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Abstract— A 3D modeling method for wide outdoor scenes by using a wearable vision system with
one omnidirectional sensor is presented in this paper. We propose a multi-baseline stereo vision method
that first estimates the pose of camera, and then reconstructs 3D models of scenes. In addition, GPS
is employed to optimize the parameters of camera and determined the scale of estimated extrinsic pa-
rameters automatically. This paper also reports some experimental results with the proposed method.
Keywords— 3D, omnidirectional, reconstruction, stereo, GPS

1 Introduction

Recently, 3D reconstruction technology has been
applied to many fields, such as 3D navigation sys-
tem, urban landscape models, simulation of road
traffic, and so on. At the same time, wearable and
portable computers are related to daily life and will
be more and more popular. Therefore, we propose
a wearable omnidirectional vision system which can
recover 3D outdoor scenes and even can be applied
to guide a user in real-time by mounting a HMD.
This paper will focus on the 3D reconstruction and
current experiments are offline.

In order to realize robust 3D models based on
omnidirectional images, a number of investigations
have been proposed. Sato et al. proposed a method
that estimates 3D models by tracking features in
an image sequence using multi-cameras system [1].
This method can quickly estimate 3D models, how-
ever, as prerequisite it needs six cameras with high
resolution and complex merge application. In addi-
tion, several landmarks should be known. Kawasaki
et al. proposed a method that estimates 3D mod-
els by analyzing EPI, which consists of a temporal
sequence of images [2]. This method can easily de-
tect feature trajectories without tracking features
frame-by-frame. EPI analysis, however, assumes
that epipolar lines are always critically on the same
plane and the velocity is constant. This assumption
is usually invalid, because of motion vibration, espe-
cially for our wearable system. Some investigations
[3] [4] have also extended this method to estimate
the omnidirectional images, where depth estimates
can be obtained from two cylindrical panoramic im-
ages. However, when depth is estimated only from

two images, erroneous estimation unavoidably oc-
curs due to the occlusion and noise of image. Fur-
thermore, since our sequential images are acquired
by using wearable camera when walking, they bring
accumulative estimated errors when we estimate
wide-baseline motion using these original sequential
images.

In addition, a hyperboloid omnidirectional vision
sensor is frequently used for navigation and 3D
modeling applications [5] [6], because it has a wide
field of view. This means that the same features are
included for a longer interval of the image sequence
and a wider baseline can be taken, thus improving
the efficient estimation.

In these directions, on the one hand, we describes
a method that estimates extrinsic camera param-
eters based on tracking a number of image fea-
tures combined with sparse position data from GPS.
On the other hand, we propose an omnidirectional
multi-baseline stereo method which provides an ef-
ficient depth estimation from the rectified images.

In the remainder of this paper, we firstly describe
our omnidirectional vision system in section 2. The
proposed method that combines with GPS position
data for estimation of extrinsic parameters is intro-
duced in Section 3. Section 4 describes our multi-
baseline stereo method. Experimental analysis and
results obtained using our method are presented in
section 5. Finally, discussion and future work are
presented in sections 6.

2 Omnidirectional Vision System

Our omnidirectional vision system consists of an
omnidirectional vision camera, GPS and PC shown
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Figure 1: A wearable system with an omnidirectional
video GPS and PC.

The omnidirectional vision camera, which is
called HyperOmni Vision [7], consists of a hy-
perboloid mirror mounted in front of a vertically
oriented TV camera. The hyperboloid mirror
has an attractive geometric property illustrated
in Fig.2: an arbitrary point P(X,Yw,Zy) in
scenes is mapped onto the hyperboloid mirror
Penirr (Xm> Ym, Zm ), and then projected into image
plane p;(z;,y;) via this point. The position of Oy
and O¢ are assumed to coincide with the two focal
points of the hyperboloid. In this way, sequential
omnidirectional images without merge application
are acquired. A more detailed description on the
design and geometry of the sensor can be found in
[7]. The advantage of GPS will be described in sec-
tion 3.
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Figure 2: Omnidirectional image formation for a cata-
dioptric vision sensor consisting of a hyperboloid mirror
and a Tv camera.

