
formance. This configuration is also more suited to
scalable sensor networks because multiple sensing
agents, and cluster leaders can be added in a hier-
archical fashion without affecting the performance
of other parts of the network. Configuration 2 is
also a practical choice for wireless sensor networks
due to a limited communication range of sensing
agent nodes.

Table 3: Mean localization error in detected head posi-
tions in world coordinate frame.

[ Configuration 1 | Configuration 2
1 13 cm 15 cm
2 14 cm 14 cm
3 13 cm 13 cm

6.2 Human Tracking and Interaction
Experiments

The Monitoring Agent carries out multiple human
tracking by associating validated human head es-
timates obtained in different time instances. This
association is achieved by comparing features of val-
idated head estimates in terms of geometric and
non-geometric feature attributes such as color at-
tributes (histograms) in the 3D shape and posi-
tional proximity in the 3D world frame. Such asso-
ciations over the time domain generate trajectories
of multiple humans in motion. To demonstrate the
capability of human tracking in this new detection-
association-based method, we developed a system
called “Are You Okay?” where the system inter-
acts with humans in the environment. For exam-
ple, if a human of interest is in an irregular condi-
tion (such as lying down and squatting down sud-
denly), the Monitoring Agent asks a question like
“Are you okay? If you are okay, please raise your
right hand.” The Monitoring Agent will then inves-
tigate the 3-D human posture by communicating
with multiple sensing agents to obtain the human
contour information. It will then check the gestural
response from the human of interest by also com-
municating 2-D Human Posture Agent or 3-D Hu-
man Posture Agent as shown in Figure 2(b). Such
demonstrations were successfully performed live in
our laboratory. Figure 9 shows a demonstration of
multiple human detection and tracking, where two
persons are moving around the environment. The
top-left window represents the result of human de-
tection in the 3D world coordinate frame in terms
of 3D head positions. Figure 10 shows a snapshot of
the demonstration “Are You Okay?” The Monitor-
ing Agent recognized a human gestural response of
raising the right hand, collaborating with a Human
Posture Agent as shown in Figure 2 (b). Video clips
of such demonstrations are available at
http://cobweb.ecn.purdue.edu/RVL

/Research/HumanMotionTracking/index.html.

7 Conclusions

In this paper, we presented a novel evidence ac-
cumulation framework for human detection based
on agent-based architecture. We conducted exper-
iments to demonstrate good localization accuracy
and performances for detecting multiple humans in
motion. We also demonstrated a system of tracking
and interacting with humans in motion.
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Figure 9: A demonstration of multiple human detec-
tion and tracking, where two persons are moving around
the environment. The top-left window shows the result
of detection in the 3D world coordinate frame.
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Figure 10: A snapshot of the demonstration system
“Are You Okay” that performs human tracking and in-

teraction with a human in the environment. The Mon-
itoring Agent recognizes a human gestural response of
raising the right hand by collaborating with a Human
Posture Agent.
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