Several considerations have led us to consider

panoramic images instead of omnidirectional im-
ages. In our application, a virtual panoramic vi-
sion sensor is used to construct these panoramas by
re-projecting the omnidirectional image onto a vir-
tual cylinder. It is created by specifying a virtual
cylinder with unit radius in the mirror coordinates.
The cylinder is given by z2 + y? = 1. We assume
that the cylindrical coordinates coincide with the
mirror coordinates. The projection is computed as
the intersection of the ray emitting from the origin
of the mirror coordinates and passing trough Deyl
with the cylinder surface, as shown in Fig.3.
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Figure 3: A virtual vision sensor model.

Since vectors are defined to estimate the camera
parameters in our coordinates, we introduce func-
tion F to relate vector Xey1= [z,y,2]? of a point
on the cylindrical surface to its 2D cylindrical co-
ordinates representation, namely panoramic image
coordinates, y= [0, 2]7:

cosf
sinf | ,
z

Xeyl = f(y) = (1)

where 0 is azimuth, z = r tan and « is depression
angle. The inverse function F~! is given by:

-1
y=F e = [ 90
A panoramic image y is then transformed into
Xcy1 of 3D Cartesian coordinates using Eq.(2). Con-
sidering the computability of normal vector when
we estimate the camera motion which will be pre-
sented in the following section, we prefer transform-
ing vector Xcy of a virtual unit cylinder to xspn of
a virtual unit sphere (see Fig.3).



3 Camera Parameter Estimation
Using Images and GPS

Estimation of the extrinsic camera parameter
from sequential images is one of important problems
in computer vision, and accurate extrinsic camera
parameters are prerequisite for a widely moving
camera in an outdoor environment to realize out-
door 3D reconstruction. Many investigations are
proposed to improve the errors of camera parame-
ter [8] [9].

As we know, on the one hand, our wearable sys-
tem leads to more serious vibration coming from
walking which causes shift in acquired images. Ac-
cumulative error is unavoidable as long as we use
only relative constraints among images [10] [11].
However, it is also unpractical to reconstruct high
frequency component in motion only by measuring
the GPS positions data because the acquisition rate
of position information from a general GPS receiver
is significantly lower than video rate. On the other
hand, the occlusion existing in scene such as moving
people and car affect the accuracy of estimation. To
avoid these problems, a method based on structure-
from-motion (SFM) combined with GPS positions
and multi-images feature tracking is proposed.

As precondition, the following two conditions are
assumed:

e Camera and GPS are synchronized, namely,
images can correspond to every GPS positions.

e Position relation between camera and GPS re-
ceiver is always fixed, as well as, the distance
between camera and GPS receiver is known.

The proposed method basically consists of fea-
ture tracking based on estimation and optimization
of parameters. Fig.4 shows the flow diagram of our
algorithm. GPS position data and images are syn-
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Figure 4: Flow diagram of camera parameter estima-
tion combined with images and GPS.

chronously acquired in process (A). Process (B) is
performed by the proposed multi-images features
tracking method between sequential images. We

propose factorization method to initialize parame-
ters in process (C) and then optimize them in pro-
cess (D). To avoid the accumulative error, GPS po-
sition data is introduced to optimize and update
camera parameter in the process (E). Furthermore,
the scale vector problem of extrinsic parameter can
be solved in the process (F).

In the following content of this section, we detail
each process.

3.1 Data Synchronize

Firstly, video sequence and GPS data are ac-
quired into database using our wearable system and
then picked out at a constant interval. We define
the positions of GPS as key-positions, and the cor-
responding images as key-frames. In this way, we
can acquire sequential images between any two key-
positions which are labeled with the global position
data, and also shorten the baseline of sequential im-
ages effectively. In practice, all are offline as pre-
processes.

3.2 Feature Points Match

The method of feature points matching is used
to automatically convert the image data to point
data, and then estimate the correspondence of any
two images. A number of investigations were pro-
posed, i.e. RANSAC, KLT, SIFT and so on. In this
paper, several hundreds natural feature points are
automatically detected by using the Harris corner
detector [12] in each panoramic image firstly. Ev-
ery feature point in the (i-1)-th frame is then ten-
tatively matched with the candidate feature points
in the 4th frame by robust tracking with RANSAC
approach. Iteratively, the selected features are re-
tracked by deleting outlier and add new candi-
dates, some of them vanish in the following frames.
The above approach implemented on all images be-
tween neighboring key-positions provides the wide-
baseline tracked features and it is efficient to de-
crease the feature tracking on moving occlusion.

3.3

Initial Parameters Estimation

As the mapping between the Euclidean space and
the image space of an omnidirectional image is non-
linear, the mapping between the image spaces of an
image pair is also non-linear. This means that we
cannot directly formulate the point correspondences
into a system of linear equations to solve for the
mapping function between our image pairs.

In practice, it is a good approximation to assume
mosaics based panorama as a cylindrical projection
with a single viewpoint [13], if all objects in the.
scene are relatively far from the projective center.



Based on this assumption, the relationship between
image space points can be established as follows.

We first transform each image space points to
unit vectors on a unit sphere, S. Let Cy and C;
denote relative camera coordinates from which two
images are acquired by a central projection onto the
spherical surface. Let vector X= [X,Y, Z]T denote
a scene point P of the world coordinates, which is
projected to vector xo of the camera coordinates
Cp and vector x; of the camera coordinates C;. We
define Cy as a reference coordinates, i.e. the coor-
dinates system in which vectors are measured. Let
ti= [ts,ty,t.]7 be the translation vector between
the reference coordinates and the coordinates C; and
let R; be a rotation matrix between these two co-
ordinates. Then point P can be represented as:

roXo = t; + r;Rix;, (3)

where 79 and r; are unknown depths whose values
are to be recovered by multi-baseline stereo method
in section 4.

Furthermore, the epipolar constraint can be es-
tablished:

T Ri(ti X X0) = xF RSxo = x{'Exo =0, (4)
where X denotes the vector product, S denotes the
(3x3) skew symmetric matrix

0 —t. t,
S=|t 0 —t],

—ty tz 0

(5)

and E = RS is known as the essential matrix. Fig.5

Figure 5: Epipolar geometry for omnidirectional unit
sphere

illustrates the principle of the epipolar geometry.
An epipolar curve is formed by intersecting the
epipolar plane, spanned by x¢ and t;, with the

spherical surface. The points where the line be-
tween origin of coordinates Cy and C;, namely base-
line, intersects with the spherical surface is called
the epipole. We can find that there are two epipoles
in one unit spherical mode.

Let xi= [z%,yi,22]7 be the projective vector
at view ¢ and its correspondence of view 0 be
x0= [29,19,20]7, where n is the number of fea-
tures. From Eq.(4) We can obtain a system of linear
equations from a set of correspondences:
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where we write the entries of the essential matrix
as a vector e =[e1,ez---eg]T. A solution for e, i.e.
the essential matrix E, thus is found by solving

mein |De||? subject to lel[=1. (7)
The minimum of e in Eq.(7) is the eigenvector
of the moment matrix M = DTD associated with
the smallest eigenvalue and can be found by us-
ing a singular value decomposition (SVD) of M.
This algorithm is known as the 8-point algorithm
[14]. An essential matrix has two equal eigenval-
ues and has rank two [15]. To optimize the es-
timated matrix, we define the estimated matrix
as E and the optimal essential matrix as E. Let
the SVD decomposition of E be USVT, where
Y = diag(o1,02,03). The optimal essential ma-
trix E can be determined as E = UX'VT, where
¥ = diag((01 + 0'2)/2, (0’1 + 0'2)/2,0).

3.4 Local Optimization

Since the 8-point algorithm is very sensitive to
noise in the image coordinates, a point normaliza-
tion method [16] is proposed to decrease the sensi-
tivity. The proposed SVD is just precessed under
normalization which is provides by the unit spher-
ical mode. RANSAC [17] algorithm is used to de-
crease the estimated error of essential parameter E,
and then by minimizing SSD (Sum of Squared Dif-
ferences) to obtain the optimal essential parameter

The rotation matrix R and S matrix can be de-
termined from the singular value decomposition [18]
E =UX'VT as follows:

R=UYVTor UYTVT,
S=VzZVTor VZTVT,
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There are four possible pairings of R and S from
initial calculation. Since all images are picked up
from video sequences at a constant interval, in prac-
tice there are tens of frames in one second, we can
assume that every two sequential frames are approx-
imatively stable and all the origins of coordinates
between two key-positions approach to co-linear.
In other words, the R is closed to identity matrix
is active, and all the normalized translation vec-
tors between two key-positions are equal. Based on
these assumptions, the R and S can be determined
uniquely.

3.5 Global Optimization

However, the assumption in process (D) is unten-
able when it face to iterative estimation, especially
to the estimation of wide-baseline motion, since the
errors are accumulated and deviate the practical
situation. To avoid the accumulative error, GPS
position data is introduced at key-position. In this
paper, the mentioned global optimization is focused
on the translation estimation.

At each key-position, we compare the estimated
error of images with GPS error, and select the pa-
rameter with smaller error as the optimal one. The
global optimization method is robust to process any
wide-baseline motion as short-baseline motion.

3.6 Scale Optimization

A number of investigations about camera param-
eter estimation only defined up to an arbitrary scale
factor [19] [20]. As a consequence, the length of the
translation vector relating two images cannot be de-
termined from image information only. In this pa-
per, we employ the GPS to measure the position
data, and combine with the GPS position data to
estimate the translation vector. Using the assump-
tion in section 3.4, we further assume that the dis-
tances of neighboring views are equal. We define
t; as the translation vector of corresponding views
between two key-positions, and T is the vector of
two key-positions, illustrated in Fig.6:

4  Multi-baseline Stereo Vision

In this section we present a multi-baseline stereo
vision method for our panoramic images from a set
of sequential images. In traditional estimation al-
gorithm, the depth was estimated only using the
correspondence of pixels in two images. However,
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Figure 6: Scale optimization of camera parameters es-
timation. Vector T is used to estimate every translation
vector t; between corresponding views, each magnitude
of a translation vector ||t;|| = | T|| x ¢/k approximately
and k is the number of the views.

this approach brought large deviation when we es-
timated the depth. In our multi-baseline stereo al-
gorithm, we estimated the depth among the multi-
images. Multi-baseline stereo requires the continu-
ously tracked feature points and the relative camera
poses which are solved in the previous section. Sub-
sequently, we rotate these virtual unit spheres based
on the reference view such that they all keep the
same orientation with reference view. After this rec-
tification, the camera motion can be equivalent to
translation only between key points. We define the
translation vector of baseline between neighboring
key-positions as T, and the translation vector be-
tween corresponding views as t;. Using Eq.(3) and
Eq.(2) the correspondence of points in panoramic
images can be expressed as:

roF(yo) = ti + 7 F(y1); (11)

Given correspondence among {yo,y1,...,yi} in
unit spherical model, the known translation vector
{to,t1, ..., t;}, the depth of a scene point {ry,...,7;}
from the reference pose can be determined based on
the constrain in Fig.7.

Figure 7: A 3D point P can be inferred from reference
view and other views.

Since every view point corresponds to an omni-
directional image, every correspondences on (i — 1)
images between two neighboring key-positions bring
(i—1) candidates of depth value r. Then, the depth
can be estimated by calculating the geometric cen-
troid of these candidates .



5 Experiment

In this section, we present the experiments con-
ducted to evaluate our approach. Our real world
data was acquired by employing a wearable system
equipped with video, GPS and PC. Scenes were ac-
quired in our campus on foot. We extracted the
sequential frames at 6 fps from video, namely, the
number of the multi-images was defined as 6. The
omnidirectional image (720 x 486 pixels) obtained
by the hyperboloid vision sensor is illustrated in
Fig.8. Then, they were transformed into panoramic
images (628 x 72 pixels) (see Fig.9).

Figure 8: Omnidirectional image is acquired from the
hyperboloid vision sensor.

We have carried out three sets of experiments.
Two are concerned with the feature tracking and
the camera parameters estimation. The other is
conducted for estimating depth of feature points in
a real outdoor environment.

5.1 For Feature Tracking

In the first experiment, we evaluated our al-
gorithm under partial occlusion. Two kinds of
panoramic scenes including a working person and
a running car respectively were referred. Then
we evaluated the validity of the use of the feature
tracking among the multi-images by comparing
it with the traditional dual images tracking (see
Fig.9). We define the number of feature points in
the reference image as 300, the results of tracking
are summarized in Table 1. Our approach can
effectively eliminate outliers on the moving object,
especially, for the slow-moving object.

TABLE 1. STATISTIC ON THE FEATURE TRACKING

Tracked Dual Multiple

Object | Total | Occlusion | Total | Occlusion

Person 187 5 118 0
Car 200 8 144 0

5.2 For Camera Parameters Estimation

This experiment was carried out to show the re-
sult of camera parameters estimation. By applying
SVD to E, rotation and translation could be ex-
tracted. Since outliers were decreased effectively,
our approach improved the accuracy of estimation.
We analyzed the error of estimated essential matrix
by comparing our method with traditional method
based on the dual images. The iterative was defined
as 5 times, 20 times and 50 times respectively when
RANSAC algorithm was carried out. From Fig.10
we can find that the error based on multi-images
algorithm is distinctly better than traditional al-
gorithm. Furthermore, the proposed approach still
improves the average accuracy from 0.84 to 0.46
while decreasing the iterative of RANSAC from 50
times to 20 times. Thus, this approach also reduced
the computational cost.

Error of Estimated Essential Matrix
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Figure 10: Error of essential matrix based on multi-
images tracking (solid line) is compared with that based
on dual images tracking (dotted line).

5.3 For Depth Estimation

However, the translation estimation only from
images can not locate the global scale when we esti-
mate the 3D points. In this experiment, we already
combined the translation vector estimated from im-
ages with the translation vector measured from the
GPS position data to estimate the real depth, the
approach is described in section 3.6 and section 4.

An experiment was performed using image ac-
quired in campus with large depth discontinuities
and occlusions. A set of 30 images was extracted
in 5 seconds video. The first image in every sec-
ond was designated as the reference image, illus-
trated in Fig.11-(a). A rectified image, obtained
from the omnidirectional image captured at rela-
tive pose (3.793°, —4.7778°, —5.2962°), is shown in
Fig.11-(b). Fig.12 represents the depth computed
from the reference image and the 5 other images.
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Figure 9: Tracking feature points in the scene with a walking person: (a) shows the result of tracking based on
two images and (b) shows the result of tracking based on multi-images.

IMG0014_0

Figure 11: Images acquired in campus with large depth discontinuities and occlusions. (a) is the first image in
every second as the reference image and (b) is one of the rectified images.

6 Conclusion

We have proposed a method for recovering 3D
structure from sequential omnidirectional images
combined with GPS. The proposed method extracts
features from the omnidirectional images and es-
timates the global parameters using GPS position
data. Furthermore, multi-baseline stereo method is
proposed to reconstruct 3D model.

However, we find the tracked feature points are
sparse, that can not satisfy with the true to nature
3D reconstruction. In future research, we intend
segmenting graphics based on the current 3D points
and estimating the depth by pixel to pixel. As a
vivid model, textures which are obtained from our
input images should be considered.
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Figure 12: Result of recovering 3D points.
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